Deep Learning to estimate building energy demands in the smart grid context
Mocanu, E.; Nguyen, H.P.; Gibescu, M.; Kling, W.L.

Published: 17/03/2015

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Dec. 2018
Deep Learning to estimate building energy demands in the smart grid context
Elena Mocanu, Phuong H. Nguyen, Madeleine Gibescu, Wil Kling
Department of Electrical Engineering

Problem and Motivation
Occupancy information can improve building energy management systems
Large meteorological variations yield intense power fluctuations
Quantification of uncertainty introduced with the advent of new renewable energy sources

Energy prediction
Prediction method: Conditional Restricted Boltzmann Machine

People Detection and Localization
Approach: Inexpensive user tracking using Boltzmann Machine

Classification method: Extended Factored Conditional Restricted Boltzmann Machine

<table>
<thead>
<tr>
<th>Lighting consumption</th>
<th>Total energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>RMSE</td>
</tr>
<tr>
<td>ANN</td>
<td>2.24</td>
</tr>
<tr>
<td>HMM</td>
<td>1.23</td>
</tr>
<tr>
<td>CRBM</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Total energy function
\[E(v, h, u, W) = -v^T W^{hv} h - v^T b v - u^T W^{hv} v - u^T W^{uh} h - h^T b h \]

Learning for CRBM using Contrastive Divergence
\[C_{D_{KL}} = D_{KL}(p(x)\|p_{\theta}(x)) = D_{KL}(p(x)\|p_{\theta}(x)) \]

Probabilistic Inference in CRBM
\[p(h = 1 | u, v) = \text{sigmoid}(u^T W^{uh} + v^T W^{hv} + b^h) \]

Bias updates

<table>
<thead>
<tr>
<th>People Detection and Localization</th>
</tr>
</thead>
</table>

Artificial data

<table>
<thead>
<tr>
<th>Lighting consumption</th>
<th>Total energy consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>RMSE</td>
</tr>
<tr>
<td>ANN</td>
<td>2.24</td>
</tr>
<tr>
<td>HMM</td>
<td>1.23</td>
</tr>
<tr>
<td>CRBM</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Experiment & Results

Different temporal scales prediction is widely used as input to several decision-making problems in the smart grid context.