Incremental gain of LTI systems

Citation for published version (APA):

Document status and date:
Published: 27/02/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
In this technical report we prove that for Linear Time Invariant (LTI) systems the L_∞-gain and incremental gain are equivalent, whereas for nonlinear systems this is generally not the case [1]. Before we will give the proof, we first give the definitions of the L_∞-gain and incremental gain.

Consider a dynamical system $\Sigma: \mathcal{L}_2^{nu} \to \mathcal{L}_2^{ny}$ given by

$$\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t); \\
y(t) &= Cx(t) + Bu(t); \\
x(t_0) &= x_0;
\end{align*}$$

where $x \in C_1^{nu}$ with $x_0 \in X \subseteq \mathbb{R}^{nu}$ is the state variable associated with the considered state-space representation of the system, $u \in \mathcal{L}_2^{nu}$ taking values in $U \subseteq \mathbb{R}^{nu}$ is the input, and $y \in \mathcal{L}_2^{ny}$ taking values in $Y \subseteq \mathbb{R}^{ny}$ is the output of the system.

Definition I.1 (L_∞-gain). Σ, given by (1), is said to be L_∞-gain stable if for all $u \in \mathcal{L}_2^{nu}$ and $x_0 \in X$, $\Sigma(u)$ exists and there is a finite $\gamma \geq 0$ and a function $\zeta(x) \geq 0$ with $\zeta(0,0) = 0$ such that

$$\|\Sigma(u)\|_2 \leq \gamma \|u\|_2 + \zeta(x_0).$$

(2)

The induced L_∞-gain of Σ, denoted by $\|\Sigma\|_2$, is the infimum of γ such that (2) still holds.

Definition I.2 (Incremental gain [1], [2]). Σ, given by (1), is said to be incrementally L_∞-gain stable, from now on denoted as L_{i2}-gain stable, if it is L_∞-gain stable and, there exist a finite $\eta \geq 0$ and a function $\zeta(x, \dot{x}) \geq 0$ with $\zeta(0,0) = 0$ such that

$$\|\Sigma(u) - \Sigma(\tilde{u})\|_2 \leq \eta \|u - \tilde{u}\|_2 + \zeta(x_0, \dot{x}_0),$$

(3)

for all $u, \tilde{u} \in \mathcal{L}_2^{nu}$ and $x_0, \dot{x}_0 \in X$. The induced L_{i2}-gain of Σ, denoted by $\|\Sigma\|_{i2}$, is the infimum of η such that (3) holds.

II. MAIN RESULTS

Theorem II.1. For an (LTI) dynamical system given by (1) the L_∞-gain and L_{i2}-gain as defined in Definition I.1 and Definition I.2 are equivalent.

Proof. For the proof we use Theorem 2.7 from [3]. Therefore, formulate the following augmented difference system for the LTI system in (1)

$$\begin{align*}
y_\Delta &= \Sigma(u) - \Sigma(\tilde{u}) = \Sigma_\Delta(u, \tilde{u}) \begin{bmatrix} \dot{x}(t) \\ \dot{\tilde{x}}(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x(t) \\ \tilde{x}(t) \end{bmatrix} - \begin{bmatrix} u(t) \\ \tilde{u}(t) \end{bmatrix}; \\
x(t_0) &= x_0; \\
\dot{x}(t_0) &= \tilde{x}_0.
\end{align*}$$

(4)

which has the state-space representation

$$\begin{bmatrix} \dot{x}_\Delta(t) \\ y_\Delta(t) \end{bmatrix} = \begin{bmatrix} A_\Delta & B_\Delta \\ C_\Delta & D_\Delta \end{bmatrix} \begin{bmatrix} x_\Delta(t) \\ u_\Delta(t) \end{bmatrix},$$

(5)

where

$$\begin{align*}
x_\Delta(t) &= \begin{bmatrix} x(t) \\ \tilde{x}(t) \end{bmatrix}, \\
u_\Delta(t) &= \begin{bmatrix} u(t) \\ \tilde{u}(t) \end{bmatrix}, \\
A_\Delta &= \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}, \\
B_\Delta &= \begin{bmatrix} B & 0 \\ 0 & B \end{bmatrix}, \\
C_\Delta &= \begin{bmatrix} C & -C \end{bmatrix}, \\
D_\Delta &= \begin{bmatrix} D & -D \end{bmatrix}.
\end{align*}$$

The differential dissipation inequality (DDI) is given by

$$\partial_x S(x(t), f(x(t), u(t))) \leq w(u(t), y(t)), \quad \text{for all } x(t), u(t), y(t),$$

