What is limiting low-temperature atomic layer deposition of Al2O3? A vibrational sum-frequency generation study

Citation for published version (APA):

DOI:
10.1063/1.4939654

Document status and date:
Published: 04/01/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 10. Apr. 2019
What is limiting low-temperature atomic layer deposition of Al2O3? A vibrational sum-frequency generation study

V. Vandalon and W. M. M. Kessels

View online: http://dx.doi.org/10.1063/1.4939654
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/108/1?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Low-temperature plasma-enhanced atomic layer deposition of HfO2/Al2O3 nanolaminate structure on Si
J. Vac. Sci. Technol. B 33, 01A101 (2015); 10.1116/1.4895010

In situ study of atomic layer deposition Al2O3 on GaP (100)

Low-temperature atomic layer deposition of Al2O3 on blown polyethylene films with plasma-treated surfaces
J. Vac. Sci. Technol. A 31, 01A129 (2013); 10.1116/1.4768171

In situ study of surface reactions of atomic layer deposited La x Al 2 − x O 3 films on atomically clean In 0.2 Ga 0.8 As

Surface chemistry of plasma-assisted atomic layer deposition of Al 2 O 3 studied by infrared spectroscopy
What is limiting low-temperature atomic layer deposition of Al$_2$O$_3$?
A vibrational sum-frequency generation study

V. Vandalon and W. M. M. Kessels
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 29 October 2015; accepted 26 December 2015; published online 8 January 2016)

The surface reactions during atomic layer deposition (ALD) of Al$_2$O$_3$ from Al(CH$_3$)$_3$ and H$_2$O have been studied with broadband sum-frequency generation to reveal what is limiting the growth at low temperatures. The –CH$_3$ surface coverage was measured for temperatures between 100 and 300°C and the absolute reaction cross sections, describing the reaction kinetics, were determined for both half-cycles. It was found that –CH$_3$ groups persisted on the surface after saturation of the H$_2$O half-cycle. From a direct correlation with the growth per cycle, it was established that the reduced reactivity of H$_2$O towards –CH$_3$ is the dominant factor limiting the ALD process at low temperatures. © 2016 AIP Publishing LLC.

Atomic layer deposition (ALD) has become an enabling technology in the fabrication of semiconductor and photovoltaic devices due to its unique capability to conformally deposit ultra-thin films with sub-nanometer thickness precision. In recent years, the adoption of ALD as the method of choice in numerous applications has sparked a drive towards the development of new ALD processes. Simultaneously, the operating range of existing processes is being explored with the main goal of obtaining greater flexibility in deposition conditions, while at the same time retaining all the merits of ALD. Of special interest is low temperature ALD, enabling deposition on temperature sensitive samples. When exploring a new process or extending the operating range of an established process, insight into the surface chemistry that is governing ALD is a key. Yet gaining understanding of ALD film growth by directly studying the surface groups, ruling the ALD chemistry, requires highly sensitive in-situ diagnostic techniques.

This work focuses on the ubiquitous thermal ALD process of Al$_2$O$_3$, using trimethylaluminum (Al(CH$_3$)$_3$, TMA) as a precursor and water as a co-reactant and addresses the question what limits Al$_2$O$_3$ growth at low temperature. The steady-state growth mechanism of this ALD process has been studied extensively with techniques such as quadrupole mass spectrometry, spectroscopic ellipsometry, quartz-crystal microbalance (QCM), and Fourier-transform infrared (FTIR) absorption spectroscopy. The generally accepted and dominant reaction mechanism for steady-state growth is as follows:

$$-\text{OH} + \text{Al(CH}_3)_3(g) \rightarrow -\text{O} + \text{Al} - \text{(CH}_3)_2 + \text{CH}_4(g), \quad (1a)$$

$$-\text{CH}_3 + \text{H}_2\text{O}(g) \rightarrow -\text{OH} + \text{CH}_4(g), \quad (1b)$$

where an “–” symbol designates surface species. In addition to hydroxyls which form the most important chemisorption site for TMA, it has been reported that TMA can chemisorb on bridged oxygen on a dehydroxilated Al$_2$O$_3$ surface.

