Inexpensive user tracking using Boltzmann Machines (Type B paper)

Citation for published version (APA):

Document status and date:
Published: 01/11/2015

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Inexpensive user tracking using Boltzmann Machines

Elena Mocanu a Decebal Constantin Mocanu a Haitham Bou Ammar b
Zoran Zivkovic c Antonio Liotta a Evgueni Smirnov d

a Dep. of Electrical Engineering, Eindhoven University of Technology, Netherlands
b Dep. of Operations Research and Financial Engineering, Princeton University, USA
c AMS, High Tech Campus 10, 5656AE, Eindhoven, Netherlands
d Dep. of Knowledge Engineering, Maastricht University, Netherlands

1 Introduction
Investigating the presence of a person near a display or in a particular area of the room can lead to improved system capacity by better energy saving or by raising the level of protection of the people (i.e. people privacy which is not assured with other types of sensors like cameras). In this paper [1], we tackle the inexpensive user tracking problem by using the Multi-integrated Sensor Technology (MIST1431), which comes at a low price. At the same time, we are aiming to address the lightweight learning requirements by proposing the extended Factored Conditional Restricted Boltzmann Machine (FCRBM), a form of Deep Learning, which incorporates a novel classification scheme.

Figure 1: The general architecture of eFCRBM which include FCRBM (see [2]).

The framework contributes on two main directions. The first is a technological one and consists in using a combination of MIST1431 and PIR, two low-cost and low-energy sensors. The second direction is a theoretical one, consisting in the introduction of a novel classification method for time series, namely Extended Factored Conditional Restricted Boltzmann Machines. This new technique builds on FCRBMs by incorporating a label layer and a classification procedure.

2 Proposed Method
This section introduces eFCRBM, shown in Figure 1. To enable classification and predictions in one unified framework, two modifications to FCRBM are required. Firstly, a joint class layer which combines the style and feature layers of a FCRBM is introduced. Since conditioning on class labels is now possible, the machine thus constructed, can be used for predictions of time series belonging to different classes. Equipped with the ability to predict different class data, the second modification is the incorporation of a classification procedure. Based on the learned predictions, the classification procedure ensures an accurate partition to corresponding classes. Due to changes in the FCRBM structure, new mathematical details including, the energy function, probabilistic

1The full paper has been published in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC2014), pages 1–6, 2014.
Figure 2: Experimental design: A room was split into eight locations. The sensor was placed either at a table or at the ceiling in the middle of the room.

Table 1: Comparison between SVM, Naive Bayes, AdaBoost, GMM and eFCRBM in terms of accuracy [%]. Each row represent a different problem or scenario [1].

<table>
<thead>
<tr>
<th></th>
<th>SVM</th>
<th>NB</th>
<th>AB</th>
<th>GMM</th>
<th>eFCRBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 classes)</td>
<td>58.20</td>
<td>61.40</td>
<td>59.42</td>
<td>61.20</td>
<td>80.52</td>
</tr>
<tr>
<td>Detection and</td>
<td>70.45</td>
<td>70.98</td>
<td>30.15</td>
<td>74.92</td>
<td>76.37</td>
</tr>
<tr>
<td>Localization</td>
<td>48.71</td>
<td>44.28</td>
<td>25.04</td>
<td>57.04</td>
<td>60.09</td>
</tr>
<tr>
<td>(17 classes)</td>
<td>64.77</td>
<td>42.21</td>
<td>28.54</td>
<td>65.34</td>
<td>68.36</td>
</tr>
<tr>
<td>Localization</td>
<td>71.56%</td>
<td>64.81%</td>
<td>40.21%</td>
<td>74.07%</td>
<td>88.72%</td>
</tr>
</tbody>
</table>

inference, and learning/update rules are detailed in [1]. Furthermore, the novel classification scheme is based on the predicted values of eFCRBMs. More exactly, the main idea is first to fix the history layer to an arbitrary instance from the test data set. Predictions of the present frame using all possible classes are then performed. Finally, these predictions are compared with the true value TV^t of the present frame for that specific instance. To find the prediction closest to TV^t, a similarity or distance measure is then adopted. The class which made the closest prediction is chosen to be the class for that instance.

3 Experimental validation

We have assessed our approaches in three sets of experiments. In the first one, the goal was to classify artificial data points arriving from two trigonometric functions. The goal in the second set of experiments was the detection and localization of humans through data gathered from an MIST1431 sensor. Each gathered sample contained 14 outputs, such as six un-filtered ultra violet signals, six read and near-infra red part of the spectrum signals, temperature and humidity. A general experimentation protocol was designed (see Figure 2) for human detection and localization. Three situations were of major interest: 1) a person moving (i.e., M_i with i = \{1, \ldots, 8\}) in one of the eight positions, 2) a person standing still in one of the eight positions, or 3) the room is empty. Three scenarios were then recorded, such as S_1, S_2, S_3. Although successful, the previous localization and detection techniques still suffered from the following two problems: 1) inhibition of detection in the absence of ambient light, and 2) inaccuracies when it comes to people close to the display. Aiming at enhancing the quality of such estimates as well as at increasing the accuracy of localization, a method of fusing information from thermal and visible light sensors, i.e. PIR and MIST, has been developed and allows us to obtain results overnight. The method relies on motion detection in both signals and the results are depicted in the last row of Table 1.

4 Conclusion

In this paper we are proposing a novel framework capable to accurately detect and localize people in a room, including their level of motion. The framework contributes on two main directions. The first is a technological one and consists in using a combination of MIST1431 and PIR, two low-cost and low-energy sensors. The second direction is a theoretical one, consisting in the introduction of a novel classification method for time series, namely Extended Factored Conditional Restricted Boltzmann Machines. This new technique builds on FCRBMs by incorporating a label layer and a classification procedure. Artifical as well as real-world experiments clearly demonstrate the effectiveness of the proposed technique. Namely, eFCRBMs were capable of outperforming each of SVMs, GMMs, AdaBoost, and Naive Bayes classifiers, in all the tested scenarios.

References
