Novel incentive mechanism for end-users enrolled in DLC-based demand response programs within stochastic planning context

Citation for published version (APA):

Document license:
TAVERNE

DOI:
10.1109/TIE.2018.2811403

Document status and date:
Published: 01/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Sep. 2023
Abstract—In this paper, a novel direct load control (DLC) planning based on providing free energy credits to residential end-users for their heating, ventilation, and air conditioning load during demand response (DR) events is proposed. The obtained credit can then be used by the end-users during relatively higher price periods free-of-cost to enable them lowering their energy procurement costs. Furthermore, the resulting reduction in the total household energy consumption considerably decreases the critical load demands in power systems, which is of vital importance for load-serving entities in maintaining the balance between supply and demand during peak load periods. In this regard, the aforementioned energy credits-based incentive mechanism is proposed for end-users enrolled in the DLC-based DR program, as a new contribution to the existing literature, testing it in a stochastic day-ahead planning context.

Index Terms—Demand response (DR), direct load control (DLC), energy credit, heating, ventilation, and air conditioning (HVAC), smart household, thermostatically controllable loads (TCLs).

NOMENCLATURE

A. Sets

\(h \) Set of households.

\(i \) Set of structural elements.

\(t \) Set of time periods.

\(\omega \) Set of scenarios.

B. Parameters and Constants

\(A_{h} \) Element area for household \(h \) [m²].

\(c_{a} \) Thermal capacity of the air [kJ/kg·K].

\(\text{COP}_{h} \) HVAC coefficient-of-performance in household \(h \).

\(l_{i,h} \) Thickness value of element \(i \) for household \(h \) [m].

\(L_{X_{h}} \) Length, width, and height of household \(h \), where \(X = \{1, 2, 3\} \) [m].

\(M_{h} \) Mass of air in household \(h \) [kg].

\(N \) Sufficiently large positive constant.

\(P_{\text{des}} \) Rated HVAC power in household \(h \) [kW].

\(P_{\text{dr}} \) Desired reduction in power in period \(t \) of the DR event [kW].

\(P_{\text{load}} \) Inflexible load demand of household \(h \) in period \(t \) [kW].

\(P_{\text{ac,ref}} \) Reference HVAC power consumption of household \(h \) in period \(t \) in scenario \(\omega \) [kW].

\(R_{\text{eq},h} \) Equivalent thermal resistance of household \(h \) [K/W].

\(T_{\omega} \) Ambient temperature in period \(t \) in scenario \(\omega \) [°C].

\(T_{\text{dec.max}} \) Maximum allowed temperature set-point decrease from the desired level of household \(h \) during the DR event [°C].

\(T_{\text{des}} \) Desired temperature level of household \(h \) in period \(t \) [°C].

\(T_{\text{DB}} \) HVAC dead-band temperature of household \(h \) [°C].

\(T_{\text{inc.max}} \) Maximum allowed temperature set-point increase from the desired level of household \(h \) during the DR period [°C].

\(t_{1} \) DR event starting time.

\(t_{2} \) DR event ending time.

\(t_{3} \) DR event starting time.

\(t_{4} \) Ending period of the peak price horizon.
I. INTRODUCTION

A. Motivation

In alignment with the technological advances during the last decades, the structure of the traditional electric power system has evolved from a top-down and relatively static structure to an increasingly active one, driven by the integration of small-scale, nondispatchable renewable energy systems (RES) and the identification of the capability of several types of load to be managed. In this context, the operation of the power system has become more complex and improved operational strategies have been proposed and implemented under the vision for a smarter grid aiming at enhancing the economic performance and the reliability of the power system [1], [2].

One of the pillars of the smart grid concept is the augmentation of the RES hosting capacity of the existing power system structure by exploiting the operational flexibility that may be procured from resources other than conventional generation, potentially located at the edges of the grid [3]. One example of such a source of flexibility is the deployment of energy storage units at different scales, which is a conceptually mature idea, albeit economically constrained by significant operational and investment costs [4]. An alternative to investing in energy storage is to exploit the flexibility embedded in various types of existing loads through the development of demand response (DR) strategies suitable for the engagement of different types of end-users [5], [6].

