Oxidative pyrolysis of ethane

Citation for published version (APA):

DOI:
10.1021/ie960585z

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Oxidative Pyrolysis of Ethane

Qi Chen, Erik J. A. Schweitzer, and Paul F. Van Den Oosterkamp
Kinetics Technology International B.V., P.O. Box 86, 2700 AB Zoetermeer, The Netherlands

Rob J. Berger, Carlo R. H. De Smet, and Guy B. Marin*
Laboratorium voor Chemische Technologie, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

The effects of the addition of oxygen to the feed of an ethane steam cracker for ethylene production were investigated at industrial conditions by means of experiments and computer simulations. The oxidation of a small fraction of ethane feedstock in the cracking coil generates a significant amount of heat which can be used by the endothermic pyrolysis reactions. With this, the heat-transfer limitation in the industrial crackers is released. The addition of oxygen increases the conversion of ethane, while the yield to ethylene decreases slightly. Simulations indicate that the effects of the oxygen addition can be beneficial to industrial crackers in three manners: decreased residence time or increased throughput, higher severity, or reduced tubeskin temperature and longer coil lifetime.

Introduction

Ethylene is the most important bulk petrochemical. The steam cracking of ethane to ethylene is highly endothermic and is carried out at high temperatures in long coils which are heated in fired furnaces. The process gas is cracked at temperatures up to 1140 K. It is known that a short furnace residence time leads to improved olefin selectivity (Grantom and Royer, 1987). However, the lower residence time requires more intensive heat transfer to the process gas and increased furnace firing. Therefore, the throughput and severity of cracking is limited by the heat transfer through the coil.

For many years, intensive research has been conducted on alternative technologies for the production of ethylene. One promising route is the addition of oxygen to the hydrocarbon feedstocks. The exothermic reaction enthalpy of the oxidation reactions partly compensates for the endothermcity of the cracking reaction. The available literature on the oxidative cracking can be divided into three areas: the early work in noncatalytic oxidative cracking, the oxygen-aided cracking of heavy oil fractions, and the catalytic oxidative dehydrogenation of ethane to ethylene at lower temperatures.

The early work dates back from the 1940s and 1950s, when an oxygen content as high as 34% was used in the ethane cracker feed (Petroleum Processing, 1946; Deanesly, 1950). The effect of oxygen on the ethane conversion level was studied. No attempt was made to operate the cracking autothermally, i.e., without external heat supply through the furnace, as was done in the later work (Deanesly, 1950). The effect of oxygen addition to an ethane cracking unit was also simulated. The discussion of the results is focused on the impact of the oxygen addition on the industrial ethane crackers.

Experimental Section

Equipment and Procedures. The experiments were carried out using gases with purities of 99.995% for \(\text{N}_2 \) and \(\text{O}_2 \) and 99.5% for ethane; steam was obtained from distilled water. The reactants were premixed before entering the empty tubular reactor. The reactor tubes used are manufactured from sintered dense \(\alpha \)-aluminium oxide, corundum, or stainless steel (Incoloy 800) having an external diameter of 16.0 mm and an internal diameter of 8.0 mm. An \(\alpha \)-aluminium oxide thermocouple well, having an external diameter of 4.0 mm and an internal diameter of 2.0 mm, was positioned along the reactor axis. The corundum reactor and thermocouple tubes were pretreated with a 60% \(\text{HNO}_3 \) solution for 1 h, followed by thorough washing with distilled water and subsequent heating in air at 1123 K. The Incoloy 800 tube was pretreated by contact with a mixture of 50% steam in helium for 20 h at 1123 K.

The reactor diameter, the reactor length, and the total flow rates were such that assumption of a plug flow regime is allowed (Cleland and Wilhelm, 1956). Since the highly turbulent flow regimes usually encountered...
in industrial reactors can also be described by plug flow, the experimental results can be directly compared with those to be expected in industrial reactors.

The reactor tube is surrounded by a fluidized silica bed which was heated by an oven. The axial temperature profile in the reactor was measured for every experiment, two examples are shown in Figure 1. The maximum temperature in the profile will be referred to as the reaction temperature \(T_{\text{max}} \). The reactor pressure was maintained at 141 kPa (absolute pressure) by a back pressure regulator. The composition of the reactor effluent was analyzed by on-line gas chromatographic analysis; the C, H, and O balances were within 5–10%.

Definition and Calculation of Important Variables. The average residence time \(r \) is calculated from \(V_r \cdot p_{\text{tot}} / (F_{\text{tot}} \cdot R \cdot T_r) \). The effective reactor volume \(V_r \) is calculated from the internal and external reactor diameter and the reactor length, 0.265 m, which corresponds approximately to the length of the zone having a temperature higher than 973 K. Above this temperature, the thermal cracking reactions are initiated.

The conversion of ethane and oxygen is defined as the amount of reactant \([\text{kg s}^{-1}]\) that has been converted divided by the amount of reactant \([\text{kg s}^{-1}]\) in the feed. The product yield is defined as the amount of a specific product \([\text{kg s}^{-1}]\) divided by the initial amount of reactant \([\text{kg s}^{-1}]\). The ethylene selectivity is defined as the amount of ethylene formed \([\text{kg s}^{-1}]\) divided by the amount of ethane reacted \([\text{kg s}^{-1}]\).

