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Forming Tile Shapes with Simple Robots ∗

Robert Gmyr† Kristian Hinnenthal‡ Irina Kostitsyna§ Fabian Kuhn¶ Dorian Rudolph‡

Christian Scheideler‡ Thim Strothmann‡

Abstract

Motivated by the problem of manipulating nanoscale materials, we investigate the problem of reconfiguring
a set of tiles into certain shapes by robots with limited computational capabilities. As a first step towards
developing a general framework for these problems, we consider the problem of rearranging a connected set
of hexagonal tiles by a single deterministic finite automaton. After investigating some limitations of a single-
robot system, we show that a feasible approach to build a particular shape is to first rearrange the tiles
into an intermediate structure by performing very simple tile movements. We introduce three types of such
intermediate structures, each having certain advantages and disadvantages. Each of these structures can be
built in asymptotically optimal O(n2) rounds, where n is the number of tiles. As a proof of concept, we give
an algorithm for reconfiguring a set of tiles into a triangle through one of the intermediate structures.

1 Introduction

Constructing shapes by nanoscale matter is a very natural and popular problem that has been investigated
under various models already. For example, in the DNA computing field a prominent approach is to use DNA
tiles [1]. Whereas this approach is based on strictly passive elements, so any changes to the structure have to be
enforced externally (e.g., by changing the temperature or exposing the structure to certain kinds of radiation),
several models have been proposed that consider active elements instead [2, 3, 4]. In our work, we investigate a
hybrid approach for the shape formation problem, in which we are given a set of passive tiles that are uniform
and stateless, and (a limited number of) active robots. The robots, which only have the computational power of
a finite automaton, can transport tiles from one position to another in order to form a desired shape. Compared
to the DNA tile-based approach, this approach has the advantage that the tiles no longer have to be tailored
to specific shapes and that no external control is needed anymore. Furthermore, in contrast to the approaches
based entirely on active elements, we believe that many problems can be solved in our hybrid model using only
a small number of active elements. Therefore, considering practical application, our model should presumably
be more cost-efficient to realize. In this paper we support this claim by showing that already a single robot
is able to solve simple shape formation problems. Our ultimate goal is to investigate how multiple robots can
cooperate to speed up the process of shape formation, which is still ongoing work.

2 Model and Problem Statement

We assume that a single active agent (a robot) operates on a set of n passive hexagonal tiles. Each tile occupies
exactly one node of the infinite triangular lattice G = (V,E) (see Figure 1). We assume that the initial position
of the robot is occupied by a tile and describe the relative positions of adjacent nodes of the robot’s position
by six compass directions. Note that even though we describe the algorithms as if the robot knew its global
orientation, we do not actually require the robot to have a compass.
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Figure 1: A set of tiles placed on
nodes of the infinite triangular lattice.
The top right part of the figure shows
the compass directions we use to de-
scribe the movement of a robot.

Whereas tiles cannot perform any computation nor move on their own,
the robot may change its position and carry a tile, thereby modify the tile
structure. We require that the robot’s position is always adjacent to a
node occupied by a tile. Additionally, if the robot does not carry a tile, we
require the subgraph of G induced by the occupied nodes to be connected;
otherwise, the subgraph induced by occupied nodes and the robot’s position
must be connected. In a scenario where a tile structure floats in a liquid,
for example, this restriction prevents the robot or parts of the tile structure
from floating apart.

The robot acts as a deterministic finite automaton and operates in
rounds of look-compute-move cycles. In the look phase of a round the
robot can observe its current node and the six neighbors of that node. For
each of these nodes it can determine whether it is occupied or not. In the
compute phase the robot potentially changes its state and determines its
next move according to the observed information. In the move phase the
robot can either (1) pick up a tile from its current node, if its current node is occupied, (2) place a tile it is
carrying at that node, if it is not occupied, or (3) move to an adjacent node while possibly carrying a tile with
it. The robot can carry at most one tile.

We are interested in Shape Formation problems, in which the goal is to transform any initial configuration
into a configuration in which the tiles form a certain shape on the lattice.

3 Forming an Intermediate Structure

In a naive approach to shape formation, the robot could iteratively search for a tile that can be removed without
disconnecting the tile structure and then move that tile to some position such that the shape under construction
is extended. While there always is a safely removable tile, in the full paper we show that a single robot cannot
find it, which makes this approach infeasible.

Instead, we propose to perform simple local tile movements that preserve connectivity, and to use such
movements to first rearrange the tile structure into an intermediate structure. In the following we show how to
construct three different intermediate structures, each having certain advantages and disadvantages. In each of
the resulting intermediate structures the robot can easily navigate and remove tiles in order to finally rearrange
it into the desired shape. The correctness and runtime proofs can be found in the full paper.

Forming a Line We first present an algorithm to rearrange a given tile configuration into a straight line in
O(n2) rounds. We use the labels N, NE, SE, S, SW, and NW (corresponding to cardinal directions) to refer to
the six neighbors of the robot (see Figure 1).

First, the robot moves S as far as possible, i.e., as long as there is a tile in direction S. Then, it alternates
between a tile searching phase, in which it moves N, NW, and SW (in that precedence) until there is no tile in
any of these directions anymore; and a tile moving phase, in which it picks up the tile, moves one step SE, then
S until it reaches an empty node, and finally places the tile there. The line has been built once the robot does
not encounter any adjacent western or eastern tiles in the tile searching phase, which can easily be detected.
An example of the first several steps of the algorithm can be found in Figure 2a.

