Infrared and optical emission spectroscopy study of atmospheric pressure plasma-enhanced spatial ALD of Al2O3

Citation for published version (APA):

DOI:
10.1063/1.5113753

Document status and date:
Published: 19/08/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Infrared and optical emission spectroscopy study of atmospheric pressure plasma-enhanced spatial ALD of Al₂O₃

Cite as: Appl. Phys. Lett. 115, 083101 (2019); https://doi.org/10.1063/1.5113753
Submitted: 07 June 2019. Accepted: 23 July 2019. Published Online: 21 August 2019

M. A. Mione, R. Engeln, V. Vandalon, W. M. M. Kessels, and F. Roozeboom

COLLECTIONS

EP This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Investigation of the nanochannel geometry modulation on self-heating in AlGaN/GaN Fin-HEMTs on Si
Applied Physics Letters 115, 083505 (2019); https://doi.org/10.1063/1.5111607

Low temperature scintillation properties of Ga₂O₃
Applied Physics Letters 115, 081103 (2019); https://doi.org/10.1063/1.5119130

Ultra-wide-bandgap AlGaN homojunction tunnel diodes with negative differential resistance
Applied Physics Letters 115, 082104 (2019); https://doi.org/10.1063/1.5113503
Infrared and optical emission spectroscopy study of atmospheric pressure plasma-enhanced spatial ALD of Al$_2$O$_3$

Cite as: Appl. Phys. Lett. 115, 083101 (2019); doi: 10.1063/1.5113753
Submitted: 7 June 2019 · Accepted: 23 July 2019 · Published Online: 21 August 2019
M. A. Mione,1,a) R. Engeln,1 V. Vandalon,1 W. M. M. Kessels,1 and F. Roozeboom1,2

AFFILIATIONS
1Department Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
2TNO-Holst Centre, High Tech Campus 21, 5656 AE Eindhoven, The Netherlands
a)Author to whom correspondence should be addressed: m.a.mione@tue.nl

ABSTRACT
Atmospheric-pressure Plasma-Enhanced spatial Atomic Layer Deposition (PE-s-ALD) is a high-throughput technique for synthesizing thin films at low temperatures for large area applications. The spatial separation of the ALD half-reactions and the use of an atmospheric pressure plasma as the reactant gives rise to complex surface chemistry which is not yet well understood. Here, we employed gas-phase infrared spectroscopy and optical emission spectroscopy (OES) to study the underlying chemistry of the PE-s-ALD process of Al$_2$O$_3$ films grown at 80°C using Al(CH$_3$)$_3$ and an Ar-O$_2$ plasma. We identified the reaction products and investigated their dependence on the exposure time of the substrate to the precursor. Infrared absorbance spectra show CO, CO$_2$, H$_2$O, and CH$_4$ as the main ALD reaction byproducts originating from (i) combustion-like reactions of the methylated surface with O plasma radicals and O$_3$ and (ii) a concurrent latent thermal ALD component due to produced and/or residual H$_2$O molecules. In addition, CH$_2$O and CH$_3$OH were identified as reaction by-products either originating at the surface or formed in the plasma. The OES spectra provide a corroborative proof of the combustive nature of the PE-s-ALD reactions showing OH and CH emissions arising during the spatial ALD process while excited O species are being consumed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5113753

The unparalleled capability to deliver ultrathin film materials with superior quality and conformity makes Atomic Layer Deposition (ALD) a well-established technique for state-of-the-art semiconductor applications. Conventional ALD synthesizes materials with atomic level control through cyclic reactions between temporally separated precursors and coreactants. Additionally, using plasmas as the coreactant in the so-called Plasma-Enhanced ALD (PEALD) processes allows for lower substrate temperatures on extended set of materials and new classes of precursors. However, due to commonly long cycle times and expensive vacuum equipment involved, temporal (PE)ALD remains often less economically feasible for large-area applications. Within this framework, a suitable candidate for cost-effective ALD is atmospheric pressure spatial ALD, which is based on spatially separated half-reactions offering a unique high-throughput performance. Recently, atmospheric pressure Plasma Enhanced spatial ALD (PE-s-ALD) has been developed enabling ultrafast ALD of oxides at relatively low temperatures. A detailed understanding of the nature of atmospheric pressure PE-s-ALD processes is key to achieve the best performances for a wide range of processes and materials.