(6)

P.J.W. Koelewijn and R. Tóth are with the Control Systems Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, MB The Netherlands (e-mail: {p.j.w.koelewijn, r.toth}@tue.nl)
where $S(x)$ is a storage function, $w(u, y)$ a supply function and $f(x, u)$ the state equation. In our case, per Theorem 2.7 from [3], as storage function we take (omitting time dependence for brevity)

$$S(x, \dot{x}) = S(x_\Delta) = (x - \dot{x})^TP(x - \dot{x}) = x_\Delta^T\begin{bmatrix} P & -P \\ -P & P \end{bmatrix}x_\Delta,$$

and as supply function we take

$$w_\Delta(u, \tilde{u}, y_\Delta) = \eta^2 \|u - \tilde{u}\|^2 - \|y_\Delta\|^2.$$

The state equation, based on (5), is given by

$$f(x_\Delta, u_\Delta) = A_\Delta x_\Delta + B_\Delta u_\Delta.$$

Combining (6)-(9) results in

$$2x_\Delta^T\hat{P}(A_\Delta x_\Delta + B_\Delta u_\Delta) \leq \eta^2 \|u - \tilde{u}\|^2 - \|y_\Delta\|^2,$$

which can be rewritten as

$$\begin{bmatrix} x_\Delta^T \\ u_\Delta^T \end{bmatrix} \begin{bmatrix} I & 0 \\ A_\Delta & B_\Delta \end{bmatrix} \begin{bmatrix} 0 & \hat{P} \\ I & B_\Delta \end{bmatrix} \begin{bmatrix} x_\Delta \\ u_\Delta \end{bmatrix} \leq \begin{bmatrix} 0 & I \\ C_\Delta & D_\Delta \end{bmatrix} \begin{bmatrix} H \\ 0 \\ -I \end{bmatrix} \begin{bmatrix} 0 & I \\ C_\Delta & D_\Delta \end{bmatrix} \begin{bmatrix} x_\Delta^T \\ u_\Delta^T \end{bmatrix},$$

which needs to hold for all x_Δ and u_Δ values over all t, with

$$H = \begin{bmatrix} \eta^2 I & -\eta^2 I \\ -\eta^2 I & \eta^2 I \end{bmatrix}.$$

Next, (11) holds if and only if

$$\begin{bmatrix} I & 0 \\ A_\Delta & B_\Delta \end{bmatrix} \begin{bmatrix} 0 & \hat{P} \\ I & B_\Delta \end{bmatrix} = \begin{bmatrix} 0 & I \\ C_\Delta & D_\Delta \end{bmatrix} \begin{bmatrix} H \\ 0 \\ -I \end{bmatrix} \begin{bmatrix} 0 & I \\ C_\Delta & D_\Delta \end{bmatrix} \leq 0.$$

Collapsing (12) gives

$$\begin{bmatrix} M_{11} & -M_{11} & M_{12} & -M_{12} \\ -M_{11} & M_{11} & -M_{12} & M_{12} \\ M_{12} & -M_{12} & M_{22} & -M_{22} \\ -M_{12} & M_{12} & -M_{22} & M_{22} \end{bmatrix} \leq 0,$$

where

$$M_{11} = A^T P + PA + C^T C,$$

$$M_{12} = PB + C^T D,$$

$$M_{22} = D^T D - \eta^2 I.$$

Introduce the non-singular

$$\mathcal{I} = \begin{bmatrix} I_n & I_n & 0 & 0 \\ 0 & -I_n & 0 & 0 \\ 0 & 0 & I_{n_u} & 0 \\ 0 & 0 & -I_{n_u} & -I_{n_u} \end{bmatrix}.$$

By using \mathcal{I} as a congruence transformation, (13) can equivalently be written as

$$\mathcal{I} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & M_{11} & M_{12} & 0 \\ 0 & M_{12} & M_{22} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathcal{I}^T \leq 0.$$

We can reduce (16) to

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & M_{11} & M_{12} & 0 \\ 0 & M_{12}^T & M_{22} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leq 0,$$

and to

$$\begin{bmatrix} A^T P + PA + C^T C & PB + C^T D \\ B^T P + D^T C & D^T D - \eta^2 I \end{bmatrix} \leq 0,$$

which is equivalent with the bounded real lemma [4]. This shows that the \mathcal{L}_2-gain and \mathcal{L}_{12}-gain are equivalent for LTI systems.

\square
REFERENCES

