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Locally Correct Fréchet Matchings

Kevin Buchin∗ Maike Buchin∗ Wouter Meulemans∗ Bettina Speckmann∗

Abstract

The Fréchet distance is a metric to compare two
curves, which is based on monotonous matchings be-
tween these curves. We call a matching that results
in the Fréchet distance a Fréchet matching. There are
often many different Fréchet matchings and not all of
these capture the similarity between the curves well.
We propose to restrict the set of Fréchet matchings to
“natural” matchings and to this end introduce locally
correct Fréchet matchings. We prove that at least one
such a matching exists for two polygonal curves and
give an algorithm to compute it.

1 Introduction

Many problems ask for the comparison of two curves.
Consequently, several distance measures have been
proposed for the similarity of two curves P and Q,
for example, the Hausdorff and the Fréchet distance.
Such a distance measure simply returns a number in-
dicating the (dis)similarity. However, the Hausdorff
and the Fréchet distance are both based on matchings
of the points on the curves. The distance returned
is the maximum distance between any two matched
points. The Fréchet distance uses monotonous match-
ings (and limits hereof): if point p on P and q on Q

are matched, then any point on P after p must be
matched to q or a point on Q after q. The Fréchet dis-
tance is the maximal distance between two matched
points minimized over all monotonous matchings of
the curves. We call a matching resulting in the
Fréchet distance a Fréchet matching.

There are often many different Fréchet matchings
for two curves. However, as the Fréchet distance is
determined only by the maximal distance, not all of
these matchings capture the similarity between the
curves well (see Fig. 1). There are applications that
directly use a matching, for example, to compute
the average distance [5] or to morph between the
curves [3]. In such situations it is particularly im-
portant to be able to compute a “good” matching.
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Figure 1: Two Fréchet matchings for curves P and Q.

Results. We propose to restrict the set of Fréchet
matchings to “natural” matchings and to this end in-
troduce locally correct Fréchet matchings: matchings
that are Fréchet matchings for any two matched sub-
curves. We prove the following theorem.

Theorem 1 For any two polygonal curves P and Q,

there exists a locally correct Fréchet matching.

This theorem follows directly from Lemma 3 in Sec-
tion 3. The proof of this lemma results in a recursive
algorithm to compute a locally correct matching.

Related work. The first algorithm to compute the
Fréchet distance was given by Alt and Godau [1].
Since then, the Fréchet distance has received sig-
nificant attention. Here we focus on approaches
that restrict the allowed matchings. Efrat et al. [3]
introduced Fréchet-like metrics, the geodesic width
and link width, to restrict to matchings suitable for
curve morphing. Their method is suitable only for
non-intersecting polylines. Moreover, geodesic width
and link width do not resolve the problem illus-
trated in Fig. 1: both matchings also have minimal
geodesic width and minimal link width. Mahesh-
wari et al. [4] studied a restriction by “speed limits”,
which may exclude all Fréchet matchings and may
cause undesirable effects near “outliers” (see Fig. 2).
Buchin et al. [2] describe a framework for restricting
Fréchet matchings, which they illustrate by restrict-
ing slope and path length. The former corresponds to
speed limits. We briefly discuss the latter in Section 3.
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Figure 2: Two Fréchet matchings. The right one re-
sults from speed limits and is not locally correct.
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2 Preliminaries

Curves. Let C be a polygonal curve with n edges,
defined by vertices c0, . . . , cn. We treat a curve as a
continuous map C : [0, n] → R

2. In this map, C(i)
equals ci for integer i. Furthermore, C(i + λ) equals
(1−λ) · ci+λ · ci+1, for integer i and 0 < λ < 1. As a
reparametrization σ : [0, 1] → [0, n] of a curve C, we
allow any continuous, non-decreasing function such
that σ(0) = 0 and σ(1) = n. We denote by Cσ(t)
the actual location according to reparametrization σ:
Cσ(t) = C(σ(t)). By Cσ[a, b] we denote the subcurve
of C in between Cσ(a) and Cσ(b).

Fréchet matchings. We are given two polygo-
nal curves P and Q with m and n edges. A
(monotonous) matching µ between P and Q is a
pair of reparametrizations (σ, θ), such that Pσ(t)
matches to Qθ(t). The Euclidean distance between
two matched points is denoted by dµ(t) = |Pσ(t) −
Qθ(t)|. The maximum distance over a range of val-
ues is denoted by dµ[a, b] = maxa≤t≤b dµ(t). The
Fréchet distance between two curves is defined as
δF(P,Q) = infµ dµ[0, 1]. A Fréchet matching is a
matching µ that realizes the Fréchet distance, that
is, dµ[0, 1] = δF(P,Q) holds.

