Modeling and control of a waste heat recovery system for integrated powertrain design optimization

Citation for published version (APA):

DOI:
10.1016/j.ifacol.2019.09.095

Document status and date:
Published: 01/01/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Oct. 2023
Modeling and control of a waste heat recovery system for integrated powertrain design optimization

K. Kruijt * F.J.R. Verbruggen * M.F.M. Speetjens * T. Hofman *
* Eindhoven University of Technology, Den Dolech 2, 5600 MB, The Netherlands (e-mail: k.kruijt@student.tue.nl; f.j.r.verbruggen@tue.nl; m.f.m.speetjens@tue.nl).

Abstract: The growing demand for increased vehicle efficiency has led to the introduction of waste heat recovery techniques in vehicle powertrains, with the organic Rankine cycle as the most interesting technique for automotive applications. In order to integrate the design of the waste heat recovery system into the design optimization of the full powertrain, a novel modeling approach is suggested for capturing the key dynamics of a waste heat recovery system with low computational effort and number of design parameters, and which is scalable with the individual components of the cycle. The model is compared with a detailed finite volume model for a given organic Rankine cycle. Secondly, the organic Rankine cycle is integrated into a parallel hybrid vehicle model, and an optimization routine is proposed for obtaining the optimal control trajectories for the powertrain over a drive cycle. The main purpose of the waste heat recovery model designed in this paper in combination with the proposed optimization algorithm is to be used for powertrain design optimization studies.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Organic Rankine Cycle, Hybrid Vehicles, Optimization, Optimal Control, Modelling

1. INTRODUCTION

In the last decades, the number of electrified vehicles on the road has increased. Despite this growing trend of electrified vehicles, the internal combustion engine (ICE) will remain essential for conventional and hybrid vehicles. In order to improve the efficiency of the ICE, new technologies have been introduced, such as turbo-charging, alternative fuels, etc. To further improve fuel efficiency, without negatively affecting emissions, waste heat recovery (WHR) is a promising solution. Different WHR techniques exist (Lion et al., 2017a), though for automotive applications the organic Rankine cycle (ORC) seems the most promising candidate. The potential for fuel economy savings of ORC technology varies strongly with the application and configuration, but has an expected fuel saving potential of up to 10% for heavy-duty vehicles (Lion et al., 2017b).

In order to find the optimal design for the powertrain of a vehicle, all powertrain components need to be taken into account. This is often referred to as integrated powertrain design. However, typically the design of a WHR system is exclusively based on an already existing powertrain configuration, and does not integrate the WHR design with the design of the rest of the powertrain. Only a limited number of studies (Petr et al., 2017; Zhao et al., 2018) seek improvement in the overall powertrain efficiency, by integrating the design of the WHR system with the design of the rest of the powertrain.

In order to perform an integrated powertrain design optimization, a model of the ORC system is required. Most used modeling techniques for ORC system design are finite volume (FV) models (Chowdhury et al., 2015) and moving boundary (MB) models (Peralez et al., 2013; Huster et al., 2018). The main purpose of these models is to be used for control optimization of the ORC system. However, these techniques are unattractive for design optimization of the full powertrain, as they require a higher computational effort and a large set of parameters to characterize the system. This is unwanted for powertrain design studies where a large number of simulations have to be run, and where each extra design variable quickly increases the design space and thereby computational expenses. More suitable modeling approaches focus on capturing the steady-state behavior of an ORC by applying look-up maps or pinch diagram analysis (Rosset et al., 2018). However, these models leave out the dynamics of the system that play an important role in ORC applications in vehicles for which highly transient drive cycles are generally compelled. Thus, an ORC model used for the purpose of powertrain design optimization requires to have a good trade-off between accuracy (and describing the systems dynamics) and computational efficiency.

Therefore, the proposed dynamic ORC model in this paper consists of an expansion of the standard thermodynamic model of a Rankine cycle so as to include instationary effects. This is essential to adequately describe the main dynamics of the ORC system, which are required for powertrain design optimization. The standard model includes four basic thermodynamic processes involved in a phase-change power cycle (compression, evaporation, expansion, condensation) and admits full description by four thermo-
dynamic states separating these processes. The dynamic ORC model has the same structure yet with expanded relations for the thermodynamic states that account for transient behavior. The ORC model is compared with a more detailed ORC model, which is based on a FV approach (Chowdhury et al., 2015). Next, to make the model suitable for powertrain design optimization, this paper describes an optimal control approach for obtaining the control input of a parallel hybrid powertrain configuration. This approach combines equivalent minimization consumption strategy (ECMS) with a Newton-Raphson shooting method, which secures a charge sustaining strategy.

In the remainder of this paper, Section 2 describes the working principle of an ORC. Subsequently, in Section 3, the dynamic ORC model is described, followed by a comparison of the model with a FV model in Section 4. In Section 5, the ORC model is integrated into powertrain model of a parallel hybrid heavy-duty truck, for which in Section 6 the optimal control problem with the WHR integrated in the powertrain is described. Section 7 elaborates on the optimization results followed by the conclusion in Section 8.

2. ORGANIC RANKINE CYCLE PRINCIPLE

The ORC system in vehicles mostly obtains heat from the tailpipe, or from the exhaust gas recirculation (EGR) system. The ORC, graphically illustrated in Fig. 1, goes through different phases in order to convert waste heat into mechanical power at the output of the turbine. However, also electric power can be recovered, by coupling an electric machine (EM) to the output of the turbine. In this paper an ORC cycle without recuperator is studied, and only the tailpipe is used as heat source.