In this letter, we present a way to study the fundamentals of the surface chemistry at the base of atmospheric pressure PE-s-ALD. Al$_2$O$_3$ has been selected as the case-study by virtue of its wide use in large-area applications and the rich knowledge on the thermal and plasma ALD processes using Al(CH$_3$)$_3$ and H$_2$O, O$_3$, or O$_2$ plasma. The diagnostics employed are gas-phase infrared spectroscopy involving a single-pass gas cell and optical emission spectroscopy (OES), which is often used to study PEALD processes. On the contrary, the number of infrared studies on the ALD exhausted gases is rather limited. Among them, Najafabadi et al. analyzed effluent ALD gases to determine the time needed to achieve saturated chemisorption of a cobalt precursor onto an Al$_2$O$_3$ surface as well as to investigate ligands combustion during the O$_3$ step. Jung et al. made use of infrared spectroscopy to monitor the O$_3$ composition at both the inlet and the outlet of the ALD reaction chamber. Figure 1 shows a schematic of the diagnostics assembled on the atmospheric pressure PE-s-ALD reactor, which was previously described in Refs. 5 and 6. Gas-phase infrared spectroscopy is performed on reactor effluent gases which are individually delivered to the quartz gas cell.
inserted inside the infrared interferometer. In this work, we report on the analysis of the plasma exhaust gases. OES is carried out inside the reactor oven with a thermally resistant optical fiber inserted in a dedicated transparent version of a Dielectric Barrier Discharge (DBD) plasma source, providing a direct view of the plasma above the substrate surface.

Al2O3 films were deposited at 80 °C using Al(CH3)3 and ArO2 plasma as precursor and reactant, respectively. These are independently and continuously supplied to the gas injection head (see supplementary material S1). The two reaction zones are spatially separated by a high flow of N2 gas. A silicon wafer is placed on a circular substrate table which rotates at a distance of 100 μm from the injection head executing a full ALD cycle at each rotation. Al2O3 film growth was studied as a function of the exposure time of the substrate to the precursor and the reactant which was varied by setting the number of rotations per minute (RPM) executed by the substrate during the deposition (see supplementary material S1). Here, we investigated exposure times between 27 ms and 400 ms corresponding to substrate rotation speeds ranging from 150 RPM to 10 RPM, respectively. Under these conditions, the deposition process shows ALD saturation behavior, and the films exhibit properties typically expected for Al2O3 (see supplementary material S2).

Figure 2 presents a prototypical example of infrared absorbance spectra obtained by analyzing the exhausted plasma gases in the so-called “plasma-only mode” (i.e., without precursor injection) and the “ALD mode.” The plasma-only mode spectrum shows mainly a strong O3 absorbance peak at 1040 cm⁻¹. O3 production is quite strong in O2 and air DBD plasmas at low temperatures and occurs in a two-step mechanism where O atoms are created by electron-impact dissociation and air DBD plasmas at low temperatures and occurs in a two-step mechanism where O atoms are created by electron-impact dissociation of O2 into O and O2 [17], followed by a three-body process involving O2 molecules and the O atoms [18]. Under the present conditions, the amount of O3 produced is found to increase with the amount of oxygen and the input plasma voltage applied (see supplementary material S4).

In the ALD mode, Al(CH3)3 and the Ar-O2 plasma are both delivered to the surface of the rotating substrate. Besides the O3 absorbance peak, the ALD mode spectrum reveals the absorbance due to CO2, CO, and H2O and molecules such as CH4, CH3OH, and CH2O. According to reports on (temporal) ALD in the literature [16,18,19], Al(CH3)3 chemisorbs on the surface by reaction with hydroxyl surface groups (OH) upon which CH4 is released. Subsequently, in the following step of the ALD cycle, the newly methylated surface reacts with the plasma O species releasing a number of by-products. As discussed in detail later, CO2, CO, and H2O are combustion reaction products desorbing from the surface, while CH4 can be formed in thermal ALD reactions [20]. In addition to combustion reaction products observed in temporal ALD, CH2O and CH3OH are also identified in the infrared spectrum in Fig. 2 during PE-s-ALD of Al2O3.