One of the unresolved issues in understanding the growth of Al$_2$O$_3$ by ALD is the exact cause of the decrease in growth per cycle (GPC) reported at low temperatures. Figure 1 shows the GPC of Al$_2$O$_3$ ALD in terms of Al atoms deposited as a function of deposition temperature as measured with Rutherford back-scattering spectrometry (RBS, this metric gives more insight than the GPC in terms of thickness). Comparing the GPC of this thermal process with its plasma enhanced counterpart using O$_2$ plasma instead of H$_2$O also included in Fig. 1, shows that the decrease in GPC at low temperatures only occurs for the thermal process while the GPC of the plasma process keeps increasing when going to lower temperatures. Because both processes only differ in the co-reactant, the likely cause

\[\text{Al(CH}_3)_3(g) + \text{H}_2\text{O}(g) \rightarrow \text{Al}_2\text{O}_3(s) + 3 \text{CH}_4(g) \]

\[\text{2Al}_2\text{O}_3(s) + 3 \text{H}_2\text{O}(g) \rightarrow 4 \text{Al}_2\text{O}_3(s) + 6 \text{H}_2(g) \]

where an “–” symbol designates surface species. In addition to hydroxyls which form the most important chemisorption site for TMA, it has been reported that TMA can chemisorb on bridged oxygen on a dehydroxilated Al$_2$O$_3$ surface.

One of the unresolved issues in understanding the growth of Al$_2$O$_3$ by ALD is the exact cause of the decrease in growth per cycle (GPC) reported at low temperatures. Figure 1 shows the GPC of Al$_2$O$_3$ ALD in terms of Al atoms deposited as a function of deposition temperature as measured with Rutherford back-scattering spectrometry (RBS, this metric gives more insight than the GPC in terms of thickness). Comparing the GPC of this thermal process with its plasma enhanced counterpart using O$_2$ plasma instead of H$_2$O also included in Fig. 1, shows that the decrease in GPC at low temperatures only occurs for the thermal process while the GPC of the plasma process keeps increasing when going to lower temperatures. Because both processes only differ in the co-reactant, the likely cause

\[\text{Al(CH}_3)_3(g) + \text{H}_2\text{O}(g) \rightarrow \text{Al}_2\text{O}_3(s) + 3 \text{CH}_4(g) \]

\[\text{2Al}_2\text{O}_3(s) + 3 \text{H}_2\text{O}(g) \rightarrow 4 \text{Al}_2\text{O}_3(s) + 6 \text{H}_2(g) \]
of the lower GPC for the H$_2$O-based process is the lack of reactivity of the co-reactant at low temperatures. However, the precise ALD surface chemistry related to this lower reactivity is unclear. So far, the aforementioned diagnostic techniques have not been able to resolve this issue and therefore a different approach is needed.

In this work, the surface chemistry of ALD Al$_2$O$_3$ is investigated with the technique of broadband sum-frequency generation (BB-SFG). BB-SFG is a state-of-the-art nonlinear optical technique used predominantly in surface science which is used here to study ALD chemistry. BB-SFG is inherently interface selective with a sub-monolayer sensitivity for –CH_3 groups and with fairly short acquisition times (120 s for a sensitivity better than 10% of a –CH_3 monolayer). One of the key features of BB-SFG is that the measured signals are directly correlated to the absolute surface density, revealing more information than the so-called differential techniques (such as FTIR) from which only changes in surface coverage can be extracted. By its very nature, the surface selectivity of BB-SFG leads to the simultaneous detection of species which are changing after an ALD half-cycle and species which are persistent over the ALD half-cycles. In this letter, it will be shown that these persistent surface species play a key role in ALD of Al$_2$O$_3$ at low temperatures. Water is not reactive enough at low temperatures to remove all the –CH_3 groups from the surface; even when saturation conditions are reached, a significant amount of –CH_3 groups persist on the surface. These persistent –CH_3 groups limit the uptake of TMA in the next half-cycle causing the reduction in GPC. The reduction in the areal density of the Al atoms deposited per cycle is found to be directly proportional to the persistent –CH_3 coverage.

