Spin-orbit interaction and induced superconductivity in a one-dimensional hole gas

Citation for published version (APA):

Document license:
CC BY-NC-ND

DOI:
10.1021/acs.nanolett.8b02981

Document status and date:
Published: 10/10/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Oct. 2023
Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas

Folkert K. de Vries, #‡ Jie Shen, #§ Erald J. Skolasinski, † Michal P. Nowak, † Daniel Varjas, † Lin Wang, † Michael Wimmer, † Joost Rijderbos, ¶ Floris A. Zwanenburg, ¶ Ang Li, ¶ Sebastian Koelling, ¶ Marcel A. Verheijen, ¶ Erik P. A. M. Bakkers, ¶ and Leo P. Kouwenhoven *

† QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
‡ AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
¶ NanoElectronics Group, MESA and Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
§ Philips Innovation Laboratories, 5656 AE Eindhoven, The Netherlands
¶ Microsoft Station Q Delft, 2600 GA Delft, The Netherlands

Supporting Information

ABSTRACT: Low dimensional semiconducting structures with strong spin–orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protection of the predicted Majorana bound states. Here we explore the one-dimensional hole gas in germanium silicon (Ge–Si) core–shell nanowires (NWs) as a new material candidate for creating a topological superconductor. Fitting multiple Andreev reflection measurements shows that the NW has two transport channels only, underlining its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor that, combined with band structure calculations, provides us qualitative evidence for the direct Rashba SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap is found in the tunneling regime and the open regime, where we use the Kondo peak as a new tool to gauge the quality of the superconducting gap.

KEYWORDS: Spin–orbit interaction, g-factor anisotropy, Josephson junction, multiple Andreev reflection, nanowires, hole transport

The large band offset and small dimensions of the Ge–Si core–shell nanowire (NW) lead to the formation of a high-quality one-dimensional hole gas.1,2 Moreover, the direct coupling of the two lowest-energy hole bands mediated by the electric field is predicted to lead to a strong direct Rashba spin–orbit interaction (SOI).3,4 The bands are coupled through the electric dipole moments that stem from their wave function consisting of a mixture of angular momentum (L) states. On top of that, the spin states of that wave function are mixed due to heavy and light hole mixing. Therefore, an electric field couples via the dipole moment to the spin states of the system and causes the SOI. This is different from the Rashba SOI, which originates from the coupling of valence and conduction bands. The predicted strong SOI is interesting for controlling the spin in a quantum dot electrically.5,6 Combining this strong SOI with superconductivity is a promising route toward a topological superconductor.7,8 Signatures of Majorana bound states (MBs) have been found in multiple NW experiments.5,9 An important intermediate result is the measurement of a hard superconducting gap,11,12 which ensures the semiconductor is well proximitized as is needed for obtaining MBs.

Here we study a superconducting quantum dot in a Ge–Si NW. The scanning and transmission electron microscopy images of the device (Figure 1a,b) show a Josephson junction of ~170 nm in length. The quantum dot is formed in between the contacts. The Ge–Si core–shell nanowires were grown by the vapor–liquid–solid (VLS) method as discussed in detail in the Supporting Information of ref 2. The NW has a Ge core with a radius of 3 nm. The Ge crystal direction is found to be [110], in which hole mobilities up to 4600 cm²/ Vs are reported.2 The elemental analysis in Figure 1c reveals a pure Ge core with a 1 nm Si shell and a 3 nm amorphous silicon oxide shell around the wire. Superconductivity is induced in the Ge core by aluminum (Al) leads,13 and crucially, the device is annealed for a short time at a moderate temperature.14,15 We
The spinful Kondo peak, which is indicated by the dashed green line. The signature of the Kondo effect appears when the quantum dot has odd parity. This is a result of elemental analysis (Figure 1c). Two terminal voltage bias measurements are performed on this device in a dilution refrigerator with an electron temperature of \(T = 50 \text{ mK} \). The magnetic field is applied perpendicular to the substrate (Figure 1e). A zero bias Kondo peak is observed as the quantum dot is occupied by an odd number of electrons. At high temperature, the Kondo effect splits due to the Zeeman effect. (g) Linear splitting of the Kondo peak at \(V_{bg} = -0.098 \text{ V} \) as a function of \(B \). The Zeeman effect splits the spinful Kondo peak, which is indicated by the dashed green line.