Free space diagrams. Alt and Godau [1] describe
an algorithm to compute the Fréchet distance based
on the decision variant (that is, solving δF(P,Q) ≤ ε

for some given ε). Their algorithm uses a free space

diagram, a two-dimensional diagram on the range
[0,m] × [0, n]. Every point (x, y) in this diagram
is either “free” (white) or not (indicating whether
|P (x)−Q(y)| ≤ ε). The diagram has m columns and
n rows; every cell (c, r) (1 ≤ c ≤ m and 1 ≤ r ≤ n)
corresponds to the edges pc−1pc and qr−1qr. To com-
pute the Fréchet distance, one finds the smallest ε

such that there exists an x- and y-monotone path from
point (0, 0) to (m,n) in free space. For this, only cer-
tain critical values have to be checked. These values
correspond to emergence of potentially new allowed
paths, so-called critical events. The three event types
are illustrated in Fig. 3. We scale every row and col-
umn in the diagram to correspond to the (relative)
length of the actual edge of the curve instead of using
unit squares for cells.

B CA

Figure 3: Three event types. (A) Endpoints come
within range of each other. (B) Passage opens on cell
boundary. (C) Passage opens in row (or column).

3 Locally correct matchings

We introduce locally correct matchings, which are a
Fréchet matching for any two matched subcurves.

Definition 1 (Local correctness) Given two poly-

gonal curves P and Q, a matching µ = (σ, θ) is locally
correct if for all a, b with 0 ≤ a ≤ b ≤ 1

dµ[a, b] = δF(Pσ[a, b], Qθ[a, b]).

Note that not every Fréchet matching is locally cor-
rect. The question arises whether a locally correct
matching always exists and if so, how to compute it.

Existence. We prove that there always exists a locally
correct matching for any two curves by induction on
the number of edges in the curves. First, we present
two simple observations for the two base cases.

Observation 1 (P is a point) For two polygonal

curves P and Q with m = 0, a locally correct match-

ing is (σ, θ), where σ(t) = 0 and θ(t) = t · n.

Observation 2 (Line segments) For two polygo-

nal curves P and Q with m = n = 1, a locally correct

matching is (σ, θ), where σ(t) = θ(t) = t.

For induction, we split the two curves based on
events (see Fig. 4). Since each split must reduce the
problem size, we ignore any events on the left or bot-
tom boundary of cell (1, 1) or on the right or top
boundary of cell (m,n). This excludes both events of
type A. A free space diagram is connected at value ε,
if a monotonous path exists from the boundary of cell
(1, 1) to the boundary of cell (m,n). A realizing event

is a critical event at the minimal value ε such that the
corresponding free space diagram is connected.

Let E denote the set of concurrent realizing events
for two curves. A realizing set Er is a subset of E
such that the free space admits a monotonous path
from cell (1, 1) to cell (m,n) without using an event

Q

P(a)

Q1

P1
(b)

P2

Q2

P

Q

P1

Q1

P2

Q2

Figure 4: (a) Curves with the free space diagram for
ε = δF(P,Q) and the realizing event. (b) The event
splits each curve into two subcurves. The hatched
areas indicate parts that disappear after the split.
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in E\Er. Note that a realizing set cannot be empty.
When E contains more than one realizing event, some
may be “insignificant”: they are never required to
actually make a path in the free space diagram. A
realizing set is minimal if it does not contain a strict
subset that is a realizing set. Such a minimal realizing
set contains only “significant” events. We omit the
(straightforward) proof of the following lemma.

Lemma 2 For two polygonal curves P and Q with

m > 1 and n ≥ 1, there exists a minimal realizing set.

In the remainder, we use realizing set to indicate
a minimal realizing set, unless indicated otherwise.
To prove the existence of a locally correct Fréchet
matching, we prove the following, stronger lemma.
Informally, it states that curves have a locally cor-
rect matching that is “closer” (except in cell (1, 1) or
(m,n)) than the distance of their realizing set. In
addition, this matching is linear inside every cell.

Lemma 3 If the free space diagram of two polygonal

curves P and Q is connected at value ε, then there

exists a locally correct Fréchet matching µ = (σ, θ)
such that dµ(t) ≤ ε for all t with σ(t) ≥ 1 or θ(t) ≥ 1,
and σ(t) ≤ m − 1 or θ(t) ≤ n − 1. Furthermore, µ is

linear in every cell.