ALD of Al$_2$O$_3$ was studied with BB-SFG in a setup designed and built for this purpose. The setup consisted of a vacuum chamber equipped with two turbo-molecular pumps (base pressure below 10$^{-7}$ mbar) and fast ALD valves to dose the vapor drawn reactants. A pump down step of \sim140 s reaching a pressure below 10$^{-6}$ mbar was performed after dosing the reactants. The sample was heated radiatively from the back side and the temperature of the sample was controlled with a thermocouple glued to the substrate within 5 mm of the spot measured with BB-SFG. The sample itself was a free-standing 2 in. Si(100) wafer with a 90 nm SiO$_2$ film on top for optical enhancement purposes of the BB-SFG signal. Subsequently, the –OH covered surface was treated with a thermal pulse to remove all –CH_3 groups from the surface until all –CH_3 groups have disappeared. To recapitulate, the surface chemistry at 200 °C is described by Eq. (1) which is reflected by the uptake and removal of –CH_3 for the TMA and water half-cycle, respectively. This happens in a self-limiting fashion as is characteristic for ALD.

In order to reveal how the sample temperature influences the surface chemistry during steady-state film growth, the experiments have been carried out at temperatures ranging between 100 °C and 300 °C. A set of saturation plots was obtained for each temperature yielding the dependence of the –CH_3 coverage on the precursor and co-reactant dose as shown in Fig. 3. In this figure, the BB-SFG spectra were normalized for each temperature to the –CH_3 coverage obtained after a saturated TMA exposure. The reason is that the acquisition of the spectra for these experiments was relatively time consuming and necessary day-to-day adjustments of the exposure, similar to what is typically observed with FTIR for chemisorbed TMA. The mode is in the same range as, for example, –CH_3 groups of self-assembled monolayers (SAM) when probing them with BB-SFG. Subsequently, the –CH_3 groups during steady-state ALD at 200 °C. Recording a spectrum after a saturated H$_2$O dose shows no –CH_3 groups as can be deduced from the featureless spectrum in Fig. 2(a). This corresponds to a fully –OH terminated surface. Subsequently, the –OH covered surface was exposed to a pulse of TMA by activating the ALD valve for 20 ms. As expected from Eq. (1a), the spectrum recorded after the TMA exposure shows the spectral feature indicative of the C-H stretching mode of –CH_3 groups on the surface. A subsequent 20 ms pulse yields only a slight increase in peak height indicating a small additional uptake of TMA. Ensuing TMA pulses do not show any change in –CH_3 coverage, implying that saturation has already been reached. When continuing with the H$_2$O half-cycle after the TMA half-cycle, the first 20 ms H$_2$O exposure results in a significant decrease in the amount of –CH_3 on the surface as can be seen in Fig. 2(b). Subsequent pulses of water remove –CH_3 groups from the surface until all –CH_3 groups have disappeared. In order to reveal how the sample temperature influences the surface chemistry during steady-state film growth, the experiments have been carried out at temperatures ranging between 100 °C and 300 °C. A set of saturation plots was obtained for each temperature yielding the dependence of the –CH_3 coverage on the precursor and co-reactant dose as shown in Fig. 3. In this figure, the BB-SFG spectra were normalized for each temperature to the –CH_3 coverage obtained after a saturated TMA exposure. The reason is that the acquisition of the spectra for these experiments was relatively time consuming and necessary day-to-day adjustments of the
laser system influenced the optical alignment, preventing a direct comparison of absolute intensities between measurements at different temperatures. As can be seen from the figure, the saturation of the TMA half-cycle is fast and the dose for which saturation is achieved is independent of temperature. For low temperatures, the initial −CH3 coverage is not equal to zero and both −OH and −CH3 groups coexist on the surface at the beginning of the TMA half-cycle. This −CH3 can be traced back to the reactivity of the H2O co-reactant as can be seen in Fig. 3(b). This figure shows that water is reactive towards the −CH3 groups at high temperatures and quickly removes all the −CH3. However, for lower temperatures, the reaction slows down. Furthermore, below 200 °C, there are −CH3 groups which are no longer reactive towards H2O and these −CH3 groups therefore persist on the surface. In other words, the half-cycle saturates while there are still −CH3 groups present on the surface. An additional check with two extra-long H2O exposures of 400 and 800 ms at 150 °C (not shown) did not yield an additional decrease of the −CH3 signal. This implies that during thermal ALD of Al2O3 at low temperatures, there is a significant amount of −CH3 present on the surface at the beginning of the TMA half-cycle.