The by-products generated during the PE-s-ALD process were studied as a function of the exposure time of the substrate to the precursor and reactant species. The results are given in Fig. 3(a). At a fixed total acquisition time of 600 s, signals due to ALD by-products decrease at higher exposure times, as less ALD cycles are executed. The dependence of the integrated peak areas normalized to the number of ALD cycles on the exposure time is plotted in Fig. 3(b) for CO, CO2, and CH4. This graph shows that the production of these species tends to saturate at higher exposure times when the methylated surface is exposed to the incoming plasma species for a time sufficient to (nearly) reach self-limiting surface reactions.

OES was performed to measure the excited species present in the plasma, and the results are given in Fig. 4. In the plasma-only mode, the Ar-O2 plasma spectrum is characterized by emission lines of atomic argon (5p → 4s at 415–426 nm) [21] and the first negative system of oxygen, O2 (b⁴Σ − → a²Πg at 557.8 nm). In the ALD mode, the O3 signal reduces, which is in line with O species being consumed through combustion reactions with –CH3 ligands during the ALD.
cycle. Simultaneously, OH emission centered at 309 nm (A2\(\Sigma^+ \) \(\rightarrow \) X2\(\Pi \)) appears in the ALD spectrum, likely originating from electron impact induced dissociative excitation of H2O molecules.\(^\text{20}\) Furthermore, CH emission is also detected at 389 nm (B2\(\Sigma^+ \) \(\rightarrow \) X2\(\Pi \)) and 431 nm (A2\(\Delta \) \(\rightarrow \) X2\(\Pi \)) which could originate from dissociative excitation of CH4. The energy thresholds for these CH emission lines by electron impact excitation are 7.8 eV and 7.5 eV which fall within the range of energies typical for electrons in DBD plasmas.\(^\text{28}\)

Infrared absorbance from CO2 and H2O in the ALD spectrum indicates that the spatial PEALD process at atmospheric pressure is driven by combustion-like reactions, while the presence of CH4 is associated with a concurrent thermal reaction path. Starting from a methylated surface, the results obtained in this study are in line with the study on PEALD of Al2O3 under low pressure conditions by Heil et al. who proposed the following surface reaction for the second half-cycle:\(^\text{20,26}\)

\[
\text{AlCH}_3(\text{s}) + 4\text{O} \rightarrow \text{AlOH} + \text{CO}_2 + \text{H}_2\text{O}.
\]

Desorbed H2O can react with the surrounding methyl groups producing CH4 in a thermal reaction

\[
\text{AlCH}_3(\text{s}) + \text{H}_2\text{O} \rightarrow \text{AlOH} + \text{CH}_4.
\]

CO could either originate from incomplete combustion reactions or it could result from electron impact dissociation of CO2 in the plasma. At low temperatures, however, O3 is abundantly present in DBD-generated O2 plasmas. Therefore, in our case, the coreactant is a mixture of O2 plasma species and O3, where O3 supposedly reacts with the surface by decomposition into O2 and monoatomic reactive O.\(^\text{18}\) Based on literature reports, O3 can also contribute to desorption of CO, CO2, and H2O via combustion-like reactions and, in turn, H2O can act as a coreactant in a thermal reaction desorbing CH4. The ALD process of Al(CH3)3 and O3 has been extensively studied. Elliot et al. predicted that oxidation of the methylated surface can take place via insertion of O atoms in Al-C bonds with consequent formation of surface methoxy groups.\(^\text{18}\) Methoxy groups can then combine at the surface into formates, which can be further oxidized to surface carbonates. The presence of these surface species was experimentally confirmed by an infrared study by Goldstein et al.\(^\text{17}\) Rai et al. studied the surface reaction mechanism for both O3 and O2 plasma coreactants finding that in both cases the chemistry is driven by combustion reactions where OH and CO3 (carbonates) act as reactive sites. In particular, surface carbonates are found to be more stable, long-term surface intermediates in the case of O3, while these decompose under long O2 plasma exposures.\(^\text{29}\)