Figure 1. (a) False colored scanning electron microscope image of the device with the NW (yellow) with aluminum contacts (gray) on a Si/SiN, wafer (blue). The magnetic field axes, voltage bias measurement setup, and global bottom gate are indicated. (b) Transmission electron microscope (TEM) image of the cross section of the NW. (c) Energy dispersive X-ray spectroscopy of the area displayed in panel b. The colors represent different elements: Ge is green, Si is blue, and oxygen (O) is red, respectively. The Ge–Si core–shell wire is capped by a SiO\(_2\) shell. (d) Voltage bias tunneling spectroscopy measurement of the superconducting quantum dot as the bottom gate voltage \(V_{bg} \) is altered. The superconducting gap, an Andreev level (AL), and multiple Andreev reflections appear as peaks in differential conductance \((dI/dV) \). The AL, \(\Delta \), and \(2\Delta \) are marked by dashed green, yellow, and white lines, respectively. The even or odd occupation is indicated, and the kink in the observed Andreev level is highlighted by the arrows. (e, f) Same measurement as panel d with a magnetic field, \(B \), applied perpendicular to the substrate (x-direction) of 60 mT and 1 T, respectively. A zero bias Kondo peak is observed as the quantum dot is occupied by an odd number of electrons. At \(B = 1 \text{ T} \), the resonance is split due to the Zeeman effect. (g) Linear splitting of the Kondo peak at \(V_{bg} = -0.098 \text{ V} \) as a function of \(B \). The Zeeman effect splits the spinful Kondo peak, which is indicated by the dashed green line.

believe that the high temperature causes the Al to diffuse in the wire, therefore enhancing the coupling to the hole gas. Note that we do not diffuse the Al all the way through, since we pinch off the wire (Figure S1) and there is no Al found in the elemental analysis (Figure 1c). Two terminal voltage bias measurements are performed on this device in a dilution refrigerator with an electron temperature of \(T = 50 \text{ mK} \).

To perform tunneling spectroscopy measurements, the bottom gate voltage \(V_{bg} \) is used to vary the barriers of the quantum dot and alter the density of the holes as well. From a large source-drain voltage, \(V \), measurement (Figure S1), we estimate a charging energy, \(U \), of 12 meV, barriers’ asymmetry of \(\Gamma_1/\Gamma_2 = 0.2−0.5 \), where \(\Gamma_1(2) \) is the coupling to the left (right) lead, and a lever arm of 0.3 eV/V. In Figure 1d, the differential conductance \(dI/dV \) as a function of \(V \) versus \(V_{bg} \) reveals a superconducting gap \((2\Delta = 380 \text{ \mu eV}) \) and several Andreev processes within this window. Additionally, an even–odd structure shows up in both the superconducting state at low \(V \) and normal state at high \(V \), which is related to the even or odd parity of the holes in the quantum dot. The even–odd structure persists as we suppress the superconductivity in the device by applying a small magnetic field \((60 \text{ mT}) \) perpendicular to the substrate (Figure 1e). A zero bias peak appears when the quantum dot has odd parity. This is a signature of the Kondo effect.\(^{16,17}\) When increasing the magnetic field to 1 T, the Kondo peak splits due to the Zeeman effect of \(2\mu_B B \). The energy splitting of the two levels is linear as shown in Figure 1g and thus can be used to extract a Landé g-factor, \(g \), of 1.9. In the remainder of the Letter, we will discuss the three magnetic field regimes of Figure 1d–f (0 T, 60 mT, and 1 T, respectively) in more detail.