There are two main categories of DR mechanisms: indirect load control (ILC) and direct load control (DLC) [7]. On the one hand, ILC solutions depend on pricing mechanisms and are not generally demanding in terms of infrastructure investments. However, there are factors—mostly sociological—affecting the performance of such solutions with respect to the desired operational objectives, since the response of the end-users to the applied pricing mechanisms does not necessarily assert the assumption of economic rationality. On the other hand, DLC solutions provide the system operator (SO) with direct access to controlling specific loads or even managing the whole demand of an end-user, in return of incentives offered on the basis of being enrolled in the DLC-oriented DR program. As a result, DLC is considered a more effective way of procuring ancillary services such as frequency regulation, peak clipping, valley filling, etc., during critical system conditions [7]–[9]. For this reason, the implementation of DLC-based DR programs addressed to residential end-users that are responsible for around 40% of electrical energy consumption worldwide has attracted significant interest.

Thermostatically controllable loads (TCLs) such as heating, ventilation, and air conditioning (HVAC) units, electric water heaters (EWHs), and refrigerators in residential premises present a promising potential on the grounds of the advantage of thermal inertia, which allows interrupting their operation without having a direct impact on the comfort of end-users.

B. Literature Overview

There are several studies in the literature dealing with the use of TCLs in residential areas for DR purposes. The aggregate modeling and control of a collection of heterogeneous TCLs was studied in [10]. Similarly, an approach based on formal abstractions was presented in [11] in order to generate a dynamic stochastic model as an aggregation of the continuous temperature dynamics of a certain number of TCLs.

An energy management approach taking into account various criteria such as appliance power values, end-user preferences, the electricity price, and expected residential renewable power generation in the decision process was proposed in [12]. A two-layer distributed DLC method based on an average consensus algorithm was introduced in [13] for large-scale residential DR implementations. Besides, various DR-enabled TCL models at the appliance level were proposed in [14] by considering the operational and physical characteristics of different loads.

In order to leverage the high thermal inertia of EWHs in residential implementations, several studies have focused on the use of this type of TCLs. For instance, a dual-element EWH model was presented in [7] and a DLC algorithm was proposed to aggregate the EWH load with the objective of providing regulation services. The potential benefits of these units at both premise and substation levels were investigated in a field experiment in [15]. Balancing services procurement in terms of managing...
EWH loads through bi-directional signals from load-serving entities (LSEs) was also discussed in [16]. The effectiveness of an analytical approach, which was previously developed for making use of TCLs to provide sporadic reserve capacity, was examined in [17] for a large number of EWHs. The capabilities of aggregated EWHs for load shifting and balancing reserve at the presence of wind penetration were examined in [18].

The potential of refrigerators, which are another widely used type of TCLs, was studied in [19] and [20] in terms of their benefits when used for frequency regulation services in power grids. Aunedi et al. [8] considered the same problem in the case of high wind power penetration and presented various results showing the environmental and the economic benefits of deploying refrigerators for frequency regulation. A switching-rate actuation strategy for managing the power consumption of a collection of refrigerators was presented in [21] in order to enable these loads to participate in large-scale DLC applications.

Among the different TCLs that are found in typical households, HVAC units have a relatively high energy consumption and are related to system stress conditions through their contribution to the summer peak load demand [22], [23]. With the objective of using in DR applications, the aggregated behavior of HVAC units was studied by modeling the HVAC dynamics in [23] and by assessing the importance of the distributions of different HVAC physical parameters in [22]. In order to provide primary reserves by taking advantage of the mentioned peculiarities of HVACs, a DLC approach that can be used for the control of these units was proposed in [24]. Again for supporting the provision of regulation services with the use of HVACs, Zhang et al. [25] presented an approach based on a second-order equivalent thermal parameter model. Hao et al. [26] proposed a feedforward algorithm to control fans in HVAC units, and Goddard et al. [27] put forward an HVAC model including a small number of parameters that are determined using system identification.

Controlling HVAC systems have been also widely used for different power system operations effectively in the literature. Their benefits for various services such as load balancing, load shifting, and peak load shaving were evaluated in [28] and [29] where design considerations for a centralized HVAC controller were presented. In [30], a market-based control method was considered for TCLs under transactive control paradigm to participate in real-time retail electricity markets. Besides, in order to alleviate the nonrenewable power induced demand variations, a Lyapunov optimization-based DR method that controls the HVAC on/off states was presented in [31]. Similarly, with the purpose of matching the aggregated HVAC load demand with the wind power generation, a sliding mode controller based on the Lyapunov theory was proposed in [32], and a distributed pinning control method was presented to coordinate the operation of a population of HVAC units in [33].

