Pressure estimation in vacuum circuit breakers

Citation for published version (APA):

DOI:
10.1109/94.388240

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 27. Jun. 2020
Pressure Estimation in Vacuum Circuit Breakers

G. C. Damstra
N. V. KEMA, Arnhem
and Eindhoven University of Technology,
Fac. of Elec. Eng., Eindhoven, the Netherlands

R. P. P. Smeets and H. B. F. Poulussen
Eindhoven University of Technology,
Fac. of Elec. Eng., Eindhoven, the Netherlands

ABSTRACT
The pressure of vacuum switching elements after production is checked normally by Penning or magnetron methods (combined electrical and magnetic field). Vacuum in the range of 10^{-1} to 10^{-4} Pa can be measured in this way. After assembly into circuit breakers however, these methods are not applicable. HF interruption performance during the make operation was proposed earlier as a possible alternative. Further investigations show that differences in the number of HF prestrike current loops can be found in the pressure range of 10^{-1} to 10^{5} Pa. Current chopping of dc arcs between 5 and 30 A during opening operation may be another option for determination of the pressure range by measuring the lifetime of the arc, but the resolution in the vacuum range $<10^{-1}$ Pa is too poor.

1. INTRODUCTION

VACUUM circuit breakers, load switches and contactors have been introduced in MV distribution and industrial applications during more than a quarter of a century. The experiences are very good and there has not been a need to check the vacuum pressure. The manufacturers have improved the vacuum soldering techniques and the choice of material to such a level of quality that long lifetimes are guaranteed.

Production tests after assembly are made in the factory by Penning or magnetron methods. Voltages to 5 kV and magnetic fields to 0.1 T are applied simultaneously. The ion current between contacts or between contacts and screen is a measure for the vacuum quality but the value is design dependent. After a period of storage by the manufacturer the tests are repeated and vacuum tubes with increased ion currents are rejected. These methods are not useful for utilities because the vacuum tubes have to be disassembled from the switchgear with all the risks of improper remounting. Although the lifetime of modern vacuum tubes is estimated as more than twenty years, failures of early interrupters can not be excluded completely. For industrial application after a large number of operations, leakage may occur by fatigue of the metal bellows. But also in distribution applications with a negligible number of operations, the vacuum quality may be reduced by long term diffusion, intercrystalline corrosion or deactivation of the getter material. Hence it would be very practical to have on site test methods for vacuum interrupters of earlier production years.

2. DIELECTRIC TESTS

Most utilities have ac and dc test equipment for test voltages of 30 to 50 kV. Hence it is quite evident that these methods have been used also for tests on vacuum switchgear. Unfortunately the voltage withstand in vacuum is already at maximum at <1 Pa. Tubes with a vacuum from 1 to 10^{5} Pa (atmospheric pressure) can be
selected by applying a test voltage. In case the tubes are mounted in SF₆ (GIS) they will be filled with SF₆ and the voltage withstand is high and insufficient differences between good and bad tubes will be found.

There also exists commercial test equipment for good-bad selection of vacuum tubes using an ac or dc supply, with the same limitations. We have tried to improve the sensitivity of the ac method by measuring the dc component of the emission current from the low voltage contact. This work was a continuation of earlier work on Fowler-Nordheim measurements [1]. In an experimental tube on a pumped system we found at a pressure 10^{-1} Pa an emission current of 30 nA, decreasing to <5 nA at 10^{-2} Pa under an ac voltage of 25 kV,.

At the same time the dc potential of the shield electrode of the vacuum tubes was measured by a 10 GΩ Brandenburg HVDC meter (20 kV range). A remarkable effect between 0.1 to 1 Pa, and shield potentials to 1 kV was found. The physical explanation of those effects needs further research. Tests on vacuum tubes of different manufacturers also have to be made. It is important that the structure of the switchgear is discharge free to the maximum test voltage, otherwise the results will be influenced by external discharges.

3. HIGH-FREQUENCY INTERRUPTION PERFORMANCE

The status of the vacuum in the tube can be determined in principle by interruption tests at suitable current levels. At network frequency and voltage this approach is less practical by the high kVAr demand of the supply circuit. Proposals have been made to use the HF interrupting performance as an indicator for the pressure [2]. The advantages of this testing method is that relatively high $\frac{dI}{dt}$ and $\frac{dU}{dt}$ can be obtained by relatively compact capacitive storage. The frequency of the discharge current is given by the capacitance and inductance of the circuit, the steepness of the recovery voltage by an RC network. Tests have been performed at high frequencies (250 kHz, 15 kV, 200 A) and medium frequencies (16 kHz, 25 kV, 800 A) during the make operation of the contact system. A typical oscillogram of such an operation is shown in Figure 1. The number of pre-ignition current loops (of the first re-ignition wave train) as well as the time between first re-ignition and contact touch (pre-ignition time) has been measured (Figure 2) at varying pressure. This time varies between 0.2 to 2 ms.