The resonance that disperses with \(V_{bg} \) in Figure 1d is an Andreev Level (AL), which is the energy transition from the ground to the excited state in the dot.\(^ {16,17}\) The ground state of the dot switches between singlet and doublet if the occupation in the dot changes, as sketched in the phase diagram in the top panel of Figure 2a. Since our charging energy is large, we trace the dashed line in the phase diagram. The AL undergoes Andreev reflection at the side of the quantum dot with a large coupling \((\Gamma_2) \) and normal reflection at the opposite side that has lower coupling \((\Gamma_1) \), as schematically drawn in the bottom panel of Figure 2a. The superconducting lead with the low coupling serves as a tunneling spectroscopy probe of the density of states. To be more precise, the coherence peak of the superconducting gap probes the Andreev level energy, \(E_{AL} \). For example, if \(E_{AL} = 0 \), we measure it at \(eV = \Delta \); the resonance thus has an offset of \(\pm \Delta \) in the measurement in Figure 1d. The ground state transition is visible as a kink of the resonance at \(V = \Delta \) at \(V_{bg} = -0.09 \text{ and } -0.11 \text{ mV} \). At a more negative \(V_{bg} \), the coupling of the hole gas to the superconducting reservoirs is strongly enhanced. This eventually
leads to the observation of both the DC and AC Josephson effects (Figure S2).

In the upper part of Figure 1d, we measure the multiple Andreev reflection (MAR): resonances at integer fractions of the superconducting gap. Figure 2b presents a line trace at $V_{bg} = -0.85$ V that shows the gap edge and first- and second-order Andreev reflections. Fitting the differential conductance \(\Delta = 190 \mu \text{eV} \), close to the bulk gap of Al. We also fit the measured current to extract the transmission of the spin degenerate longitudinal modes in the NW (Figure 2c). The two-mode fit resembles the data better than the single-mode fit. Also, we checked that fitting with more than two-modes results in \(T = 0 \) outcomes for the extra modes. Therefore, the first provides us

Figure 2. (a, top) A phase diagram of the ground state in the superconducting quantum dot sketched as a function of the quantum dot energy \(\epsilon_0 \) versus the coupling to the superconducting reservoir \(\Gamma_s \), both normalized to the charging energy, \(U \). Because of the large \(U \) compared to \(\Gamma_s \), we expect to trace the dashed line. The bottom panel shows the Andreev level (dashed gray line) with energy \(E_{\text{Al}} \) that is formed by the Andreev reflection (AR) at one side and normal reflection (NR) at the other side of the dot. The reflection processes are different due to asymmetric barriers \(\Gamma_1 \) and \(\Gamma_2 \) indicated as the barrier width. The density of states in the NW is probed by the superconductor on the left side by doing voltage bias tunneling spectroscopy. (b) Tunneling spectroscopy measurement at $V_{bg} = -0.85$ V. The first- and second-order multiple Andreev reflections are observed. A two-mode model fits the data well with \(\Delta = 190 \mu \text{eV} \). (c) Measured current to extract the transmission of the spin degenerate longitudinal modes in the NW (Figure 2c). The two-mode fit resembles the data better than the single-mode fit. Also, we checked that fitting with more than two-modes results in \(T = 0 \) outcomes for the extra modes. Therefore, the first provides us

Figure 3. (a–c) Rotations of the magnetic field with a 0.9 T magnitude in the yz-, xz-, and xy-plane, respectively, at $V_{bg} = -0.79$ V. The upper panel shows the schematic of the device and the magnetic field rotation performed. The differential conductance data is plotted in the center panel, and the splitting of the Kondo peak changes as the angles are swept. The sudden changes in conductance are due to small switches in V_{bg}. The lower panel shows the extracted \(g \) of the center panel in cyan and \(g \) at $V_{bg} = -0.5$ V in magenta. For the xy-plane, the anisotropy is highlighted and calculated. (d) Summary of the measured anisotropies of \(g \) at a different V_{bg}. (e) Simulation result of the quantum dot. The anisotropy of \(g \) and \(g_\| \) changes as the Fermi energy is altered. The colors represent the band from where the quantum dot level predominantly stems. The highlighted part shows a similar behavior in the anisotropy values as the data in part d. The inset depicts a schematic representation of the energy ordering of the quantum dot levels originating from two bands along the NW. (f) Simulation as in part e, now with an applied electric field of 10 V/\(\mu \text{m} \). The SOI causes anisotropy with respect to the electric field direction as \(g_\| \) is pointed perpendicular and \(g_\perp \) parallel to the electric field. The anisotropy increases as the Fermi level is raised. The same range as in part e is highlighted. (g) Simulated spin–orbit energies for the first band \(k = 0 \) of the infinite wire model as a function of the electric field along the \(x \)-direction. The direct Rashba term is the leading contribution.
Figure 4. (a) Closing of the superconducting gap, as B is ramped up in the z-direction. The line traces below are taken at 50 mT intervals and show the induced superconducting gap. The vertical line trace shows the conductance at V= 0 V normalized to the conductance extracted at V = 0.5 mV. A 2 orders of magnitude conductance suppression is observed. (b) The superconducting gap closes, and a Kondo peak appears as the magnetic field is increased in the y-direction. The resonances within the gap stem from Andreev processes. The line traces depict the transition from the superconducting gap to the Kondo peak, which takes place from 170 to 190 mT (5 mT step). From the pink trace, a Kondo energy $k_B T_k$ of 50 μeV is extracted with a Lorentzian fit.

