A new application of graph theory for coordination of protective relays

Citation for published version (APA):

DOI:
10.1109/TPWRD.2002.803748

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Mar. 2021
Power Engineering Letters

A New Application of Graph Theory for Coordination of Protective Relays

S.M. Madani, H. Rijanto

Author Affiliation: Eindhoven University of Technology, Eindhoven, The Netherlands; ABB Calor EAG AG, Mannheim, Germany

Abstract: The coordination of protective relays of multiloop networks is a tedious and time-consuming process. The complicated part of this process is the determination of a set of relays referred to as the break-point set (BPS), with a minimal size to start the coordination procedure. This letter introduces a new graph-theoretical approach to determine the BPS. This method reduces the complexity of the problem, by exploiting the available sparsity of the dependencies among relays in protection systems.

Introduction: The relays of a protection system must be set in coordination with their primary relays, to ensure selective operation. In multiloop networks each relay may belong to different loops, and its setting must be coordinated simultaneously with the settings of a number of primary relays. This is a complicating process.

To visualize the problem, the coordination of protection system P_1 in Figure 1 is taken as an example. In this system, the primary relays of each relay r_i are located at the remote bus of each relay with the exception of its adjacent relay. The adjacent relay of each relay is the one that is located at the opposite end of the same line of each relay. As an example, r_i is the adjacent relay of r_j. Thus, r_i and r_j are the primary relays of r_j, which are represented by primary-backup pairs (r_i, r_j) and (r_j, r_i) respectively.

In each loop of the network of Figure 1, the settings of each relay depends on the settings of other relay of that loop. As an example, in the loop containing relays r_i, r_j, and r_k, the settings of relay r_i must be made based on the settings of r_j, according to the primary-backup pair (r_j, r_i). In the same way, the settings of relay r_j are the same as r_i, the settings of relay r_k are the same as r_i. Then, if the setting of relay r_i is changed, r_i has to be reset for proper coordination with r_k and another iteration must be done. In a multiloop network, there are many of these loops adjacent to one another, hence, a large number of iterative calculations must be performed to achieve system-wide coordination.

A recently proposed solution is to determine a proper set of relays as a starting point for the coordination procedure [1]. This starting set is called a break point set (BPS), each member of which is called a break point (BP). The main property of a BPS is that if the settings of its relays are known, coordinated setting of the rest of the relays can be determined successively. Starting coordination with a BPS relays ensures

Figure 1. Protection system P_1

that each relay’s settings is calculated only once at each iteration. Since
the computation time for a coordination procedure increases with the
size of its corresponding BPS, a BPS with a minimum size is desirable.

The proposed method converts determining the BPS into a graph-
theoretical problem, allowing use of effective tools of graph theory to
reduce the complexity of the problem. The method approaches to a BPS
step by step, choosing an appropriate relay as a BP in each step. This
approach results in a near-to-minimum or a minimum number of BPS.

Graph-Theoretical Representation of the Problem: To illustrate
this method, coordinating protection system \(P \), (Figure 1) is consid-
ered. The primary-backup relations of this protection system are dis-
played in Figure 2 by a directed graph, referred to as a dependency
\(D_r \).

In a dependency-diagram each vertex (node) represents a relay, and
each arc (directed branch) indicates the primary-backup relation be-
tween two relays. For example, arc \(v_1 \rightarrow v_3 \) (the arc from vertex 1 to 3) rep-
resents that \(r_1 \) is a primary of \(r_3 \) (or equally, \(r_3 \) is a backup of \(r_1 \)).

If a dependency-diagram has no cycle (directed loop), its vertices
can be ordered in a sequence of sets in which the vertices of each set
have incoming arcs only from the vertices of the previous sets, imply-
ing that the corresponding relays can be coordinated set by set consecu-
tively. Accordingly, a minimum BPS is a minimum set of vertices
which: if they are removed, all cycles of the dependency-diagram will
be opened. Therefore, the determination of a minimum BPS is in fact a
problem in graph theory known as **Feedback Vertex Set** (FVS). The
problem was shown to be an **NP-complete** problem which cannot be car-
ried out in a polynomial time period.

