Homogeneous versus heterogeneous zeolite nucleation

Dokter, W.H.; Garderen, van, H.F.; Beelen, T.P.M.; van Santen, R.A.; Bras, W.

Published in:
Angewandte Chemie - International Edition

DOI:
10.1002/anie.199500731

Published: 01/01/1995

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 21. Dec. 2018
Homogeneous versus Heterogeneous Zeolite Nucleation

Wim H. Dokter, Harold F. van Garderen, Theo P. M. Beelen,* Rutger A. van Santen, and Wim Bras

A question of considerable debate in zeolite synthesis is the nature of the precursor gel from which the zeolite is formed and whether nucleation occurs within the gel or from the mother liquid of the synthesis mixture. For the synthesis of ZSM-5 and silicalite considerable evidence supports the hypothesis that crystallization occurs by transformation of the precursor gel. On the other hand, it has also been demonstrated that the zeolite can be formed directly from the liquid phase without the intermediacy of a gel phase. Here we report on a silicalite synthesis in which the silicalite crystallites do not nucleate in a separate gel phase, but directly from the liquid phase. Even in this experimental system, in which no gel phase was expected, precursor aggregates were observed with simultaneous, real-time small- and wide-angle X-ray scattering (SAXS-WAXS).

These aggregates reorganize in analogy to the heterogeneous reaction mixture before nucleation and subsequent crystallization.

Time-resolved small- and wide-angle X-ray scattering can be applied to study aggregation, gelation, and crystallization processes under in situ conditions. We recently reported a SAXS-WAXS study of the gel morphology changes that occur during silicalite formation in a synthesis mixture with a separate gel phase. We found significant gel transformations before nucleation of silicalite crystallites. The gel morphology could be analyzed in terms of primary particles with a radius of 14 nm and an initial surface fractal dimension of 2.7, indicating a rough surface, which reorganized into smoother particles during reaction. We concluded that nucleation proceeds within the gel.

The simultaneous small- and wide-angle X-ray scattering experiments were performed using beamline 8.2 at the Synchrotron Radiation Source (Daresbury Laboratories, United Kingdom). Details concerning camera geometry and data collection were presented elsewhere. The spatial resolution of the SAXS quadrant detector is 400 μm, and it can handle up to 300000 counts per second. The WAXS detector is a curved knife-edge INEL detector with a spatial resolution of 50 μm and can handle up to 100000 counts per second. The scattering ranges covered are 0.01 < Q < 0.175 Å⁻¹ and 0.8 < Q < 3.4 Å⁻¹ for the SAXS and WAXS detectors, respectively. The SAXS data were corrected for background scattering and solvent using a procedure introduced by Vonk. Fractal dimensions were determined from the parts of the scattering curves where behavior followed the power law, and particle and aggregate sizes were determined from the point of deviation from this behavior. In the determination of the slope of the scattering curve, two possible sources of error may be distinguished. The first is the natural noise present in the data, which is small, however, compared to the error introduced during background subtraction (Dr ≤ 0.05). The crystallinity of the final product was determined with in-house XRD, which was calibrated with a fully crystalline sample of silicalite.

The relationship between a scattering spectrum and the species responsible for the scattering is shown in Figures 1a and 1b. For mass fractal aggregates the scattered intensity will be dominated by the structure factor, providing information about the correlation between the various primary building units present in the aggregates [Eq. (a)]. Here Q = 2π/l sin(2θ), λ = wavelength, 2θ = scattering angle, P(Q) = form factor, S(Q) = structure factor, and Dr = mass fractal dimension.

\[R(Q) \sim P(Q) S(Q) \sim S(Q) \sim Q^{D_r - 6} \quad (a) \]

On the scale of the primary building units the form factor of the primary building units becomes dominant in the scattering pattern, thus providing information about the surface structure of these units [Eq. (b)]. In the well-known Porod relation [Eq. (c)], the surface fractal dimension, ranges between 2 and 3. The surface fractal dimension equals 2 for a nonfractal, completely smooth surface, thus resulting in the scattering intensity being described by a constant:

\[R(Q) \sim Q^{-4} \quad (c) \]
If D_d increases, the roughness of the surface increases. When $D_d \to 3$ and $D_d \to 2$, then a homogeneous distribution of mass and voids (possibly filled) throughout the sample is obtained.\cite{11,12} Experimentally the parameter D_d (fractal dimension) can be determined from a plot of $\log I(Q)$ versus $\log Q$. The slope of the scattering curve x is equivalent to $-D_d$ for mass fractal scattering and equivalent to $(6 - D_d)$ for surface fractal scattering.