with an estimate for the transmission in the two modes, T_x and T_y. We interpret the two modes as two semiconducting bands in the NW. The MAR fitting analysis is repeated at a different V_{bg} and the resulting T_x and T_y are plotted in Figure 3d. The strong increase of the transmission below $V_{bg} = -0.8$ V is attributed to the increase of the Fermi level and Γ_1 and Γ_2.

The Landé g-factor g is investigated further by measuring the Kondo peak splitting as a 0.9 T magnetic field is rotated from y- to z-, x- to z-, and x- to y-direction as presented in the second row of Figure 3a−c. Interestingly, we find a strong anisotropy of the Kondo peak splitting and accordingly of g at $V_{bg} = -0.79$ V and $V_{bg} = -0.82$ V; see the bottom row of Figure 3a−c and Figure S4, respectively. Both directions perpendicular to the NW show a strongly enhanced g. Similar anisotropy has been reported before in a closed quantum dot, where g is even quenched in the z-direction. In our experiment, the highest g of 3.5 is found when the magnetic field is pointed perpendicular to the NW and almost perpendicular to the substrate.

On the contrary, at a $V_{bg} = -0.5$ V, we find an isotropic g (bottom row of Figure 3a−c), all of which have a value of around 2. The anisotropies at a different V_{bg} are summarized in Figure 3d. The strong anisotropy seems to set in around $V_{bg} = -0.7$ V. This sudden transition from isotropic to anisotropic g, which has not been observed before in a quantum dot system, is correlated with the increase in transmission in Figure 2d. We speculate that the change from isotropic to anisotropic behavior is related to the occupation of two bands in the NW. To test this hypothesis and get an understanding of the origin of the anisotropy, we theoretically model the band structure of our NW and focus on the two lowest bands.

We use the model described in ref 4 and apply it to our experimental geometry (see Supporting Information for details). Simulating the device as an infinite wire, we first consider the anisotropy of g between the directions parallel and perpendicular to the NW. We find that there are two contributions to the anisotropy: the Zeeman and the orbital effect of the magnetic field. The anisotropy of the Zeeman component is similar for the two lowest bands, where for the orbital part the anisotropy differs strongly. The anisotropy of the total g, therefore, shows a strong difference for the two lowest bands (Figures S6 and S7). This agrees qualitatively with earlier predictions, but we find additionally that strain lifts the quenching of g along the NW such that $g_{min}/g_{max} \sim 2$, in agreement with our measurements. From these observations, we conclude that the observed isotropic and anisotropic g with respect to the NW-axis is due to the orbital effect.

In addition, we include the confinement along the NW, such that a quantum dot is formed and the energy levels are quantized in the z-direction. Besides the lowest-energy states studied before, we also consider a large range of higher quantum dot levels. In the regime where two bands are occupied, we observe that the quantum dot levels originating from the first and second band have a unique ordering as a function of Fermi energy; this situation is sketched in the inset of Figure 3e. We also find that some of the quantum dot levels are a mixture of the two bands (Figure S9), resulting in a different anisotropy for each quantum dot level. In the simulation results (Figure 3e and Figure S10), the anisotropy values are colored according to the band they predominantly originate from. To compare the simulation with the measured data, we note that a more negative V_{bg} in the experiment increases the Fermi level for holes E. In the simulation, we observe a regime in E (highlighted in Figure 3e), where the anisotropy g_{x}/g_{z} is around 1 and goes up toward 2 as E increases. This behavior qualitatively resembles the measurement of g_{x}/g_{z} and g_{y}/g_{z} in Figure 3d.