Reduction Rules for Determination of a Minimum BPS (or FVS): These rules identify the vertices which have to be members
of every minimum BPS, and also the vertices which need not to be mem-
ers of every minimum BPS.

1. **Rule 1:** If vertex \(v \) of a dependency-diagram \(D \) has no outgoing
 arc, \(v \) is not a BP and can be deleted from \(D \) (Figure 3). In the
 same way, if vertex \(w \) of a dependency-diagram \(D \) has no incom-
ing arc, \(w \) can be deleted from \(D \).

2. **Rule 2:** If vertex \(v \) has only one outgoing arc \(a \) which goes to ver-
tex \(w \), \(v \) is not an essential BP. So, join \(v \) to \(w \) and remove the con-
necting arc \(a \) (see Figure 3). In the same way, if a vertex \(v' \) has
 only one incoming arc \(a' \) which comes from vertex \(w' \), join \(v' \) to
 \(w' \) and remove the connecting arc \(a' \).

3. **Rule 3:** If vertex \(v \) has a self-cycle (having arc from \(v \) to \(v \)), \(v \) is a
 member of every minimum BPS. So, remove \(v \) from the
dependency-diagram and consider it as a new BP.

The proof of these rules can be found in [2].

New algorithm: The new algorithm results in a near-to-minimum
or a minimum BPS (or FVS), \(B \), and consists of the following steps:

1. **Step 1:** Create the dependency-diagram \(D \) of the protection sys-
tem. Initiate \(B \) as an empty set: \(B = \{ \} \).

2. **Step 2:** Apply rules 1 to 3 to all vertices of \(D \). Applying Rule 3
 may add a new member to \(B \).

3. **Step 3:** If step 2 changed \(B \), go back to Step 2.

4. **Step 4:** If \(B \) is empty, stop.

5. **Step 5:** Choose an arbitrary vertex \(v \) as a new BP. Remove \(v \) from
 \(D \), add \(v \) to \(B \), and go to Step 2.

Illustrative Example: To illustrate the algorithm, determining a
BPS for protection system \(P \), (Figure 1) is considered as an example. The
procedure is as follows, and the dependency-diagram \(D_r \) of this
protection scheme is shown in Figure 2:

1. **Initiate** \(B = \{ \} \). In dependency-diagram \(D_1 \) Rules 1 to 3 can not be
 applied to any of vertices in order to reduce the dependency-
diagram. Choose one of the vertices, say \(v_1 \), as a BP. Remove \(v_1 \) from \(D_1 \).
 Add \(v_1 \) to \(B \), \(B = \{ v_1 \} \).

2. **Join** \(v_3 \) to \(v_1 \) and remove arc \(v_1v_3 \), applying Rule 2. **Join** \(v_4 \) to
 \(v_3 \) and remove arc \(v_3v_4 \), applying Rule 2. **Join** \(v_2 \) to \(v_4 \) and remove
 arc \(v_4v_2 \), applying Rule 2. Figure 4 shows the updated diagram up to this
 step. **Choose** \(v_2 \) as a new BP, remove \(v_2 \) from the dependency-diagram.
 Add \(v_2 \) to \(B \), \(B = \{ v_1, v_2 \} \).

3. **Join** \(v_3 \) to \(v_1 \) and remove arc \(v_1v_3 \), applying Rule 2.
BPS. Owing to the flexibility of this approach, it can be easily applied to special protection schemes (e.g., protection systems with non-directional relays) and network configurations (e.g., radial networks and networks containing multiterminal lines). The method has been applied on a PENTIUM (75 MHz, 8 MB RAM) to a 400-line/200-bus network, and achieves an near-to-minimum BPS within 2.0 seconds.

Acknowledgment: The authors would like to thank Ir. G.L.L.M. Janssen for his contribution, and also Ir. R.W.P. Kerkenaar for his comments and proof reading.

References

Copyright Statement: ISSN 0282-1724/98/$10.00 © 1998 IEEE

This paper is published herein in its entirety.