To obtain more quantitative information on the influence of the temperature on the ALD process, a less time consuming experiment was carried out such that the −CH3 coverages for different temperatures could be compared with each other. Instead of recording saturation curves, spectra were only recorded after a saturated half-cycle. Figure 4 shows the BB-SFG spectra of the C-H stretch mode after the TMA and H2O half-cycles. Again, at high temperatures, the −CH3 surface groups added to the surface during the TMA halfcycle are completely removed in the water half cycle, while at lower temperatures −CH3 groups persist. Moreover, the influence of temperature induced dehydroxylation is observed in the −CH3 coverage after a saturated TMA. Due to dehydroxylation, fewer reactive sites are available for TMA chemisorption at high temperature than at low temperature, hence the −CH3 coverage shows a decrease with temperature.

The trend in growth per cycle shown in Fig. 1 can be reproduced using the data in Fig. 4. The density of Al atoms deposited per cycle is proportional to the TMA uptake in the TMA half-cycle. The TMA uptake is directly related to the change in −CH3 coverage if the number of −CH3 ligands, n, which remain attached to the Al atom after chemisorption, is temperature independent. QCM studies showed that this is indeed the case over the temperature range investigated here. For the thermal ALD process, the TMA uptake will be limited by the persistent −CH3 groups in the H2O half-cycle. Therefore, the TMA uptake should be proportional to the difference in −CH3 coverage between the TMA and H2O half-cycles. The increase in −CH3 coverage caused by the TMA exposure was determined from Fig. 4, and the predicted GPC from this change in −CH3 coverage was plotted in Fig. 1. The validity of this procedure can be evaluated by also predicting the GPC of the plasma process. For the plasma process, there should be no persistent groups due to the high reactivity of the O2 plasma. In this case, the change in −CH3 coverage is equal to the −CH3 coverage after TMA exposure. This result is also plotted in Fig. 1 on the same scale as the data set for thermal ALD. Both data sets indeed show a good agreement with GPC determined by RBS. The agreement between the measured and predicted GPC for ALD of Al2O3 using TMA and H2O corroborates therefore that the persistent −CH3 groups are the limiting factor in the Al2O3 ALD process at low temperatures.