The sensitivity of the hf current interruption performance for changes in pressure was measured in two ways:

1. By evacuating a demountable laboratory interrupter in an oil-free vacuum system until 10^{-5} Pa (after bak-
ing out and arc conditioning) and allowing a controlled leak of air through a precision valve increasing the pressure 10 times every measuring sequence until 1 Pa;

2. By evacuation of a commercial interrupter with a diffusion and turbomolecular pump, and arc conditioning at the lowest possible pressure.

Both methods did not show a significant difference in interrupting performance with respect to hf current in the pressure range 10^{-5} to 10^{-1} Pa.

The pre-ignition time ($1 \text{ pre-ignition tire (ms)}$)

The pre-ignition time and the dc arc lifetime (Section 5) have been measured in three circuit breakers (installed over the last 13 years) with nine vacuum tubes (2 km cable). The results are shown in Figure 3. The statistical spread of the data points both for dc arc lifetime and pre-ignition time was in the order of 30%. From the results it may be concluded that the vacuum quality of the T-pole of the third circuit breaker may be suspected of loss of vacuum quality. The number of pre-ignition current loops was varying between 1 and 3, showing no evident correlation with the other measured quantities.

5. dc ARCING TESTS

The interrupting performance of low current dc arcs could have a relation to the pressure in the vacuum tube. This effect has been investigated with a dc supply ±300 V with a three phase rectifier from the 380 V low voltage network. The current is stabilized by series capacitors of 50, 100, 200 or 300 µF, giving currents of 5, 10, 20 or 30 A. An inductance of 30 mH is inserted in the dc path. The capacitance in parallel to the VCB is important for the value of the life time and the overvoltage generated after the current chopping. At high pressure (> 1 Pa) the arc will burn more or less permanently (> 30 s), when opening the contacts. At low pressure the lifetime of the arc varies between 0.1 and 10 s, depending on the current, capacitances parallel to the arc and the surface conditions of the contacts.

For arc life time measurements, the degree of surface contamination probably has more influence than the back-
ground pressure in the bottle. For this reason, it is advisable to keep the arc lifetime sufficiently small, in order to avoid conditioning of the contacts by the measurement itself. An impression of the average dc arc lifetime, obtained in the two experimental setups described in Section 3 with its standard deviation can be obtained from Figure 4. As can be seen, no evidence of pressure dependency in the interesting range $<10^{-2} \text{ Pa}$ can be gained from this measurements. This is in accordance with earlier findings [4].

6. CONCLUSIONS

Vacuum state estimation by ac or dc test voltages is only effective for pressures $>2 \text{ Pa}$. For pressures $<1 \text{ Pa}$ the test voltage can be withstood and sensitive emission current measurements (1 to 100 nA) give some indication if not superimposed by external discharges.

In the pressure range 10^2 to 1 Pa a shield potential rise to 1.5 kV has been observed during ac tests with 25 kV. The hf interruption ability of pre-ignition arcs during a make operation gives a decreasing number of current loops for lower pressure to $\approx 0.1 \text{ Pa}$. Below 0.1 Pa the number of loops has no significant relation with the pressure.

Interruption of cable discharge currents with longer cables (1 to 3 km) gives a smaller number of loops than short cables (100 to 300 m), probably due to the lower $\text{d}i/\text{d}t$. dc arc lifetime measurements with currents of 20 to 30 A have a tendency to give a shorter lifetime for lower vacuum to $\approx 1 \text{ Pa}$. For pressures $<1 \text{ Pa}$ arc lifetime does not seem a suitable indicator. For pressures $>1 \text{ Pa}$ the arc is not interrupted due to a rapid increase in lifetime.

During field tests of cable discharges a correlation between pre-ignition time and dc arc time have been found, suggesting a vacuum quality failure indicated by a significant increase of both parameters. Further research for the vacuum pressure dependence of these effects is necessary.

REFERENCES

This paper is based on a presentation given at the 16th International Symposium on Discharges and Electrical Insulation in Vacuum, Moscow, Russia, 1994.

Manuscript was received on 10 September 1994, in final form on 18 January 1995.