All-optical Label Swapping Techniques for Optical Packets at Bit-rate Beyond 160 Gb/s

Nicola Calabretta, Hyun-Do Jung, and Harm Dorren
COBRA Research Institute, Eindhoven University of Technology, Eindhoven, The Netherlands.
E-mail: n.calabretta@tue.nl, Email: {h.d.jung, h.j.s.dorren}@tue.nl

Abstract—In this paper two different paradigms to realize a scalable all-optical packet switch with label swapping will be presented. All the functions required for switching the packets are based on all-optical signal processing without any electronic control. This allows very low latency and potential photonic integration of the systems. We report for both techniques experimental results showing the routing operation of the 160 Gb/s packets and beyond. We will discuss and compare both techniques in term of devices and bit-rate scalability, latency, power consumption, power penalty performance and cascadability as key parameters for the realization of an all-optical packet switch.

Index Terms—Optical packet switching, optical signal processing, label processor, label rewriter, label swapping, semiconductor optical amplifier.

I. INTRODUCTION

All-optical packet switching has been proposed as a technology to solve the bottleneck between the fibre bandwidth and the electronic router capacity by exploiting high speed and parallel operation of all-optical signal processing. Moreover, photonic integration of the optical packet switch potentially allows for a reduction of volume, power consumption and costs. In all-optical packet switches the optical packets are routed based on the address information that is encoded by the attached labels. The optical packet is stored (delayed) in the optical domain for the time required to the label processor to process the address and provide a routing signal for routing all-optically the stored packet.

To exploit the benefit of photonic technology to miniaturize and decrease the power consumptions of the system, photonic integration of the all-optical packet switch depends on the capability to integrate the label processor and the optical delay related to the latency of the label processing. This imposes stringent constraints on the latency time of the label processor. Indeed, integrated delay lines using an InP photonic waveguides have around 2 dB/cm of optical losses. One centimeter of waveguide provides a delay of 100 ps. If the latency of the label processor is in the order of 1 nanosecond, integration of such delay exhibits a total waveguide loss of 20 dB, which is unpractical. Therefore, high speed operation of the label processor (< 100 ps) is a must to allow photonic integration of the packet switch system.

Moreover, scalability of the label processor with the number of labels (or the number of label bits) is crucial too.

Several solutions were presented to implement an all-optical packet switch node. In [1-5], the addresses were processed in the electrical domain while the payload is stored in the optical domain. The electrical label processing drives the optical switches for routing the optical packets. However, electronic label processing and new label rewriting requires no trivial optoelectronic per-packet based clock recovery, and introduces long processing latency in the order of tens of nanoseconds which prevents the integration of the system. All-optical packet switch employing all-optical label processor were investigated in [6-12]. Mainly these works employed optical correlators, which recognize the labels, and set/reset optical flip-flops to store the information for the duration of the packet. However, as the number of addresses, of the Wavelength Division Multiplexing (WDM) channels carried by each fiber, and of the packet data rate increase, photonic integration, high speed operation, low latency, and scalability of the label processor remain key-issues to be solved. Solutions employing 2^N optical correlators and 2^N optical flip-flop to process the addresses may prevent photonic integration.

Our research focuses on the realization of an all-optical packet switching system that is scalable and suitable for photonic integration. We present two all-optical packet switching techniques [13, 14] that utilize all-optical signal processing to implement the label processor and the label rewriter. The two all-optical label swapping (AOLS) techniques are based on two different paradigms. One is based on wavelength routing switching [13] and the other one on space routing switching [14]. Both techniques employ scalable and asynchronous label processor and label rewriter capable to process optical in-band labeling addresses. We demonstrate a 1x4 all-optical packet switch based on both techniques. For both techniques we report experimental results showing the routing operation of the 160 Gb/s packets based on the processed in-band address information, and all-optical label erasing and new label insertion operation. Based on the experimental results, we discuss and compare both techniques in term of devices and bit-rate scalability, latency, power consumption, power penalty performance and cascadability as key parameters for the realization of an all-optical packet switching node.
The paper is organized as follows. In Section II, we present the all-optical packet switch architecture, introducing the main all-optical functions required to accomplish the AOLS. In Section III and section IV, we present two all-optical packet switching techniques that utilize all-optical signal processing to implement the label processor and the label rewriter. The two techniques are based on wavelength routing switching and on space routing switching. Section V provides a comparison between the two techniques. Finally, we summarize and discuss the main results in the conclusions section.