Forming a Block Although a line can be constructed efficiently, its linear diameter (which is defined as the
maximal length of a shortest path between any two occupied nodes of the triangular lattice) might make it an
undesirable intermediate structure. Our second algorithm constructs a block in time O(nD) and ensures that
no tile is ever moved farther than by a distance of D, where D is the initial structure’s diameter. A block is a
structure in which all tiles except for the globally westernmost tiles have a neighbor at NW (see Figure 2b).

Similar to the algorithm to form a line, the robot again alternates between a searching and a moving phase.
As before, in the searching phase, the robot finds a tile to pick up by moving NW, SW, and N (in that
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(a) (b)

Figure 2: (a) First several steps of the line formation. The green tiles are moved to the positions marked by dashed
frames. (b) Some steps of the block formation.

precedence) as far as possible. Then, in the moving phase, the robot picks up the tile, moves SE until it reaches
an empty node, and places the tile there. Some steps of the algorithm are shown in Figure 2b.

Although this simple algorithm already constructs a block, detecting once it has been built is still a bit
more complicated. This is done by performing a series of tests alongside the algorithm’s execution. Consider
a block as a stack of rows, i.e., sequences of consecutive tiles from NW to SE. Note that according to the
above algorithm the robot will move each tile of the westernmost column of a finished block, starting with the
northernmost tile, placing each at the first empty position SE of it. Thereby, the robot detects that a block
has been built by verifying the following conditions: (1) after placing a tile, the robot performs at most one SW
movement before it takes the next tile, (2) while moving a tile t, the robot does not traverse a node (except for
t’s previous position) that has a neighbor at NE, but not at N, or a neighbor at S, but not at SW, (3) the robot
never places a tile at a node that has an adjacent tile at SE. A test verifying the above conditions is initiated
whenever the robot picks a tile that does not have a NE neighbor. If thereafter any of the above conditions
gets violated, the test is aborted. If otherwise the robot places the southernmost tile without encountering any
violation, the algorithm terminates.

Forming a Tree Whereas the previous two algorithms focus on how to quickly construct suitable intermediate
structures, regarding practical application of the algorithms, it may also be desirable to minimize the required
work space. In fact, both the line and the block are in many cases built almost completely outside of the initial
configuration’s convex hull (where we refer to the convex hull of the corresponding set of hexagonal tiles in the
Euclidean plane). We present an algorithm that builds tree in time O(n2) by exclusively moving tiles inside
the structure’s convex hull. A tree is a connected tile configuration without an overhang, i.e., a set of vertically
adjacent empty nodes such that (1) the northernmost node has a tile at N, (2) the southernmost node has a tile
at S, and (3) all nodes have adjacent tiles at NW and SW. Examples of an overhang and a tree can be found
in Figures 3a and 3b, respectively.

Due to space constraints, we only sketch the algorithm from a high level. The details can be found in the full
version of the paper. First, the robot traverses the columns of the tile structure (i.e., consecutive connected tiles
from N to S ) in a recursive fashion until it encounters an overhang. Starting at a locally easternmost column,
the robot successively moves to the northernmost of the current column’s western neighbors, and continues to
do so until it reaches a locally westernmost column. In this case, the robot checks whether the current column
has an adjacent eastern overhang by traversing the column from N to S. If so, it fills the overhang as described in
the next paragraph and afterwards restarts the algorithm. Otherwise, the robot moves to the current column’s
adjacent eastern column (of which there can be at most one). Then, it moves south and continues its recursive
search in the next western column. If no such column exists, the robot verifies whether the current column
has an adjacent eastern overhang and proceeds as described above. Eventually, the robot will reach a column
without an adjacent eastern column, in which case it terminates.

We now describe how the robot fills an overhang. First, to find a tile to place into the overhang, the robot
moves in a way that assures that it will find its way back (see Figure 3c). The robot alternates between moving
N as long as there is a tile at N (get tile N phase), and moving NW as long as there is a tile at NW and no
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Figure 3: (a) An overhang. (b) A tree. (c) The search path of the robot starting at r to fill an overhang (gray tiles).
All positions marked by dashed frames must be empty. (d) Triangle formation (in blue) starting from a block (in gray).

tile at SW or N (get tile NW phase). The robot’s path either ends in the get tile N phase at a tile that does
not have a neighbor at NW or SW, in which case it is picked up, or in the get tile NW phase at a locally most
north-western tile, which would also be taken, or at a tile t that has a SW neighbor. In the latter case, which
is depicted in the figure, t is moved one step S. If thereafter t has a neighbor at S or SW, the robot takes t’s NE
neighbor t′. Otherwise, it moves onto t′ and continues its search. Once the robot has picked up a tile, it returns
to its originating column by moving S or SE (in this order of precedence), until it reaches the overhang. The
robot continues to bring tiles as described until the overhang is filled, in which case it restarts the algorithm.

4 Forming a Triangle

All presented intermediate structures can easily be transformed into simple shapes such as a triangle, a hexagon,
or a parallelogram. For example, starting from a block, the robot can build a triangle in an additional O(nD)
rounds by repeatedly taking the last tile of the northernmost row of the block, carrying it to the bottom of the
westernmost column, and placing it at the next position of the westernmost layer of the triangle, see Figure 3d.
More specifically, the robot first creates the tip of the triangle by placing the first tile below the westernmost
column of the block. The second tile is placed NW of the tip. Every other tile of the triangle is then placed as
follows. The robot first brings a tile to the triangle’s tip. It then walks NW and S (in that precedence) until
there is no tile in these directions anymore. If there is a tile at SE, the robot moves one step S and drops the
tile. Otherwise, the robot moves to the top of the layer, takes one step in NW direction and places the tile
there. In this manner, the robot continues to extend the triangle tile by tile until the whole block has been
disassembled.
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