Now we turn to the magnetic field rotation in the xy-plane, the two directions perpendicular to the NW that are parallel and perpendicular to the electric field induced by the bottom gate. The measured anisotropy is $g_{\min}/g_{\max} = 0.8$ (Figure 3c). The maximum g of 3.5 is just offset of the y-direction, which is almost parallel to the electric field. This anisotropy with respect to the electric field direction is a signature of the SOI. As discussed before, the Ge−Si NWs are predicted to have both the Rashba SOI and the direct Rashba SOI. The electric field could also cause anisotropy via the orbital effect or geometry, due to an anisotropic wave function. However, we can rule that out since our simulations show that the wave function does not significantly change as electric field is applied (Figure S8). In the simulation (Figure 3f) with a constant electric field of 10 mV/μm, we observe anisotropy of g parallel...
(g_x) and perpendicular (g_y) to the electric field. Similar to our data, the anisotropy starts below 1 and goes to 1 as the Fermi level is increased. The spread in the anisotropy values is due to the mixing of the bands for each quantum dot level. Furthermore, we calculated the magnitude of the Rashba and direct contribution to the SOI using the infinite wire model and found that the direct Rashba SOI is dominating in the small diameter nanowires of our study (Figure 3g). This agrees with the effective Hamiltonian derived in ref 3, which predicts that the direct Rashba SOI dominates in NWs with a Ge core of 3 nm radius. To summarize, we observe anisotropy with that the direct Rashba SOI dominates in NWs with a Ge core

Finally, in Figure 4, we take a detailed look at the superconducting gap as a function of magnetic field. We find the critical magnetic field B_c for different directions: $B_{c x} = 220$ mT (Figure 4a), $B_{c y} = 220$ mT (Figure 4b), and $B_{c z} = 45$ mT (Figure 1g and Figure 3s), consistent with an Al thin film. Future devices could be improved by using a thinner Al film to increase the critical magnetic field.29 In this case, the topological phase could be reachable, with the measured gap of 3.5 Å. In the tunneling regime at $V_{bg} = -0.12 V$, we observe a clean gap closing (Figure 4a). The conductance inside the gap is suppressed by 2 orders of magnitude, signaling a low quasiparticle density of states in the superconducting gap. This large conductance suppression remains as the gap size decreases toward B_c (bottom panel in Figure 4a). In the low conductance regime, we thus measure a hard superconducting gap persisting up to B_c in Ge–Si NWs.

The closing of the superconducting gap in a higher conductance regime is presented in Figure 4b. Since the transmission is increased, Andreev reflection processes cause a significant conductance within the superconducting gap.30 Therefore, the conductance suppression in the gap becomes an ill-defined measure of the quasiparticle density of states and with that the quality of the induced superconductivity. However, here we can use the Kondo peak to examine the quasiparticle density of states in the superconducting gap. The Kondo peak is formed by coupling through quasiparticle states within the window of the Kondo energy (k_BT_K). In the regime where $k_BT_K \leq \Delta$, the existence and size of the Kondo peak are then an indication of the quasiparticle density of states inside the superconducting gap.31,32 In our measurement, Δ is indeed larger than k_BT_K up to a magnetic field $B = 170$ mT (see the blue and magenta line traces in the bottom panel of Figure 4b).

Since in the measurement the Kondo peak only arises once the gap is fully closed, we have a low quasiparticle density of states within the superconducting gap. This supports our observation of a hard superconducting gap up to B_c. It also illustrates a new way of gauging whether the superconducting gap is hard in a high conductance regime.

Combining all three magnetic field regimes of Figures 2−4, we observed Andreev levels showing a ground state transition, SOI from the coexistence of two bands in Ge–Si core–shell NWs, and a hard superconducting gap. The combination and correlation of these observations is a crucial step for exploring this material system as a candidate for creating a one-dimensional topological superconductor.

REFERENCES

6488
DOI: 10.1021/acs.nanolett.8b02981
Nano Lett. 2018, 18, 6483–6488
Nano Letters