II. AOLS ARCHITECTURE

Figure 1 illustrates the all-optical packet switch based on label swapping technique. The input packet format is also reported in figure 1. The input packets consist of a 160 Gb/s payload, with a pulse duration of 1.6ps making the 20 dB bandwidth of the payload to be 5nm. The packet address information is encoded by in-band labels. With this we mean that the wavelengths of the labels are chosen within the bandwidth of the payload. We encode addresses by combining different labels. Each label is On-Off-Keying (OOK) encoded and has a binary value: the label value is ‘1’ if the label is attached to the payload, the label value is ‘0’ if no label is attached to the payload. Thus, by using \(N \) in-band label wavelengths, \(2^N \) possible addresses can be encoded, which makes this labelling technique highly scalable within a limited bandwidth.

![Figure 1. Packet format in the time and spectral domain, and all-optical packet switch configuration.](image)

We have used simulation based on Matlab to calculate the number of possible labels that can be allocated in the spectrum of the payload bandwidth [12]. Note that by using filters with bandwidth narrower than 0.1 nm more than 10 labels can be allocated in the payload bandwidth, which means \(2^{10} \) encoded addresses. Moreover, if the payload data rate increases above 160 Gb/s (i.e. 320 or 640 Gb/s), a larger number of labels can be allocated in the payload spectrum. Thus, the proposed labeling technique scales well with the packet data rate. Other advantages of the in-band labeling are that the labels can be extracted by passive wavelength filtering. Moreover, by using a label that has the same time-duration as the payload makes the use of optical flip-flops redundant, and allows to handle packets with variable lengths in an asynchronous fashion. In the experiment, we encode 4 addresses by using two in-band labels. Figure 1 shows packets carrying different addresses and the corresponding representation in the spectral domain. The all-optical packet switch is based on label swapping technique. In the label swapping technique, the input labels have only a local meaning. The input labels are used to provide the packet’s routing information. New labels should be generated and attached to the packet payload before that the packet outputs the switch. To perform the label swapping and routing of the packet, we utilize four all-optical functions as shown in figure 1: label extraction/erasing, label processing, label rewriting, and switching and labels insertion. The packet address encoded by the in-band labels is extracted/separated from the data payload by the label extractor/eraser. The data payload is optically delayed for the time required to the label process to provide a routing signal, before being fed into the switching and labels insertion. The labels are all-optical processed by the label processor and label rewriter. The label processor provides a routing signal according to the input labels. The routing signal at unique wavelength has a time duration equal to the packet time. The wavelength of the routing signal is used to drive the switching and labels insertion. Simultaneously, the label rewriter provides the new labels, which have a time duration equal to the packet duration. Moreover, the wavelengths of the new labels are selected so that they are in-band with the bandwidth of the converted payload. The new labels are attached to the switched. It is worth to note that since the label processor and label rewriter operate ‘on the fly’, the time delay required to store the payload is very short. This may allow photonic integration of the whole packet switch system. Moreover, as the routing signal and the new labels produced by the label processor and label rewriter have a time duration equal to the packet time, the presented system can handle packets with variable length. An example of self-routing table for two labels addresses is reported in figure 2. For each input labels combination, a routing signal at distinct wavelength and a new combination of labels should be provided by the label processor and the label rewriter.

![Figure 2. Routing table used in the label swapping.](image)
respectively. Figure 2 reports also the corresponding optical spectra of the routing signal and new labels for different input labels combination. Note that the wavelengths of the new labels should be within the 5 nm band of the payload.