Results and Discussion

Experimental Conditions. The experimental conditions at which the initial tests were done were chosen as close as possible to the conditions industrially applied; this is a residence time of 0.1–0.4 s, a temperature of 1173 K, a total pressure of 141 kPa, and an ethane to steam ratio of 0.3 kg of C2H6/kg of H2O. For the oxidative pyrolysis experiments an initial molar oxygen content of 5 mol % was selected. All these conditions were varied to find the optimal conditions for comparing normal pyrolysis with oxidative pyrolysis.

1. Influence of Residence Time. The ethane conversion and the yield of ethylene and most other products show an increase with residence time, leveling off at residence times longer than 0.2 s. Due to the increase of the CH4 yield, however, the ethylene selectivity decreases with increasing residence time. Hence, a residence time of 0.2 s was selected for the other experiments. The oxygen conversion was complete in all experiments.

2. Influence of Steam Dilution. Variation of the steam content \(\delta \) between 0.2 and 0.5 kg of steam/kg of ethane did not significantly influence the performance in the corundum reactor. Slightly higher yields of methane, ethylene, and carbon monoxide were obtained at \(\delta = 0.5 \), the highest steam content investigated. A steam content of 0.3, which is commonly used in commercial ethane steam cracking, was chosen for the other experiments.

3. Influence of Temperature. Figure 2 shows that both the ethane conversion as well as the ethylene yield increase with reaction temperature. A higher reaction temperature also leads to significant increases of the yields of methane and acetylene, and to a less extent of the yields of carbon monoxide and propylene. Further, a small decrease of the yield of propane was observed. As the ethylene selectivity starts to decrease significantly at temperatures above 1173 K, a reaction temperature of 1173 K was selected for the investigation of the influence of oxygen addition to the feed.

4. Influence of Oxygen Content. Figure 3 shows the results of the influence of the oxygen content, \(y_{\text{ox}} \), in the feed at fixed residence time, reactor temperature/pressure, and steam content. An increase of \(y_{\text{ox}} \) increases the ethane conversion and only slightly de-
creases the ethylene yield at a feed oxygen composition higher than 5 mol %. Nearly all the oxygen reacts to give CO which explains the proportional increase of the CO yield and the proportional decrease of the ethylene selectivity with \(y_{\text{ox}} \). The slight decrease of the ethylene yield with increasing \(y_{\text{ox}} \) is accompanied by an increase of the methane yield. The yield of acetylene, propene, and propylene are hardly influenced by \(y_{\text{ox}} \). Traces of CO\(_2\) with yields up to a maximum of 0.3 wt % were found as well.

The reactor required less heating in order to achieve the same maximum temperature in the axial temperature profile when the oxygen content was increased. When \(y_{\text{ox}} \) was increased from 0 to 15 mol %, the setpoint of the oven temperature could be decreased by approximately 60 K. Figure 1 shows the effect of \(y_{\text{ox}} \) on the axial temperature profiles of the reactor; the addition of oxygen shifts the hottest zone slightly toward the reactor entrance.

5. Acetylene, Higher Hydrocarbons, and Oxygenates. The yield of acetylene was generally 1 wt % or less, except at the highest temperature investigated, 1273 K, at which the acetylene yield amounted to 3 wt %. The yield of propylene was about 1 wt % and did not significantly depend on residence time, temperature, and oxygen content. The yield of propane was in all experiments less than 0.5 wt %. The yields of propadiene and propyne were small and never exceeded 0.03 wt % for either of these compounds. Additional gas chromatographic analyses have shown the presence of small amounts of some higher hydrocarbons, especially butenes and in particular 1,3-butadiene and isobutene (up to a maximum of 2 wt %). The yields of \(C_3 \) products were between 0.1 and 0.5 wt %, and the yields to \(C_6 \) components varied between 0.1 and 2 wt %. Generally, the amounts increased with increasing reaction temperature; however, these amounts did not depend on the amount of oxygen added. Oxygenates such as aldehydes, alcohols, and organic acids were not observed in any of the additional analyses performed.

6. Experiments in a Stainless Steel Reactor. An additional series of experiments was performed using an Incoloy 900 stainless steel reactor. The ethylene conversion as well as the ethylene yield were found to be about 5% lower compared with those obtained in the corundum reactor. The yields of \(C_3 ^+ \) products were lower; however, the stainless steel reactor walls caused an increase of the yield of carbon dioxide from approximately 0.05 to 1 wt % and a decrease of the carbon monoxide yield from approximately 3 to 2 wt %. Other trends which were observed for the corundum reactor were also observed with the stainless steel reactor. Further, there were no significant differences between the axial temperature profiles obtained with both reactors. The small differences observed between both reactors, however, justifies the use of the data obtained with the corundum reactor for a comparison with those obtained in an industrial reactor.