Regardless of its applications in power systems, several studies in the literature have focused on developing new control approaches that can be used for HVAC units. A stochastic method was proposed in [34] for controlling the aggregated power consumption of a high number of HVACs in a decentralized manner. Also, in order to take advantage of two widely used direct HVAC demand control methods, namely, the direct compressor control mechanism (DCCM) and the thermostat set-point control mechanism (TSCM), a combined control approach was presented in [35].

The literature studies that are discussed above have generally considered the DR problem from the perspective of LSEs and aggregators; however, the effectiveness of all the residential-based DR programs depends on the willingness of the end-users to a great extent, and therefore, the concerns of the end-users and the potential benefits to be provided to them should be also taken into account for achieving the desired objectives in the applications at residential levels. With such an objective, Koutitas [36] introduced the fairness concept between the end-users in a DLC program in terms of economic benefits; however, the fairness in the consumer comfort violation was not considered in this study. Erdinc et al. [37] developed a fairness-oriented approach to improve the satisfaction of the comfort level of end-users enrolled in an HVAC aggregation DLC program.

Besides, a robust optimization algorithm was presented in [38] to schedule the HVAC consumption for decreasing the electricity costs while taking into account the electricity price and the number of deviations from the comfortable temperature zone. A response fatigue index was introduced in [39] and this index was used in a stochastic model for the purpose of minimizing the electricity costs of consumers while maintaining their comfort level. In a recent study, Erdinc et al. [40] proposed the concept of offering energy credits to residential end-users while neglecting the impacts of different levels of desired peak load reduction ratios on the benefits of enrolled end-users in the DR program. Besides, in [40], the scalability of the proposed energy credit approach was not discussed. There are also many studies considering the role of TCLs for providing demand-side flexibility and a few of them can be found in [41]–[47].

C. Content and Contributions

The comprehensive review on the most recent literature shows that the majority of studies on DLC-based DR programs generally focus on the modeling of TCLs and/or employing these models for improved power system operations. These studies, however, have also reported that the potential benefits of DLC-based DR programs are substantially influenced by the number of end-users enrolled in DR programs and thus by their willingness to participate in these programs.

Considering this fact, a novel incentive mechanism is proposed in this paper in order to motivate the owners of residential HVAC units to engage in DLC DR programs. The proposed mechanism relies on providing energy credits to the end-users on the basis of their contribution during a DR event, which in turn can be used in periods outside the time span of a DR event in order to reduce their energy procurement cost.

The contributions of the study are as follows:

1) An energy credit-based incentive structure is proposed for DLC applications with the purpose of providing the end-users with the opportunity of managing the tradeoff between decreasing their energy costs and maintaining their comfort level.
D. Organization of the Paper

2) The proposed approach is tested in a stochastic day-ahead planning context by taking the uncertainty of the ambient temperature variations into account.

3) The benefits of the end-user from the proposed incentive structure are analyzed in terms of operational cost reduction.

4) The scalability of the approach and the impact of different demand-side load reduction levels have been investigated via case studies.

The taxonomy of the proposed concept compared to representative studies on similar topics is presented in Table I, from which it can be seen that the current study clearly differs from the existing literature, especially by considering both DLC approach and consumer-side ILC approach in a cause–effect relation taking both LSE and consumer sides into account.

D. Organization of the Paper

The remainder of this paper is organized as follows. The proposed methodology is described in detail in Section II. The results are presented and extensively discussed in Section III. Finally, the conclusions and possible directions for future studies are summarized in Section IV.

II. METHODOLOGY

The concept proposed in this study is visualized in Fig. 1. It is assumed that the SO has the capability of communicating with the households and controlling their HVAC units during contracted DR events. The main objective of the SO is to reduce the peak load by limiting the use of residential HVAC units that have accepted to react during the DR event. It is to be noted that all the residential HVACs are considered to be available for the DR events in this study; nevertheless, this case can be easily extended to account for uncertainty in the availability of HVACs, e.g., due to communication failure or for consumer opt-out options.

During the DR periods, the end-users gain energy credits according to the reduction level in their HVAC units. In other words, the higher the reduction in the HVAC energy consumption, the more credits the end-users will obtain, as shown in Fig. 1. The credits, therefore, can be used in the periods with higher energy prices to induce cost savings.