III. AOLS BASED ON WAVELENGTH ROUTING SWITCH

The first AOLS technique is based on wavelength routing switching [13]. To perform the label swapping and routing of the packet, we utilize four all-optical functions as shown in figure 3. The input packet is firstly processed by the label extractor/eraser, which consists of fiber Bragg gratings (FBG) centered at the labels wavelengths. While the labels are reflected by the FBGs, the packet payload can pass through the label extractor/eraser to enter the wavelength converter. The continuous wave (CW) routing signal that is needed for wavelength conversion is provided by the label processor. The optical power of the extracted labels is used to drive the label processor. The label processor receives also as input 2^N CW bias signals at different wavelengths $\lambda_1, \ldots, \lambda_{2^N}$. The wavelengths of the CW-signals are chosen according to the self-routing table and represent the wavelengths at which the payload will be converted. The label processor consists of a cascaded of N pairs of periodic filter and optical switch. The periodic filter has one input and two outputs. The optical switch has two inputs and one output. The two outputs of the periodic filter have complementary wavelength transfer functions figure 3. Moreover, each of the N periodic filters has different period as also shown in figure 4. In particular the bandwidth (BW) of the i-th filter is equal to $\text{BW}_i = 2^{i-1} \times \text{BW}_{\text{ch}}$, with $i=1, \ldots, N$ and BW_{ch} the bandwidth of the single CW-signal. Each of the 1×2 periodic filter separates (in wavelength) half of the input CW-signal to the output port 1 and the other half of the input CW-signals at the output port 2. The 2×1 optical switch selects the CW-signals of port 1 or port 2 based on the value of the label information. Therefore, the output of each pair of periodic filter and optical switch consists of half the number of CW-signals. Thus, after the first stage, the 2^N CW-signals becomes $2^N / 2 = 2^{N-1}$. Therefore, after cascading N pairs in which each optical switch is driven by the corresponding label, a distinct CW-signal is selected. This CW-signal at distinct wavelength has a time duration equal to the packet and represents the routing signal to which the payload will be converted. Note that the processing is performed entirely in the optical domain. By implementing the optical switches by means of very fast Semiconductor Optical Amplifier – Mach-Zhender Interferometer (SOA-MZI) devices, label processing with only tens of picoseconds of processing time can be possible. Moreover, as no synchronization is required in the scheme, and the routing signal at the output of the label processor has the same duration as the packet payload, the system can handle packets with variable lengths.

For each input labels combination, the label processor provides a routing signal according to the input labels. The routing signal at unique wavelength has a time duration equal to the packet time. The wavelength of the routing signal represents the central wavelength at which the 160 Gb/s data payload will be converted by means of wavelength conversion [15, 16]. Simultaneously, the label rewriter, which is based on the same operation principle of the label processor, provides the new labels, which have a time duration equal to the packet duration. Moreover, the wavelengths of the new labels are selected so that they are in-band with the bandwidth of the converted payload. The new labels are attached to the wavelength converted payload. The packet with the new labels is routed by means of an Array Waveguide Grating (AWG) to distinct output ports of the packet switch, according to the central wavelength of the converted payload as shown in Figure 5.

We set the CW-signals according to the label swapping table reported in figure 2. Figure 6b shows the spectrum of the payload signal after label extraction. As compared with figure 6a, the label was erased. Based on two-labels...
combination and according to the self-routing table, the label rewriter gave four sets of new labels. Figure 7 shows the BER performance at different position of the two nodes system. The BER measurements were performed in a static operation by using a 160 Gb/s PRBS $2^{31}-1$ data payload and fixing one address (old label ‘0 1’). The label extractor causes a penalty of less than 0.5 dB compared to the back-to-back payload. After the wavelength conversion, error-free operation was obtained with 5.5 dB of penalty. As reference we also reported the 160 Gb/s back-to-back wavelength converted, which has 4 dB of power penalty. The additional 1.5 dB penalty compared with 160 Gb/s back-to-back wavelength conversion can be ascribed to the pulse broadening by the label extractor which affects the wavelength conversion performance. The switched packet with the new label (1, 0) (see spectrum in figure 6c) was then fed into the receiver node. The optical spectrum of the packet of the new labels after the label extractor of receiver node is reported in figure 6d. The power penalty after the label extractor is 0.5 dB. This results in a limited power penalty caused by the extraction/insertion.

Figure 6. Optical spectra of the packet recorded at a) before the label extractor; b) after the label extractor; c) wavelength converted payload with attached the new label; d) after the label extractor/eraser of the receiver node.

Figure 7. BER measurements and eye diagrams at different points of the system. Time scale is 2 ps/div.

