Coordinated voltage control in LV grid with solar PVS

Citation for published version (APA):

DOI:
10.1049/oap-cired.2017.1026

Document status and date:
Published: 01/10/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 19. Apr. 2021
Coordinated voltage control in LV grid with solar PVS: development, verification and field trial

Mohamed Mansoor Viyathukattuva Mohamed Ali1, Yu Xiang2, Jerele Marjan4, Thai Hau Vo1, Phuong Hong Nguyen1, Joseph Franciscus Gerardus Cobben1,3

1Eindhoven University of Technology, The Netherlands
2SIM-CL, The Netherlands
3Alliander N.V., Arnhem, The Netherlands
4Pomočnik izvršnega direktorja, Elektro Gorenjska, d.d., Kranj, Slovenia
ss E-mail: viyathukattuva@tue.nl

Abstract: The increasing share of distributed renewable energy resources may lead voltage violation problems in low-voltage (LV) network. However, a number of smart grid solutions are developed, only very limited number of solutions are being implemented in real field. Therefore, in this study, on-load tap changer based smart solution is verified using a real rural LV network in Slovenia. The field trial revealed that redundancy and cyber security are the main concerns for distribution system operator, which are addressed in this field trial.

1 Introduction

As countries try to achieve their green energy related targets, the share of distributed renewable energy resources (DRES) in low-voltage (LV) networks increases. Since the existing LV networks are designed in a passive way with the unidirectional power flow from centralised power generation to the customers, the increasing share of DRES from the customer premise with possible bi-directional flows creates some technical problems, e.g. overvoltage [1, 2]. Distribution system operators (DSOs) are putting effort to mitigate the overvoltage problem in their LV network in order to meet the quality of supplied power according to EN 50160 [3].

Besides using grid reinforcement or reactive power control or storage, recently, DSOs prefer using on-load tap changer (OLTC) equipped distribution transformer due to its affordable cost and less time-consuming [4]. However, the conventional OLTC control based on the voltage at the substation busbar cannot completely solve voltage variations in the downstream LV network [5]. In this paper, a control concept called overlaying control for OLTC is proposed to solve the simultaneous overvoltage and undervoltage problem that occur in different feeders. The overlaying control acquires the real-time voltage measurements from the end busses of all feeders, and coordinates OLTC and power injection of solar photovoltaics (PVs) to maintain the voltages within EN50160 limits.

In [6], the proposed control is verified using the software simulation. In this paper, the proposed control is verified using a real rural LV network in Slovenia. The interview with experts from DSOs indicate that the main concern for DSOs is redundancy and cyber threat. Therefore, the following features are identified as requirements in order to test the proposed control in a real field trial, which are: cyber security and redundancy for communication failures. The cyber security concern is addressed by following the cyber security concept called ‘physical air gap separation’ [7]. Whereas, the redundancy in case of communication failures is provided by coordinating the local control of transformer and the proposed overlaying control.

In this paper, the practical implementation challenges while implementing a new smart OLTC control is developed and experimentally tested. The test results are described in this paper.

2 Problem formulation

2.1 The limitation of the conventional control

In this section, a classical control methodology of the OLTC equipped transformer is described. Let assume a transformer is equipped with an OLTC, which is controlled by an automatic voltage regulator. This regulator measures the voltage at the secondary side of the transformer (Ua) and compares it with a reference voltage (Uref). When the voltage difference crosses a deadband (ΔU) and it sustains for a predefined time-period, the taps of the transformer are adjusted to regulate the voltage level [8, 9]. If a LV network consists of a feeder mostly connected to DRES and another feeder mostly connected only to loads (Fig. 1). More details about this voltage problem are defined in [6].

2.2 Proposed solution

In this paper, a control methodology referred as ‘Overlaying Control’ is proposed for the operation and control of OLTC, which is illustrated in Fig. 2. In Fig. 2, Vmax, Vmin are the maximum and minimum voltages of the feeders, Vhigh , Vlow are the predefined higher and lower voltage limits; Vref is the voltage change per OLTC’s tap position; TR is the current tap position.