A. Optimal Procurement of HVAC Load Reduction During DR

The optimization problem that must be solved by the LSE in order to determine the optimal procurement of HVAC load reductions is represented as follows:

Minimize total credit $= \sum_\omega \pi_\omega \cdot \sum_h E_{h,\omega}^{\text{credit}}$ (1)

subject to:

$T_{h, t}^{\text{des}} - T_{h, t}^{\text{dec, max}} \leq T_{h, t}^{\text{set}} \leq T_{h, t}^{\text{des}} + T_{h, t}^{\text{inc, max}} \forall h, t \in [t_1, t_2], \omega$ (2)

$T_{h, t}^{\text{set}} - T_{h, t}^{\text{DB}} \leq T_{h, t}^{\text{in}} \leq T_{h, t}^{\text{set}} + T_{h, t}^{\text{DB}} \forall h, t, \omega$ (3)

$T_{h, t, \omega}^{\text{in}} = T_{h, t, \omega}^{\text{des}} + T_{h, t, \omega}^{\text{up}} - T_{h, t, \omega}^{\text{dn}}$ \forall h, t, \omega (4)

$T_{h, t, \omega}^{\text{up}} \leq N \cdot u_{h, t, \omega}^{\text{up}} \forall h, t, \omega$ (5)

$T_{h, t, \omega}^{\text{dn}} \leq N \cdot (1 - u_{h, t, \omega}^{\text{ac}}) \forall h, t, \omega$ (6)

$T_{h, t, \omega}^{\text{in}} = \left(1 - \frac{\Delta T}{1000 \cdot M_h \cdot c_a \cdot R_{\text{eq}, h}}\right) \cdot T_{h, (t-1), \omega}^{\text{in}} + \frac{\Delta T}{1000 \cdot M_h \cdot c_a \cdot R_{\text{eq}, h}} \cdot T_{h, t, \omega}^{\text{des}} - \frac{\Delta T}{0.0000077 \cdot M_h \cdot c_a} \cdot u_{h, t, \omega}^{\text{ac}} \forall h, t > 1, \omega$ (7)

$p_{h, t, \omega}^{\text{ac}} = P_{h, \omega}^{\text{ac, ref}} - P_{h, t, \omega}^{\text{ac, inc}} \forall h, t, \omega$ (8)

$P_{h, t, \omega}^{\text{in}} = P_{h, \omega}^{\text{in, ref}} - P_{h, t, \omega}^{\text{in, inc}}$ \forall h, t \in [t_1, t_2], \omega (9)

$p_{h, t, \omega}^{\text{des}} \leq \sum_h P_{h, t, \omega}^{\text{credit}}$ \forall t \in [t_1, t_2], \omega, (10)

if $\sum_h P_{h, t, \omega}^{\text{credit}} \neq 0$ (11)

$E_{h, \omega}^{\text{credit}} = \sum_{T=t_1}^{t_2} P_{h, t, \omega}^{\text{credit}} \cdot \Delta T \forall h, \omega.$ (12)

The objective function stands for the minimization of the expected total free-of-cost energy credits awarded to the consumers over the horizon, on the basis of the load reductions procured through the DLC DR program. In this study, the TSCM is adopted, considering that the LSE directly manipulates the thermostat temperature set-point $T_{h, t}^{\text{set}}$. Thus, the main
decision variable for the operation of the proposed methodology is \(T_{h,t,\omega}^{\text{set}} \). This approach is considered more suitable for peak load reduction compared to the DCCM. The temperature set-point \(T_{h,t,\omega}^{\text{set}} \) can be changed during DR event horizon within the limits defined in the contract between the end-user and the LSE as expressed by (2).

The indoor temperature limits are defined by (3), where \(T_{h,t,\omega}^{\text{LB}} \) stands for the dead-band control parameter. In order to estimate the end-users’ comfort violation, the indoor temperature is decomposed based on (4), while (5) and (6) enforce the fact that an upward and a downward temperature deviation with respect to the user’s desired temperature set-point cannot have nonzero values simultaneously. Regarding the indoor temperature, a model based on the equivalent thermal resistance of the household is used in this study, as represented by (7) considering solely the cooling operation, while the model for the heating mode can also be trivially derived. Considering a rectangular geometry and an inclination of the roof of \(\beta^\circ \), the equivalent thermal resistance of the houses and the air mass inside them can be calculated as follows:

\[
R_{eq,h} = \frac{1}{Nv} \sum_{i} \frac{L_{i,h}}{S_{i,h} \cdot A_{i,h}} \quad \forall i, h
\]