Besides combustion-like by-products, CH2O and CH3OH appear in the ALD spectrum as well. CH2O and CH3OH have not been
Published under license by AIP Publishing

experimentally observed as reaction by-products in ALD using Al(CH3)3 and O2 plasma or O3. We speculate that these species can desorb as the result of further reactions of methoxy surface groups created by the O2 component. This assumption is supported by a Density Functional Theory (DFT) study by Fomenga et al. predicting that, for both O2 plasma and O3 cases, O atoms can be inserted into C-H bonds producing CH2O as the main by-product

$$\text{H2O} + \text{Al(CH3)3} \rightarrow \text{CH2O} + \text{AlOH} + \text{CH3}.$$ (3)

This reaction appears the most kinetically favored at various oxygen concentrations and when considering different oxygen-ligand reaction dynamics. According to the same study, in the oxygen-rich environment, CH3OH can also be produced by

$$\text{O} + \text{H} + \text{Al(CH3)3} \rightarrow \text{CH3OH} + \text{AlO} + \text{H2}.$$ (4)

Under atmospheric pressure conditions, species concentrations are higher than in low pressure plasmas. This ensures more efficient O2 dissociation and, consequently, more O atoms available for reactions. Hence, we speculate that at atmospheric pressure, the higher flux of oxygen reacting with the –CH3 ligands along with the dynamic nature of the spatial ALD might create a richer kinetic scenario which favors the formation of CH2O and CH3OH with respect to low pressure PEALD. Furthermore, it should be mentioned that these species can also likely be produced in the plasma, for example, by dissociation of CH4 into highly reactive CH3 radicals which can further react with oxygen forming CH2O and CH3OH.30

The integrated peak areas of CO, CO2, and CH4 give insights into the self-limiting growth of the PE-s-ALD process. At short exposure times, the flux of O species is insufficient to combust the –CH3 ligands present at the methylated surface. This translates into suppressed ALD surface reactions, and consequently less reaction by-products being produced. It also results in Al2O3 films with high carbon incorporation and low mass density (supplementary material S2). At longer exposure times, the by-products produced instead show a saturation behavior indicating that –CH3 ligands have been fully removed and the surface reactions take place in a self-limiting manner.

In summary, a combination of gas-phase infrared spectroscopy and optical emission spectroscopy was used to study the gas-phase chemistry of the atmospheric pressure plasma-enhanced spatial ALD process of Al2O3 films using Al(CH3)3 and Ar-O2 plasma. The underlying surface reaction mechanism appears driven by three concurrent reactions: O2 plasma species, O2 and H2O. The presence of H2O, CO, and CO2 in the infrared absorbance spectra reveals that part of the deposition process proceeds via combustion-like reactions of the methoxy surface by-products. OES confirmed the combustion-like reaction mechanism involving OH and CH emissions arising during the ALD process while O-species are consumed. Moreover, H2O formed from ligand combustion could explain the presence of CH3OH resulting from concurrent thermal reactions. Next to combustion-like reaction products, CH2O and CH3OH were also identified, which might originate both at the surface and in the plasma. The higher concentration of O atoms at atmospheric pressure and the diverse kinetics of the PE-s-ALD reactor would favor the formation of these species which have not been observed under low pressure conditions.

See supplementary material for a detailed description of the experimental conditions and additional data on ALD behavior and material properties.

The authors would like to thank the Material Innovation Institute M2i, the Netherlands Organization for Scientific Research NWO and the Netherlands Organization for Applied Scientific Research TNO (Holst Centre) for their financial support (NWO-M2i Contract No. F61.4.15561). The authors acknowledge Dr. B. Klareneara for his precious assistance during the setup of the infrared experiments. F. Grob is also acknowledged for the help provided at the ALD reactor. Finally, we thank Y. Creyghton for his contribution to the plasma source design.

REFERENCES