Computer Modeling. For modeling of the thermal cracking of ethane in the absence of oxygen, the computer model SPYRO is used (Barendregt et al., 1981). This model uses a reaction model on the basis of elementary reactions of the pyrolysis process.

The thermal energy is released by the partial combustion of ethane to CO, since the CO\(_2\) amounts found experimentally were very small:

\[
C_2H_6 + \frac{5}{2}O_2 \rightarrow 2CO + 3H_2O \tag{1}
\]

6. Experiments in a Stainless Steel Reactor. An additional series of experiments was performed using an Incoloy 800 stainless steel reactor. The ethylene conversion as well as the ethylene yield were found to be about 5% lower compared with those obtained in the corundum reactor. The yields of \(C_3 ^+ \) products were lower; however, the stainless steel reactor walls caused an increase of the yield of carbon dioxide from approximately 0.05 to 1 wt % and a decrease of the carbon monoxide yield from approximately 3 to 2 wt %. Other trends which were observed for the corundum reactor were also observed with the stainless steel reactor. Further, there were no significant differences between the axial temperature profiles obtained with both reactors. The small differences observed between both reactors, however, justifies the use of the data obtained with the corundum reactor for a comparison with those obtained in an industrial reactor.

Computer Modeling. For modeling of the thermal cracking of ethane in the absence of oxygen, the computer model SPYRO is used (Barendregt et al., 1981). This model uses a reaction model on the basis of elementary reactions of the pyrolysis process.

The thermal energy is released by the partial combustion of ethane to CO, since the CO\(_2\) amounts found experimentally were very small:
cracking coil and the ethane conversion have been set equal in both simulations by choosing the appropriate pressure and residence time. The total throughput of the coil can be increased at the expense of only a slight loss of selectivity. The 14% increase of the ethylene production is equal to the relative increase of the heat flux. These results show the possibility of increasing the ethylene production in an industrial cracking coil by the addition of oxygen because heat transfer limitations are released.

3. Oxidative Pyrolysis at High Severity. Table 2 shows the results of the simulations related to the high severity of the oxidative pyrolysis. By the addition of oxygen, the coil outlet temperature is increased from 1146 to 1173 K. The single-pass conversion is increased from 68.8 to 80.9 wt %, which is very high in comparison with the 60–65% severity at which most industrial ethane crackers operate and the highest reported severity used, 70%. The ethylene yield increases from 55.2 to 60.4 wt %. Due to the partial oxidation of ethylene, however, the selectivity to ethylene decreases from 80.2 to 74.7 wt %.

These results show the possibility to booster the single-pass ethane conversion by 10–20% and the ethylene yield by more than 5% in an industrial cracking coil. With this, the production of ethylene per pass is raised, at a small expense of a decrease in the ethylene selectivity, however.

4. Lower Tubeskin Temperatures by Oxidative Pyrolysis. The addition of oxygen can also be used for lowering the tubeskin temperature, which results in longer operation cycle times and a longer coil lifetime. Table 3 shows the effect of 5 mol % oxygen addition on the tubeskin temperature. The oxygen addition leads to a reduction of the tubeskin temperature of about 20 K at the start of an operation cycle. This temperature difference increases with the operation time because the lower tubeskin temperature leads to lower coking rates. This means that with 5 mol % oxygen addition the operation cycle time can be increased by at least 20 days in an industrial cracking coil. This leads to a longer cracking coil lifetime.

Conclusions

The effects of adding oxygen to the feed of an ethane steam cracker have been investigated both experimentally and with computer simulations. The experiments showed that the addition of oxygen increases the ethane conversion. The ethylene yields decrease slightly at the feed oxygen compositions higher than 5 mol %, which is the result of a slight decrease in ethylene selectivity. The oxygen is nearly completely converted to CO, but generally speaking, the oxygen addition does not have a drastic influence on the product distribution.

The computer simulations showed that the oxygen addition has a large impact on the heat effect of the cracking reaction. The heat effect can be beneficial to the industrial cracker operations in three different manners. The residence time can be lowered which can be translated to an increase in throughput. The severity of ethane cracking can be further increased; as high as an 80% single-pass ethane conversion is achievable with addition of 5 mol % oxygen. Alternatively, the tubeskin temperatures can be lowered, which can be translated to an extended operation cycle time and coil lifetime.

Notation

\[F_{tot} = \text{total molar flow [mol s}^{-1}] \]
\[p_{tot} = \text{total pressure [Pa]} \]
\[R = \text{gas constant [J mol}^{-1}\text{K}^{-1}] \]
\[S_i = \text{selectivity of product } j \text{ [%]} \]
\[T_r = \text{reactor temperature [K]} \]
\[T = \text{coil temperature [K]} \]
\[V_r = \text{reactor volume [m}^3]\]
\[\delta = \text{steam/ethane ratio [kg of steam/kg of ethane]} \]
\[\tau = \text{average residence time [s]} \]

Literature Cited

Cleland, F. A.; Wilhelm, R. H. Diffusion and reaction in viscous-flow tubular reactor. AI.Ch.E. J. 1956, 2, 489.

Received for review September 25, 1996
Revised manuscript received May 7, 1997
Accepted May 13, 1997* IE 960585Z