(13)

\[
V_{h} = L_{1,h} \cdot L_{2,h} \cdot L_{3,h} + \tan(\beta_h) \cdot L_{1,h} \cdot L_{2,h} \quad \forall h
\]

(14)

\[
M_{h} = V_{h} \cdot \delta_{air} \quad \forall h.
\]

(15)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>DR strategy</th>
<th>Consideration of thermal comfort</th>
<th>End-user type</th>
<th>TCL type</th>
<th>Point of view</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ILC</td>
<td>Simply by boundaries</td>
<td>Res.</td>
<td>HVAC</td>
<td>LSE</td>
</tr>
<tr>
<td></td>
<td>DLC</td>
<td>Advanced by index definitions, etc.</td>
<td>Com.</td>
<td>EWH</td>
<td>End-user</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ind.</td>
<td>Refrigerator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other (heat pump, etc.)</td>
<td></td>
</tr>
<tr>
<td>[7]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[11]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[17]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[18]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[19]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[36]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[37]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[41]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[42]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[43]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[44]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[45]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[46]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[47]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This paper

Note: Res. = Residential, Com. = Commercial, and Ind. = Industrial.

The HVAC power consumption of each household \(h \) in period \(t \) in scenario \(\omega \) follows (8). The reduced power value for each household compared to the reference HVAC operation pattern that will be added as a credit to each household during the DR event is calculated by (9). The stochasticity in the reference HVAC operating pattern is related to the uncertainty of the ambient temperature variations during the DR event apart from the physical structure of the households. The total of the power values added to household credits should be equal or greater than the desired load reduction by LSE if the total of the reference HVAC consumption patterns of households is nonzero as in (10).

The household HVAC power is restricted to be zero by (11) if the reference HVAC power consumption pattern of this household is already zero in period \(t \) in scenario \(\omega \). Besides, the baseline of the HVAC load is calculated based on the power that would have been consumed if a DR event had not taken place. The total obtained energy credit per household during the DR event to be further used in the subsequent periods to achieve economic benefits is calculated by (12). To clarify the concept behind the proposed approach, first of all, it should be noted that high prices for the residential end-users regardless of the type of a varying pricing scheme (Time-of-Use pricing, dynamic pricing, etc.) coincide with peak demand periods of residential end-users (generally between 6 and 10 P.M.). However, in reality, the system peak in most countries occurs around the noon on hot summer days. Therefore, many real-life DR programs, including residential end-user load aggregation
oriented programs, target noon hours of very hot summer days to incentivize end-users to aid reducing the overall system peak loading conditions. As it can also be followed from the practical evidence (e.g., see the residential DR practice in Australia given in [41]), the residential end-users are incentivized for their energy reduction in noon times, which are generally off-peak hours for residential premises.

Therefore, a different way to incentivize the residential end-users rather than offering them flat payments is offered in this study to gain more, proportionally to the discomfort they are subjected to. Thus, the incentivized time from the LSE side and normal benefit time from the end-user side are not contradictory, and the concept proposed in this study shows a structure compatible with the way of implementing DR in real-world applications.

It is worth mentioning that the LSE aims at maintaining the supply and demand balance by reducing the demand. However, the LSE should not be willing to maximize the credit to be given to the end-users. On the contrary, as the satisfaction of the reduction of required levels of power compared to the reference conditions provided by scenarios is already ensured by constraint (10), the LSE would be willing to give minimum credits to the end-users in case of a DR event. Besides, the objective function requests that the minimum amount of credits is given such that the required load reduction is achieved. Giving more credits after having satisfied the load reduction is not economically beneficial for the LSE as these extra credits will unnecessarily lower the income of the LSE in peak price periods. Therefore, the ultimate purpose of the LSE is the minimization of credit costs, that are required to level supply and demand by demand-side power reduction via the applied DR program. The comfort violation of household h in scenario ω is calculated in °C·h using the following equation, in which the upward and downward deviations from the desired temperature set-point are considered:

$$\text{CV}_{h,\omega} = \sum_{T=t_1}^{t_2} \left(T_{h,\omega}^{\text{up}} + T_{h,\omega}^{\text{dn}} \right) \cdot \Delta T \quad \forall h, \omega. \quad (16)$$