As can be seen from Fig. 2, the main function of this control method is that: if minimum voltage is lower than the limit, the OLTC is step up. In case the maximum voltage is higher than the limit, there will be a check if step down will cause minimum voltage lower than limit. Since the OLTC can only be controlled symmetrically, therefore the positive sequence voltage is taken into account in the control algorithm. The calculation for the voltage is described in Section 3 with the assumption that three-phase voltages are balanced with 120° angle between any two voltages.
3 Case study

3.1 Network

The single line diagram of the network under testing is shown in Fig. 3. The distribution transformer is 400 kVA 20/0.4 kV transformers that are equipped with 1.5% OLTC and nine tap positions. Whereas, the installed capacity of PV systems is 210 kWp. The PV connections points and few demand points are being monitored remotely using the network analysers, which are shown in Fig. 3.

3.2 Implementation

Different communication protocols are used in the field trial. It is learned that the protocols used differs with manufacturers. In the field trial, the following protocols are used: distributed network protocol (DNP) 3.0, worldwide interoperability for Microwave access (WiMAX) and open platform communications (OPC) unified architecture (UA). Fig. 4 shows the communication link among devices in the field trial. The proposed control is embedded in a computer called TU/e PC that is connected to the supervisory control and data acquisition (SCADA) system of DSO using OPC UA protocol.

A java-based OPC UA package is chosen to receive and send the monitoring and control signals. Moreover, the JAVA programming language is chosen for the development because it is platform independent. Thus, it can be used easily implemented in other computers.

There are 10 locations in totals as shown in Fig. 3, in which there are 10 measurement quantities of each location. The measurement data are retrieved each 10 s interval. The measurements are:

- three-phase voltage magnitude,
- three-phase current magnitude,
- total active, reactive, and apparent power,
- power factor.

3.3 OPC UA client

The communication link of client to server is built as non-security and run on the local personal computer that is connected to the same LAN network of the server. The communication link is further developed to work on the 256 bit secured connection in...
order to satisfy the cyber security concerns of DSO. The algorithm implemented by the client is described as in Fig. 5.

3.4 The test set-up procedure

In order to carry out the test that the field, the Sipronika server is used as a central system and the client is developed using another dedicated computer for OLTC control machine located at the same network.

3.5 Client development

The OPC UA client is built with the specifications defined by the standard OPC, which composes of preparation, working (deploy control algorithm) and close the connection as shown in Fig. 2. Its graphical user interface (GUI) is shown as in Fig. 6.

So far, with the close cooperation between TU/e, Sipronika and Elektro Gorenjska, the overlay control method was successfully implemented and verified at Slovenian actual environment. The development process is listed as follow:

- connect TU/e PC to the Sipronika server via OPC/UA,
- retrieve and log measurement data from Sipronika server,
- test the data quality, identify and solve possible data interruption problems,
- retrieve and log measurement data with sufficient quality,
- use the measurement data as case study material, test the OLTC control algorithm in simulation environment,
- trial overwrite OLTC position through OPC/UP protocol,
- implement OLTC control algorithm in field,
- upgrade connection from non-security to 256 bit sign and encrypted,
- validate the outcome of OLTC control,
- modify the client to auto-start whenever PC restarts.

3.5.1 Lessons learned:

Some difficulties faced from the beginning are the data interruption but it is soon resolved by the improvement of algorithm. For a given measurement, if the data interruption is <10 min, the missing values will be interpolated when the new data comes in. Otherwise, if the interruption is longer than 10 min, the measurement will be declared as unavailable until the new data comes in. In the data log, the entries for the missing time stamps will be marked as NaN (not a number).

4 Measurement results

In the field trial, three different days with the same cloud cover were chosen to compare three control cases namely no control case, conventional control case and the proposed overlaying control. The corresponding results are shown in Fig. 7. As highlighted by green box in Fig. 7, the overlaying control mitigated the voltage rise problem (>235 V) significantly than the conventional control. It can be noted that in case of...
communication failures the conventional control will take over the control of OLTC.

Fig. 8 shows that the proposed overlaying control reduces the voltage rise problem. Moreover, the number of changes in the tap position of OLTC is same for both overlaying control (TU/e) and the conventional control (OLTC), which is shown in Fig. 9.

5 Conclusion

The field trial revealed that the new smart grid solutions should incorporate cyber security and redundancy features. Thereby, it can be deployed in real-life easily. The field trial of this paper proves that new smart grid solutions can be implemented in real-life application once the developers address concerns of DSO. Moreover, since the proposed solution is developed using machine independent JAVA, the proposed solutions can be modified and updated easily.

In future, the field trial will be extended to test the coordination of active power output from PVs and OLTC operation.

6 Acknowledgement

This research has received funding from the European Union’s Seventh Framework Programme for research technological development and demonstration under grant agreement no 608998 – INCREASE project.

7 References