Proof. We prove this by induction on m + n. The
base cases (m = 0, n = 0, and m = n = 1) follow
from Observation 1 and Observation 2.
For the induction, we assume that m ≥ 1, n ≥ 1,

and m+ n > 2. By Lemma 2, there exists a realizing
set Er for P and Q, say at value εr. The set con-
tains realizing events e1, . . . , ek (k ≥ 1), numbered in
lexicographic order. By definition, εr ≤ ε must hold.
Suppose that Er splits curve P into P1, . . . , Pk+1 and
curve Q into Q1, . . . , Qk+1. By definition of a real-
izing event, none of the events in Er occur on the
right or top boundary of cell (m,n). Therefore, the
following holds for any i (1 ≤ i ≤ k + 1): mi ≤ m,
ni ≤ n, and mi < m or ni < n. Since there is a path
in the free space diagram at εr through all events in
Er, the induction hypothesis implies that, for any i

(1 ≤ i ≤ k + 1), there exists a locally correct match-
ing µi = (σi, θi) for Pi and Qi such that µi is linear
in every cell and dµi

(t) ≤ εr for all t with σi(t) ≥ 1 or
θi(t) ≥ 1, and σi(t) ≤ mi − 1 or θi(t) ≤ ni − 1. Com-
bining these matchings with the events in Er yields
a matching µ = (σ, θ) for (P,Q). As we argue be-
low, this matching is locally correct and satisfies the
additional properties. The matching of an event cor-
responds to a single point (type B) or a horizontal or
vertical line (type C). By induction, µi is linear in ev-
ery cell. Since all events occur on cell boundaries, the
cells of the matchings and events are disjoint. There-
fore, the matching µ is also linear inside every cell.

For i < k + 1, dµi
is at most εr at the point where

µi enters cell (mi, ni) in the free space diagram of Pi

and Qi. We also know that dµi
equals εr at the top

right corner of cell (mi, ni). Since µi is linear inside
the cell, dµi

(t) ≤ εr also holds for t with σi(t) > mi−1
and θi(t) > ni − 1. Analogously, for i > 0, dµi

(t) is
at most εr for t with σi(t) < 1 and θi(t) < 1. Hence,
dµ(t) ≤ εr ≤ ε holds for t with σ(t) ≥ 1 or θ(t) ≥ 1,
and σ(t) ≤ m− 1 or θ(t) ≤ n− 1.
To show that µ is locally correct, suppose for con-

tradiction that we have values for a, b such that
δF(Pσ[a, b], Qθ[a, b]) < dµ[a, b]. If a, b are in between
two consecutive events, then we know that the sub-
matching corresponds to one of the matchings µi.
However, we know that these are locally correct and
thus δF(Pσ[a, b], Qθ[a, b]) = dµ[a, b] holds.

Hence, assume that there is at least one event of Er

in between a and b. There are two possibilities: either
dµ[a, b] = εr or dµ[a, b] > εr. dµ[a, b] < εr cannot hold,
since dµ[a, b] includes a realizing event. First, assume
dµ[a, b] = εr holds. If δF(Pσ[a, b], Qθ[a, b]) < εr holds,
then there is a matching that does not use the events
in between a and b and has a lower maximum. There-
fore, the free space connects point (σ(a), θ(a)) with
point (σ(b), θ(b)) at a lower value than εr. This im-
plies that all events between a and b can be omitted,
contradicting that Er is a minimal realizing set.
Now, assume dµ[a, b] > εr. Let t

′ denote the highest
t for which σ(t) ≤ 1 and θ(t) ≤ 1 holds, that is, the
point at which the matching exits cell (1, 1). Similarly,
let t′′ denote the lowest t for which σ(t) ≥ m− 1 and
θ(t) ≥ n − 1 holds. We know that dµ(t) ≤ εr holds
for any t′ ≤ t ≤ t′′. Hence, dµ(t) > εr can only hold
for t < t′ or t > t′′. Suppose that dµ(a) > εr holds.
Thus, we have that a < t′ and µ is linear between a

and t′. Therefore, dµ(a) > dµ(t) holds for any t with
a < t < t′. Analogously, if dµ(b) > εr holds, then
dµ(b) > dµ(t) holds for any t with t′′ < t < b . Hence,
we conclude that dµ[a, b] = max {dµ(a), dµ(b)}. Since
this gives a lower bound on the Fréchet distance, we
conclude that the matching µ is locally correct. �

Further restrictions. We considered restricting the
matchings to the “shortest” locally correct matching,
where “shortest” refers to the length of the path in
the free space diagram. However, Fig. 5 shows that
such a restriction does not necessarily improve the

P

Q

P

Q

Figure 5: Two locally correct Fréchet matchings for
curves P and Q. The right matching is the shortest.
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quality of the matching. Another potential constraint
we are currently investigating is “local optimality”.
Intuitively, a matching is locally optimal if no small
change decreases the matched distance locally.