The underlying cause of the persistent −CH3 groups can be studied in more detail by considering the reaction kinetics. The kinetics of the reactions in Eq. (1) were determined from Fig. 3 by fitting the dependence of −CH3 coverages on the reactant exposure time with an exponential function. Briefly, the exponential time constant is equal to the reaction cross section multiplied with the (known) impinging flux of reactant species on the surface. Figure 5 shows the temperature dependence of the reaction cross...
section in both half-cycles and the related initial reaction probability (i.e., the reaction probability when the reactant TMA or H₂O interacts with a surface that is fully covered with –OH or –CH₃ groups, respectively). The figure also shows the fraction of persistent surface groups as a function of temperature obtained from the fits to the saturation plots (Fig. 5(c)). Considering the order of magnitude of the initial reaction probabilities, it can be concluded that the values of 10⁻³ for TMA and 10⁻⁴ for H₂O fall inside the range of values in the reported literature. However, those literature values vary over several orders of magnitude for different studies. The study of the reaction kinetics in this work, i.e., by directly measuring the surface coverage, is expected to yield very accurate results. The main uncertainty, the systematic error in the calculation of the reactant flux, introduces only a scaling factor and does not affect the trend in the data with temperature. Examining the temperature dependence in Fig. 5(a) more closely reveals that the reaction cross-section—and hence the initial reaction probability—during the TMA half-cycle, is independent of temperature. This confirms that chemisorption of TMA on the predominantly –OH terminated surface is a barrierless process which is not thermally activated. For the H₂O half-cycle, the reaction cross-section in Fig. 5(b) does depend on the temperature and the behavior is more complex. The increase in reactivity at high temperatures during the H₂O half-cycle suggests a thermally activated reaction for this half-cycle.

Although the reactions described by Eq. (1) suggest simple reaction kinetics, the data in Figs. 3 and 5 show a more intricate chemistry during the H₂O half-cycle especially at low temperatures: A pseudo first order reactions can describe the chemistry at high temperatures but it cannot describe the kinetics at low temperatures due to the presence of persistent surface groups. A possible explanation for the persistent surface groups can be found in the recent ab-initio studies using density functional theory (DFT) performed by Shirazi and Elliott. They proposed that the so-called cooperative effects play an important role in the surface chemistry of ALD. For –CH₃ surface groups reacting with H₂O, they found a significantly higher activation barrier for isolated –CH₃ groups than for clusters of –CH₃. An independent DFT study from Weckman and Laasonen also reports a high activation barrier for isolated –CH₃ and cooperative effects for this ALD process. Such a cooperative effect could explain the persistence of –CH₃ groups at low temperatures and hence this work can be seen as experimental evidence of the cooperative effect.

In conclusion, we have addressed the question of what is causing the reduced GPC of thermal ALD of Al₂O₃ at low temperatures using the nonlinear optical technique of BB-SFG. It was found that water is not reactive enough to remove all –CH₃ groups at low temperatures, which leads to a significant amount of persistent –CH₃ groups. These persistent –CH₃ groups limit the TMA uptake and hence they limit the GPC. This was also corroborated by the fact that the predicted GPC, using the measured –CH₃ coverage as input, showed an excellent agreement with the GPC measured with RBS if the persistent groups were accounted for. These persistent –CH₃ groups are not incorporated in the film as is evidenced by the high-quality, virtually carbon-free material which is generally grown with the thermal ALD process at low temperatures. Furthermore, from the reaction kinetics, it was determined that for the TMA half-cycle the reaction cross-section is temperature independent indicating barrierless reaction. On the other hand, the temperature dependent reaction cross-section in the H₂O half-cycle indicates a thermally activated reaction. Finally, since the combination of H₂O as co-reactant and metal atoms with organic ligands as precursor are quite commonplace in other ALD chemistries, the presence of persistent surface groups reported in this work could play a role in other ALD processes.

The authors would like to thank J. J. A. Zeebrechts, J. J. L. M. Meulendijks, C. van Helvoirt, and C. O. van Bommel for their technical support. This work was supported by the Dutch Technology Foundation STW and the Netherlands Organization for scientific Research (NWO, VICI Program on “Nanomanufacturing.”).

H. C. M. Knoops, S. E. Potts, A. A. Bol, and W. M. M. Kessels, Springer Handbook of Crystal Growth, 2nd ed. (Elsevier B.V., 2010).
See supplementary material at http://dx.doi.org/10.1063/1.4939654 for sample details, modeling of the BB-SFG spectra, and the analysis of the reaction kinetics.