IV. AOLS BASED ON SPACE ROUTING SWITCH

The schematic of the AOPS is shown in figure 8. The AOPS consists of a label extractor/eraser, an optically controlled tunable laser (OCTL), and optical gates for payload switching and label rewriting. The input packets are firstly processed by the label extractor/eraser, which consists of two fiber Bragg gratings (FBG) centred at λ_{L1} and λ_{L2}, respectively. The data payload passes through the label extractor/eraser and is broadcasted into the optical gates. The two labels are reflected by the FBGs and fed into the label processor via optical circulators. The labels optically control the output wavelength of the OCTL. The OCTL output acts as a control signal for one of the SOA-MZI based optical gates. These optical gates have two functions. Firstly, they route the packet payload according to the routing table. Secondly, they rewrite the new labels. The OCTL consists of four cw-lasers, two SOA-MZIs and 2 AWGs [14]. The cw-signals are pairwise fed into the two inputs of SOA-MZI 1. The control signal of SOA-MZI 1 is label 1. Thus the presence of label 1 selects two of the cw-signals. Conversely, if label 1 is not present, the other two cw-signals are selected. The two cw-signals that output SOA-MZI 1 are separated by an AWG. Each of the separated cw-signals is fed into one of the two inputs of SOA-MZI 2. The control signal of SOA-MZI 2 is label 2. Thus the presence of label 2 selects one of the two cw-signals that act as a control signal for the optical gates. Each of the four cw-signals can be selected by a combination of the two labels. Both the payload and the new cw-label are fed simultaneously into the SOA–MZI gate that is controlled by the OCTL output. If a control signal is present, the SOA-MZI gate both the packet payload together with the new label to the output. Conversely, the gate-output is blocked. The operation of the gate guarantees that the payload and the new label have the same duration at the gate output. Figure 9 shows the switched packets at the four outputs of the optical packet switch. It is worth to note that since the label processor and label rewriter operate ‘on the fly’, the time delay required to store the payload is very short. This may allow photonic integration of the whole packet switch system. Moreover, as the routing signal and the new labels produced by the label processor and label rewriter have a time duration equal to the packet time, the presented system can handle packets with variable length. To evaluate the performance, the switched packets are fed into a receiving node, consisting of a label extractor (only the payload is evaluated), a 160-to-10 Gb/s demux, and a 10 Gb/s detector. Fig. 10 shows the BER curves. As reference we report the BER curve of the back-to-back (b-t-b) 160 Gb/s payload. The BER curve of the switched packet at Output 2 (no new label inserted) shows error-free operation with 1 dB of power penalty. We also report the BER curve of the switched packet at Output 3, in which a new label (‘01’) is inserted. An additional power penalty < 0.5 dB was measured compared to the case without label insertion. This indicates that the switch with label rewriting introduces very small penalties. As a final result we report in Fig. 10 the eye diagrams of the b-t-b payload.

© 2010 ACADEMY PUBLISHER
and the switched payload at 320 Gb/s. Although the eye diagram gives only qualitative information, the clear open eye suggests that error-free operation at 320 Gb/s is feasible.

Fig. 9 Measured traces showing 160 Gb/s payload and the output traces of the AOPS. The vertical scale is in mV.

V. COMPARISON BETWEEN THE TWO AOLS TECHNIQUES

Device scalability: The AOPS should be scalable in terms of number of input and output ports and number of components. It is important that these large AOPS can still be controlled with a limited amount of signals and that the number of control signals scales efficiently with the number of input and output ports. Finally, it is important that the switch introduces low signal degradation. The AOPS based on wavelength routing switch scales better than AOPS based on space switch in terms of number of components. This is due to the fact that the label processor (and label rewriter) and the wavelength converter requires $1 + (\log_2 N)$ active components (see scheme in section 3), while in the space switching N active components (see scheme in section 4) are required. The main limitation of the label rewriter for the AOPS based on wavelength routing switch is the Optical Signal to Noise Ratio (OSNR) degradation with the increase of the number of labels. On the contrary, in the space switch the OSNR degradation is much reduced since the label rewriter and the switching are implemented by a single active component. Therefore, for AOPS with a limited number of input/output port (limited number of labels), the wavelength routing technique is preferable due to the limited number of active components. For large input/output ports, the space switch is preferable.

Bit-rate scalability: The AOPS should be able to operate at data rate beyond 160 Gb/s. For bit-rate beyond 160 Gb/s, the AOPS space switch outperforms the AOPS wavelength routing switch mainly because the capability to operate the wavelength converter with data rate beyond 160 Gb/s with acceptable power penalty. Error-free operation was attained in both techniques. However, in the space switching technology (section 4) the penalty was 1.5 dB compared to the BER measured in back-to-back configuration. It is expected that at higher bit rate, this penalty will increase but should be acceptable for cascadability of the AOPS. On the other hand, the technique based on wavelength routing switch already performs more than 5 dB of penalty and this will even be higher at data rate beyond 160 Gb/s, at least with this wavelength conversion technique.
Latency: The latency is due to the label processor in the wavelength routing switch case, and to the OCTL in the space switch. Both devices introduce the same amount of latency.