It should be noted that the comfort of end-users depends on many physical factors such as the occupancy of a room, their activities, the type of clothing, etc., rather than solely on the indoor temperature. However, modeling these factors is complex, while an attempt of SOs to gather such information could violate the privacy of the end-users. On the contrary, this study is based on the assumption that the end-users have already conveyed their preferences by limiting the maximum and minimum permitted indoor temperature values to the SO. Regarding the output (see Section III-A), the model gives the optimal schedule for each household’s HVAC unit in each scenario and the corresponding credits the household owners gain proportionally to the comfort violation they experience during the DR event.

B. Evaluation of Performance

To evaluate the performance of the proposed DLC-DR scheme, the impacts on the daily operational cost and the extent of end-users’ comfort violation during the DR event are considered. First, the maximum energy procurement cost reduction for each household is calculated by solving the optimization problem described by (17)–(19). Equality (17) stands for the minimization of the energy cost. As regards the utilization of the free-of-cost energy credits, they can only be used once the DR event is over, as expressed by (18). Finally, (19) constrains the activation of credits to the amount earned during the DR event:

$$\text{Minimize cost}_h = \sum_{t} \left[(P_{h,t}^{\text{load}} - P_{h,t}^{F}) \cdot \Delta T \cdot \lambda_t \right] \quad \forall h \quad (17)$$

subject to

$$\sum_{T=t_3}^{t_4} \left(P_{h,t}^{F} \cdot \Delta T \right) \leq \sum_{\omega} \pi_{\omega} \cdot E_{h}^{\text{credit}} \quad \forall h, t \in [t_3, t_4] \quad (18)$$

$$P_{h,t}^{F} \leq P_{h,t}^{\text{load}} \quad \forall h, t \in [t_3, t_4]. \quad (19)$$

III. Tests and Results

A. Input Data

In order to demonstrate the use of the proposed concept, 40 identical households having the structural parameters shown in Table II are considered for simplicity while discussing the results, as in [37].

The air density and thermal capacity are considered constant and equal to $\delta_{\text{air}} = 1.225 \text{ kg/m}^3$ and $c_{\text{a}} = 1.01 \text{ kJ/kg} \cdot \text{K}$ for standard conditions. Besides, it is assumed that all the houses have identical HVAC units with a power rating of 3 kW and a coefficient-of-performance of 2. Besides, a peak-reduction DR event is assumed to be activated between 1 and 3 P.M. on the considered day. The initial room temperatures of households are randomly allocated between 19.1 °C and 20.9 °C.

Other temperature-related parameters for households are provided in Table III. Moreover, ten equiprobable scenarios for the ambient temperature variation during the considered DR event period are randomly generated considering a variation band around the real measured temperature data.

The scenarios are shown in Fig. 2. A time granularity of 5 min (0.0833 h) is adopted in the model and GAMS 24.0.2 with the solver CPLEX 12 is used for solving the optimization problem.
TABLE III

TEMPERATURE-RELATED PARAMETERS OF THE HOUSEHOLDS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{des,h,t}$</td>
<td>20</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{dec,allowed,h}$</td>
<td>4</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{inc,allowed,h}$</td>
<td>4</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{DB,h}$</td>
<td>1</td>
<td>°C</td>
</tr>
<tr>
<td>$T_{u,h}$</td>
<td>1</td>
<td>°C</td>
</tr>
</tbody>
</table>

B. Simulation and Results

The desired load reduction during an actual DR event when the reference HVAC power is nonzero is initially assumed to be 12 kW from the total of the 40 households, which is 10% of maximum dispatchable total HVAC power for the considered households with the given HVAC rated power values. It should be noted that if the reference HVAC power is zero, the constraint for $P_{des,t}$ is the not enforced for these intrahour periods since no actual reduction from zero is possible.

Figs. 3–5 depict the actual reference HVAC power and the HVAC power consumption for scenarios 1–3. It is clear that for all nonzero reference HVAC power periods, the system deploys sufficient HVAC units to reduce the HVAC load demand by the desired amount. As the methodology should satisfy the desired load reduction in all scenarios, results regarding the other scenarios are not provided here.

