Data Driven Predictive Control Based on Orthonormal Basis Functions
Bachnas, A.A.; Weiland, S.; Toth, R.

Published: 01/01/2015

Please check the document version of this publication:

- A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 09. Jan. 2019
Data Driven Predictive Control Based on Orthonormal Basis Functions
Ahmad Alineas Bachnas, Roland Töth, Siep Welland

Introduction
This work explores the concept of an adaptive model predictive control (MPC) scheme based on a flexible predictor model that utilizes orthonormal basis functions (OBFs). This model structure offers a trade-off between adaptation of model accuracy in terms of the expansion coefficients and the dynamical structure in terms of the basis functions. We show that this adaptation can maintain desirable control performance. Moreover, since OBF model structures can be seen as a generalization of finite impulse response (FIR) model structures, the incorporation of this scheme in FIR-based MPC is straightforward.

LTI-OBF model parameterization
Given a complete orthonormal basis \(\{ \phi(z) \}_{i=1}^{\infty} \) of \(RH_z \), any stable LTI system with transfer function \(F(z) \in RH_z^{m \times n} \) can be written as\(^1\):

\[
F(z) = \sum_{i=1}^{\infty} w_i \phi_i(z),
\]

where \(w_i \in \mathbb{C}^{m \times n} \) is a matrix of expansion coefficients. The approximation of (1), in terms of a finite truncation, is defined as:

\[
F_{OBF}(z) = \sum_{i=1}^{m,n} w_i \phi_i(z).
\]

Any such truncation results in an approximation error:

\[
\| F_{m,n}^m \|_{RH_z} := \| F(z) - F_{OBF}(z) \|_{RH_z} = \sum_{i=m+1}^{\infty} \sum_{j=n+1}^{\infty} (w_{i,j})^2,
\]

where \(m, n \) denotes a specific input-output channel. Arbitrarily low approximation error (3), can be achieved depending on the selection of the OBFs. By using the Takenaka-Malmquist functions as the OBFs:

\[
\phi_i(z) = \frac{\sqrt{1 - |\lambda_i|^2}}{z - \lambda_i} \prod_{j=1}^{i-1} \frac{1 - |\lambda_j|^2}{z - \lambda_j},
\]

the basis sequence can be generated by the inner-function:

\[
G_i(z) = \pm \prod_{j=1}^{n} \frac{1 - |\lambda_j|^2}{z - \lambda_j},
\]

where \(\{ \lambda_i \}_{i=1}^{\infty} \subset \mathbb{D} \) are its poles. In this manner, the error (3) can be minimized by solving inverse Kolmogov n-width problem to select the poles of \(G_i(z) \)\(^3\).

Adaptability of the model structure
The adaptation goal is to minimize the approximation error of the model \(\| F_{m,n}^m \|_{RH_z} \) in a closed-loop setting in case the underlying system, which is modeled during the commissioning stages, changes into a different system \(F(z) \in RH_z^{m \times n} \).

Different levels of adaptation are proposed:

1. If \(\| F_{m,n}^m \|_{RH_z} \leq \| F_{m,n}^m \|_{RH_z} \), then the adaptation is governed by re-estimating new coefficients \(w_i \).
2. If \(\| F_{m,n}^m \|_{RH_z} \geq \| F_{m,n}^m \|_{RH_z} \), but \(\| F_{m,n}^m \|_{RH_z} \leq \| F_{m,n}^m \|_{RH_z} \), then the adaptation is conducted by including more OBFs via repeating the filter bank, i.e. \(\{ \phi(z) \}_{i=1}^{m,n} \rightarrow \{ \phi(z) \}_{i=1}^{m,n} G_i(z) \).
3. If \(i \) in the second level becomes relatively large, the poles of the OBFs are re-selected to maintain low model complexity.

Data-driven MPC
- Outputs of the predictor model (LTI-OBF):
 \[
 \hat{y}_k = \Xi(k) \hat{x}(k) + \Xi(k) Tu(k - 1) + \Xi(k) \Theta P_k^n - 1
 \]
- Predictor matrix \(\Xi(k) \) contain (re)estimation of \(\hat{w}_i \) per time instant \(k \), which is accomplished in the PEM setting.
- OE noise model \(\rightarrow \) LS estimator, MLE properties in terms of (2).
- State trajectory \(x(k) \) corresponds to filtered input sequences.
- Standard quadratic cost function\(^2\):
 \[
 V(k) = \left[y_k^n - y_k^n \right] ^T Q \left[y_k^n - y_k^n \right] + \left[\Delta \hat{u}_k^n - \Delta \hat{u}_k^n \right] ^T R \left[\Delta \hat{u}_k^n - \Delta \hat{u}_k^n \right]
 \]
 with reference \(y_k^n \) and control increment sequence \(\Delta \hat{u}_k^n \).
- Calculation of the control sequence under operational constraints \(\rightarrow \) Constrained optimization problem \(\rightarrow \) QP problem.

Simulation study
- Tested on a binary distillation column benchmark model where the plant-model mismatch is induced by:
 \[
 G_{raw}(z) = \left[\begin{matrix} \cos(\alpha(k)) & -\sin(\alpha(k)) \\ \sin(\alpha(k)) & \cos(\alpha(k)) \end{matrix} \right] G(z).
 \]
- Comparison of four different MPC schemes (see Fig. 1).
- MPC with knowledge/estimation of the plant variations are able to calculate proper control actions to maintain the performance.

References