4 Algorithm

The existence proof results in a recursive algorithm
with execution time O((m + n) · m · n · log(m · n)).
Fig. 1 (left), Fig. 2 (left), Fig. 5 (left), and Fig. 6
illustrate matchings computed with our algorithm.

Algorithm 1 FindLocallyCorrectMatching(P,Q)

Require: P and Q are curves with m and n edges
Ensure: A locally correct matching for P and Q

1: if m = 0 or n = 0 then
2: return (σ, θ) where σ(t) = t ·m, θ(t) = t · n
3: else if m = n = 1 then
4: return (σ, θ) where σ(t) = θ(t) = t

5: else
6: Find event er of a minimal realizing set
7: Split P into P1 and P2 according to er
8: Split Q into Q1 and Q2 according to er
9: µ1 → FindMatching(P1, Q1)

10: µ2 → FindMatching(P2, Q2)
11: return concatenation of µ1, er, and µ2

Using the notation of Alt and Godau [1], LF
i,j de-

notes the interval of free space on the left boundary of
cell (i, j); LR

i,j denotes the subset of L
F
i,j that is reach-

able from point (0, 0) of the free space diagram with a
monotonous path in the free space. Analogously, BF

i,j

and BR
i,j are defined for the bottom boundary.

With a slight modification to the decision algo-
rithm, we can compute the minimal value of ε such
that a path is available from cell (1, 1) to cell (m,n).
This requires only two changes: BR

1,2 should be initial-

ized with BF
1,2 and LR

2,1 with LF
2,1; the answer should

be “yes” if and only if BR
m,n or LR

m,n is non-empty.

Realizing set. By computing the Fréchet distance
using the modified Alt and Godau algorithm, we ob-
tain an ordered, potentially non-minimal realizing set
E = {e1, . . . , el}. Let Ek denote the first k events
of E . The algorithm must find an event that is con-
tained in a realizing set. We use a binary search on
E to find the r such that Er contains a realizing set,
but Er−1 does not. This implies that event er must
be contained in a realizing set. We use er to split the
curves. Note that r is unique due to monotonicity.
For correctness, the order of events in E must be

consistent in different iterations, for example, by using
a lexicographic order. Set Er contains only realizing
sets that use er. Therefore, Er−1 contains a realizing
set to connect cell (1, 1) to er and er to cell (m,n).
Thus any event found in subsequent iterations is part
of Er−1 and is part of a realizing set with er.

PQ

P

Q

Figure 6: Locally correct matching produced by the
algorithm. Free space diagram drawn at ε = δF(P,Q).

To determine whether some Ek contains a realizing
set, we check whether cells (1, 1) and (m,n) are con-
nected without “using” the events of E\Ek. To do this
efficiently, we further modify the Alt and Godau al-
gorithm. We require only a method to prevent events
in E\Ek from being used. After LR

i,j is computed, we
check whether the event e (if any) that ends at the
left boundary of cell (i, j) is part of E\Ek and neces-
sary to obtain LR

i,j . If this is the case, we replace LR
i,j

with an empty interval. Event e is necessary if and
only if LR

i,j is a singleton. To obtain an algorithm that
is numerically more stable, we introduce entry points.
The entry point of the left boundary of cell (i, j) is the
maximal i′ < i such that BR

i′,j is non-empty. These
values are easily computed during the decision algo-
rithm. Assume e starts on the left boundary of cell
(is, j). Event e is necessary if and only if i′ < is.
Therefore, we use the entry point instead of checking
whether LR

i,j is a singleton. This process is analogous
for horizontal boundaries of cells.
We silently assumed that each event in E ends at

a different cell boundary. If multiple events end at
the same cell boundary, then these events occur in
the same row (or column) and it suffices to consider
only the event that starts at the rightmost column
(or highest row). This justifies the assumption and
ensures that E contains O(m ·n) events. Hence, com-
puting er (line 6) takes O(m · n · log(m · n)) time.
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