The comfort violation index value for individual households during the DR event is presented in Fig. 6. For the sake of simplicity, the mean value of the comfort violation index values among the scenarios is portrayed for each household. The individual comfort violation among the enrolled end-users varies considerably; however, as the households gain more free-of-cost energy credits when their comfort violation increases, no more constraints regarding fair allocation of comfort violation among the enrolled end-users as in [37] are enforced in this study.

The mean free-of-cost energy credit values are shown in Fig. 7. Similar to Fig. 6, the mean value of energy credit values is given for each household. The free-of-cost energy credit value generally increases with the increase of comfort violation as can be observed by comparing Figs. 6 and 7; thus, the individual end-users facing more discomfort during the DR event will generally have more chance to reduce their elec-
The impacts of increasing the desired load reduction during nonzero HVAC reference power periods from 12 to 24 kW (20% of the dispatchable total contracted HVAC loads) are shown in Figs. 8 and 9 in terms of comfort violation and free-of-cost energy credits.

The increase in the desired load reduction value increases the comfort violation as the SO should intervene with the use of more HVAC loads via manipulating the temperature setpoints. However, as a result, the free-of-cost energy credit values increase as well as the comfort violation among the contracted end-users.

Results regarding the load reduction performance of the proposed concept if the desired power reduction is increased to 24 kW are shown in Figs. 10–12. The increased load reduction requirement is still satisfied for nonzero HVAC power reference periods. In order to present the economic benefits of the end-users from the obtained energy credits, a test case is provided for selected households that gained 0.7747 and 0.9996 kWh free-of-cost energy credits during the DR cases of 12 and 24 kW desired load reduction levels, respectively.

This energy credit can be used by the end-user during the peak price period between 6 and 9 P.M. of the price variation shown in Fig. 13 [30]. The inflexible power demand of a 4-member household including several loads is presented in Fig. 14 [12] for the mentioned peak-price period. The cost reduction oriented...
residential household energy management system allocates a free-of-cost power variation from the grid, as shown in Figs. 15 and 16 for 0.7747 and 0.9996 kWh free-of-cost energy credit values, respectively. As it can be seen, the free-of-cost power variation that is limited by the energy credit of the household is scheduled for the highest price period to enable purchasing less energy with cost for reducing the daily operational costs.

The relevant results for the total operational costs during the peak price period with and without energy credits are summarized in Table IV. The proposed energy credits-based strategy enables around 10% of total cost reduction, which is a considerable benefit for the enrollment of the end-users for such DR programs.

In order to analyze the scalability of the proposed approach, the same concept is applied to a collection of 250 households with the identical physical structure presented in Table II. In addition, the desired temperature levels of households are varied between 18 °C and 22 °C to enhance the complexity of the analysis from end-users’ preferences point of view. It is assumed in this analysis that the LSE requests a 50 kW of reduction during the DR event.

The relevant results for HVAC power consumption for the first three scenarios of 250 households are depicted in Figs. 17–19. As it can be observed, the required levels of load reduction are obtained in all scenarios from the LSE point of view. As the number of flexible resources increases compared to the case of 40 households, the LSE requests a smaller amount of average comfort violation from the households, and in turn gives fewer amounts of average credits.

Here, as an example, house 7 gains a credit that lowers the household consumption cost by 2% by its allowed comfort violation based HVAC operation. Here, it should be noted that the computational burden of increasing the scale of the problem is negligible (less than 1 s), therefore depicting the scalability of the approach.

It should be mentioned that the uncertainty regarding the operation of the HVAC is not only related to the ambient temperature; however, dealing specifically with the uncertainty resources in HVAC operation was the subject of several studies in the literature (e.g., [48]), while the proposed concept can be readily
extended by increasing the number of uncertainty sources in the stochastic formulation.

IV. CONCLUSION

In this study, a novel DLC approach based on allocating energy credits was proposed in order to present end-users with an opportunity for reducing their electricity costs. With the objective of realizing this commitment without radically affecting the comfort level of end-users, free energy credits were provided to residential end-users enrolled in the DR program on the condition that intervention to their HVAC units during predefined DR events was allowed. The end-users can then use these credits during the periods with high energy prices for considerable cost savings. The effectiveness of the energy credits-based incentive strategy was thoroughly examined in a day-ahead planning context in terms of operational cost reduction, regarding also the uncertainty of ambient temperature variations, and the results showed that the proposed strategy accomplished a total cost reduction of around 10%, which is very significant and can be pointed out as a decisive factor for increasing the participation ratio of end-users into the DR programs.