The reaction mixture studied here was prepared from silicic acid powder (Baker 10.2% water), NaOH pellets (Merck, >99% wt%) and tetrapropylammonium hydroxide (TPA) (Fluka 20% wt%) in the following molar ratios: SiO_2:\text{TPA} = 4.1, SiO_2:\text{NaOH} = 11.5, $\text{H}_2\text{O}/\text{SiO}_2 = 11.1$. \text{NaOH} was added to the TPAOH solution with gentle stirring. The silicic acid was added to the solution and stirred until a homogeneous dispersion was obtained. This solution was heated for approximately 10 min to obtain a clear synthesis mixture. Water was added to correct for the loss due to evaporation. This synthesis mixture usually remains clear during reaction until crystallization, detectable with standard X-ray diffraction, occurs.\cite{11,12} The reaction temperature was 120 °C ± 5 °C.

Our results indicate that in the homogeneous system cluster aggregation occurs before crystallization, in analogy to the heterogeneous system\cite{12-16} SAXS curves and corresponding schematic aggregate structures are shown in Figures 2 and 3, respectively. As Figures 2a and 3b show, the morphology ($D_d = 2.2$), observed after a reaction time of 5 min is typical for aggregates condensed according to reaction-limited cluster–cluster aggregation.\cite{11,12} The low rate of reaction is due to the effect of the structure-directing TPA ions.\cite{11}

The aggregates formed under these conditions have a diameter d of approximately 6.4 nm ($d = 2 \cdot r_g$; r_g = radius of gyration). These aggregates are composed of primary particles with a radius smaller than 1.6 nm, the upper limit of the Q-values of the available SAXS range. These primary particles may be hydrated tetrapropylammonium–silicate clusters. Burkett and Davis have provided evidence for the preorganization of organic–inorganic composite structures in the synthesis of ZSM-5.\cite{11,12} Short-range intermolecular interactions exist between the protons of TPA and silicon atoms of the zeolite precursor phase before development of the long-range order characteristic of the ZSM-5 structure.\cite{11,12} Other authors observed specific silicate anions in various aqueous silica solutions which may be building blocks for zeolites or precursors of zeolites.\cite{11,12}

The observed silica/TPA clusters start to densify (Figs. 2b and 3c) with time into denser mass fractal aggregates and subsequently into surface fractal aggregates (Fig. 4). After a reaction time of 35 min at 120 °C the plot of $\log I(Q)$ versus $\log Q$ shows a Porod slope ($x = -4$), indicative of a homogeneous dense silica/TPA structure with a smooth surface ($D_d = 2$). The size of this structure increases only very slightly (to 7.2 nm) with time. The fact that it does not decrease upon densification indicates that additional primary particles (TPA surrounded with silicate anions) are transported from solution or other silica aggregates to the densifying cluster. The size of these densified silica/TPA
particles is approximately equal to 20 silicalite unit cells. After this densification, the 7.2-nm particles aggregate again into a new, secondary fractal aggregate (Figs. 2c and 3d). The occurrence of crystalline structures is observed simultaneously with WAXS.

Figure 4 shows the time progression of the scattering slope \(x \) at large values of \(Q \) (small particles) and at small values of \(Q \) (large particles or clusters), and the degree of crystallinity as determined with WAXS. The WAXS curves are shown in Figure 5. From these plots we may conclude that crystallization starts as soon as the dense silica/TPA particles 7.2 nm in diameter have been formed and aggregation into the larger secondary aggregate starts. Growth of zeolite particles occurs by transformation of the 7.2-nm silica/TPA particles that form the new secondary fractal structure (Fig. 2c). Crystallization occurs again via a surface fractal aggregate (Fig. 4) to a completely smooth (energetically more favorable) structure (Figs. 2d and 3e). They grow rapidly to a size larger than the upper size limit (low \(Q \)-limit) of the available SAXS range (\(d > 52 \) nm).

Crystal growth occurs by combination of the densified primary aggregates into kinetically determined secondary aggregates, indicative for growth by combination of already growing nuclei, which subsequently densify into energetically more favorable, dense, smooth particles. These results are in agreement with the results obtained by Twomey et al. who deduced from size distributions of crystals obtained from light-scattering experiments that nucleation is a continuous process and that growth occurs by agglomeration of nuclei.[121]

One interesting feature of the results presented here is that also in the homogeneous system a precursor aggregate is formed before crystallization, which is indicative of a gel transformation or gel reorganization mechanism of zeolite crystallization even in a clear silicalite solution. This is in contrast to the direct homogeneous crystallization.

For silicalite synthesized from a gelatious reaction mixture,[21] it was concluded that crystallization proceeded also according to a gel transformation mechanism. No mass fractality was observed during these experiments. The different silica source (Aerosil 380) leads to very compact amorphous surface fractal precursor particles with a initial particle size of 14 nm. Crystallization, however, starts only after the surface fractal amorphous particles have been transformed into smooth par-

Keywords: crystallization - silicon compounds - structure elucidation - zeolites