Node cascadability: Cascadability of the AOPS is mainly limited by the power penalty introduced by the switching technique. In the AOPS based on wavelength routing switch the measured BER penalty was 6.5 dB (section 3), of which 5 dB is due to the wavelength converter operation. In the space switch we have recorded a penalty of 1.5 dB (section 4). The low power penalty allows for cascading the AOPS for several nodes before that the accumulated nonlinearities and degradation of the OSNR. Those considerations lead to prefer the AOPS based on space switching for multi-hops operation. However, more in depth analysis is currently under investigation by using numerical tools. A possible solution for improving the cascadability of the AOPSs is the introduced after the switch (or after a number of hops) of an optical regenerator.

VI. CONCLUSIONS

We have demonstrated a 1x4 packet switch with label swapping based on two techniques. All the required functions to switch the packets and to rewrite the new labels have been implemented in all-optical manner. Both techniques employ a scalable labeling technique that by combining N in-band labels, which wavelengths are within the bandwidth of the payload, can encode up to \(2^N\) possible addresses within a limited bandwidth. The label processing technique requires only \(N\) active devices to process ‘on the fly’ the \(2^N\) addresses, which makes this technique scalable with the number of addresses. The label processor is based on ‘on the fly’ optical signal processing in SOA MZIs, and on a packet-by-packet basis. This makes extraction of a clock redundant and ensures that the AOPS is suitable for photonic integration and allows very fast operation. This leads to a processing time of few tens of picoseconds, allowing short packet’s guard time. Moreover, being the labels in-band and with a time duration equal to the packet payload, the label processor does not require all-optical flip-flop, operates in asynchronous fashion and can handle packets with variable lengths. We have experimentally measured that label erasing and new label insertion operation introduces only 0.5 dB of power penalty. In terms of latency, note that the latency is due to the label processor in the wavelength routing switch case, and to the OCTL in the space switch. Both devices introduce the same amount of latency.

BER measurements on the 160 Gb/s switched packets show error-free operation with a power penalty of 6.5 dB in the case of all-optical packet switch based on wavelength routing switch. For optical switches based on space routing switch, error-free operation with a power penalty of less than 1.5dB was measured. Open eyes indicate that error-free operation for 320 Gb/s payload is possible. Those results indicate that AOPS based on space switching is preferable for multi-hops operation in packet-switched network.

REFERENCES

Nicola Calabretta received the Bachelor’s and the M.S. degrees, both in telecommunications engineering, from Politecnico di Torino, Turin, Italy, in 1995 and 1999, respectively. In 1995, he visited the RAI Research Center (Italian broadcasting television), Turin, Italy. In 2004 he received the Ph.D. degree from COBRA Research Institute, the Eindhoven University of Technology, Eindhoven, The Netherlands. From 2004 to 2007 he was working as researcher at Scuola Superiore Sant’Anna University, Pisa, Italy. He is currently with COBRA Research Institute, the Eindhoven University of Technology, Eindhoven, The Netherlands.

Dr. Calabretta co-authored more than 120 papers published in international journals and conferences and holds 4 patents. He is currently acting as a Referee for several IEEE and IEE and OSA Journals. His fields of interest are all-optical signal processing for optical packet switching, semiconductor optical amplifier, all-optical wavelength conversion and regeneration, and advanced modulation formats for optical packet switching.

Hyun-Do Jung (M’00) received the B.S. degrees in radio sciences and engineering from Kyunghee University, Korea, in 1999, and the Ph.D. degree in electrical and electronic engineering from Yonsei University, Korea, in 2005. Since Sep. 2005, he has been with the department of electrical engineering, Technical University of Eindhoven, the Netherlands as a senior researcher where he is involved in EU-Project (FP6 MUFINS and FP7 ALPHA) related to optical packet switching and in-building/access networks. His current research interests include optical systems for communications, optical packet switching network, WDM-PON network and microwave photonics technologies.

H.J.S. Dorren received his M.Sc. degree in theoretical physics in 1991 and the Ph.D. degree in 1995, both from Utrecht University, Utrecht, the Netherlands. After postdoctoral positions he joined Eindhoven University of Technology, Eindhoven, the Netherlands in 1996 where he presently serves as a professor and as the scientific director of the COBRA Research Institute. In 2002 he was also a visiting researcher at the National Institute of Industrial Science and Technology (AIST) in Tsukuba in Japan. His research interests include optical packet switching, digital optical signal processing and ultrafast photonics. Prof. Dorren (co-)authored over 250 journal papers and conference proceedings and currently serves as an associate editor for the IEEE Journal of Quantum Electronics.