The future directions of the study can be listed as follows.
1) The detailed investigation of the benefits of such reductions from the perspective of LSEs, including their contribution to the operational power system procedures such as peak load leveling and frequency regulation.
2) The implementation of the proposed credit-based strategy for different TCLs such as EWH and refrigerators, and also on the households with energy storage systems.
3) In this context, instead of individual storage systems, shared energy storage systems can be considered as these systems provide higher energy storage capacities with lower costs to each end-user, also taking into account the fairness in the allocation of these capacities.
4) The impact of other physical factors such as the number of users, their activities, their clothes, etc., rather than solely the indoor temperature variation on the comfort of end-users.
5) The power flow is neglected in this study as the considered area is considerably smaller (a common LV bus of a distribution system) that can be managed by a distributed approach, e.g., by an aggregator rather than a centralized approach, e.g., by a distribution SO. If a wider area of the power network was considered, it would be vital to also consider multiple load aggregation areas and therefore the interaction of different system buses by network constraints.
6) The evaluation of the benefits of the proposed approach based on a robust optimization algorithm might decrease the unfavorable effects of the uncertainties that can appear in the system (e.g., by adding end-user opt-out preferences, by including different system components with stochastic characteristics, etc.).

Nikolaos G. Paterakis (S’14–M’15) received the Dipl. Eng. degree from the Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece, in 2013, and the Ph.D. degree from the University of Beira Interior, Covilhã, Portugal, in 2015.

From October 2015 to March 2017, he was a Postdoctoral Fellow with the Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands, where he is currently an Assistant Professor. His research interests include power systems operation and planning, renewable energy integration, ancillary services, demand response, and smart grid applications.

João P. S. Catalão (M’04–SM’12) received the M.Sc. degree from the Instituto Superior Técnico (IST), Lisbon, Portugal, in 2003, and the Ph.D. degree and Habilitation for Full Professor (Agregação) from the University of Beira Interior (UBI), Covilhã, Portugal, in 2007 and 2013, respectively.

Currently, he is a Professor with the Faculty of Engineering of the University of Porto (FEUP), Porto, Portugal, and a Researcher with the Institute for Systems and Computer Engineering (INESC) Technology and Science, INESC-ID/IST-UL, and Centre for Mechanical and Aerospace Science and Technologies/UBI. He was the Primary Coordinator of the EU-funded FP7 project SINGULAR (Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration), a 5.2-million-euro project involving 11 industry partners. He has authored or coauthored more than 600 publications, including 215 journal papers (more than 60 IEEE Transactions/Journal papers), 335 conference proceedings papers, two books, 34 book chapters, and 14 technical reports, with an h-index of 35, an i_{10}-index of 135, and more than 5500 citations (according to Google Scholar), and has supervised more than 50 postdocs, Ph.D., and M.Sc. students. He is the Editor of the books Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling and Smart and Sustainable Power Systems: Operations, Planning and Economics of Insular Electricity Grids (Boca Raton, FL, USA: CRC Press, 2012 and 2015, respectively). His research interests include power system operations and planning, hydro and thermal scheduling, wind and price forecasting, distributed renewable generation, demand response, and smart grids.

Dr. Catalão is an Editor for the IEEE TRANSACTIONS ON SMART GRID and the IEEE TRANSACTIONS ON POWER SYSTEMS, and an Associate Editor for the IET Renewable Power Generation. From 2011 till 2018 (seven years), he was an Editor for the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY. He was the Guest Editor-in-Chief for the Special Section on “Real-Time Demand Response” of the IEEE TRANSACTIONS ON SMART GRID, published in December 2012, and the Guest Editor-in-Chief for the Special Section on “Reserve and Flexibility for Handling Variability and Uncertainty of Renewable Generation” of the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, published in April 2016. Since May 2017, he has been the Corresponding Editor for the Special Section on “Industrial and Commercial Demand Response” of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. He was the recipient of the 2011 Scientific Merit Award UBI-FE/Santander Universities, the 2012 Scientific Award UTI/Santander Totta, the 2016 FEUP Diploma of Scientific Recognition, and the Best INESC-ID Researcher 2017 Award, in addition to an Honorable Mention in the 2017 Scientific Awards ULisboa/Santander Universities, and 4 Best Paper Awards at IEEE Conferences.