![Fig. 1. Temperature-entropy diagram of an organic Rankine cycle](image)

The cycle is determined by two operating pressures, boiler side p_b and condenser side p_c. From the saturated low pressure side, a liquid (1) flows through a pump, that increases the medium to a saturated high pressure (2). Secondly, the medium passes through the boiler and goes through a phase change from saturated liquid (2') to dry vapor (3'), whereby the fluid is superheated (3). In the boiler heat is extracted from the exhaust gases in order to heat up the medium. Subsequently, the superheated vapor enters the expander, whereby the medium expands and work is extracted. A low pressure gas remains (4), which eventually, via the condenser, is cooled and condensed back to a saturated liquid (1). The individual components of the ORC system, are denoted as, pump ("p"), boiler ("b"), turbine ("t") and condenser ("c"). Next to this, the positions (1, 2, 3, 4) respectively comprehend the locations in-between the components (as illustrated in Fig. 2).

![Fig. 2. (a) Standard dynamic organic Rankine cycle (b) and configuration with main components](image)

3. MODELING OF THE ORGANIC RANKINE CYCLE

The ORC model is derived by assuming a constant mass flux within the control volume (cv). Direct derivation is possible of the governing equations from First and Second law of thermodynamics (Turns, 2006)

$$\frac{dU}{dt} = \dot{Q} - W + m_\alpha (h_{in} - h_{out}), \quad (1)$$

$$\frac{dS}{dt} = \int_T \frac{\delta \dot{Q}}{\dot{\theta}} + m_\alpha (s_{in} - s_{out}) + \dot{S}_*. \quad (2)$$

The pump (1) – (2) and the turbine (3) – (4) are assumed as ideal processes, i.e., reversible (entropy production: $\dot{S}_* = 0$) and adiabatic (cyclic integral: $\int_T \delta \dot{Q}/\dot{\theta} = 0$). The boiler and condenser are assumed to be isobaric ($W = 0$) and exchange heat on basis of the difference between the reservoir temperatures ($\theta_H = \theta_H(t)$) and ($\theta_L = \theta_L(t)$) and the mean boiler and condenser temperatures ($\overline{\theta_b}$ and $\overline{\theta_c}$). All four of these temperatures can vary over time. The massflow is assumed constant ($\dot{m}_{in} = \dot{m}_{out} = \dot{m}_\alpha$). The resulting heat exchange \dot{Q}, as part of (1)-(2) can be calculated with

$$\dot{Q}_H = \kappa_b A_b (\theta_H - \overline{\theta_b}), \quad (3)$$

$$\dot{Q}_L = \kappa_c A_c (\theta_L - \overline{\theta_c}). \quad (4)$$

Parameters κ and A are the heat-transfer coefficient and heat-transfer area, respectively.

To solve (1)-(2), the actual state within the components is estimated by a weighted average α over the inlet and outlet state of the component. These α’s are calibration parameters, and can be used to fit the model to an existing system. For example, to compute the specific enthalpy h inside the pump,

$$h_p = \alpha_p \cdot h_1 + (1 - \alpha_p) \cdot h_2. \quad (5)$$

Implementing the assumptions mentioned above into the First and Second law of thermodynamics (1)-(2) and making the choice to use entropy as the state, each of
the components can be described by only one of the laws, resulting in a compact model. The following models are used for each of the components,
\[\alpha_p \frac{ds_1}{dt} + (1 - \alpha_p) \frac{ds_2}{dt} = \frac{1}{\tau_p} (s_1 - s_2), \] (6)
\[\alpha_t \frac{ds_3}{dt} + (1 - \alpha_t) \frac{ds_4}{dt} = \frac{1}{\tau_t} (s_3 - s_4), \] (7)
\[\gamma_2 \alpha_b \frac{ds_2}{dt} + \gamma_3 (1 - \alpha_b) \frac{ds_3}{dt} = \frac{1}{\tau_b} (h(s_2|p_b) - h(s_3|p_b)) + \beta_b \left(\theta_H - (\alpha_b \theta(s_2|p_b) + (1 - \alpha_b) \theta(s_3|p_b)) \right), \] (8)
\[\gamma_4 \alpha_c \frac{ds_4}{dt} + \gamma_1 (1 - \alpha_c) \frac{ds_1}{dt} = \frac{1}{\tau_c} (h(s_4|p_c) - h(s_1|p_c)) + \beta_c \left(\theta_L - (\alpha_c \theta(s_4|p_c) + (1 - \alpha_c) \theta(s_1|p_c)) \right). \] (9)

Here \(s_i|p \) indicates \(s_i \) at given pressure \(p \). The coefficients used in (6)-(9),
\[\gamma_i = \frac{\partial u_i}{\partial s_i | p}, \quad \tau_j = \frac{m_j}{\bar{m}_j}, \quad \beta_j = \frac{\kappa_j A_j}{m_j}, \] (10)
with \(i \in \{1, 2, 3, 4\} \) and \(j \in \{b, t, c\} \). The temperature \(\theta \), internal energy \(u \) and enthalpy \(h \) are numerically available by the CoolProp library (Bell et al., 2013), for a variety of fluids. The partial derivative of internal energy with respect to entropy at constant pressure is written as \(\frac{\partial u_i}{\partial s_i | p} \), and the mass content of working fluid in each of the four components is denoted by \(m_j \).

3.1 State space model

Alternatively, we can express equations (6)-(9) in state-space form
\[S \frac{ds}{dt} = Bs + C\theta(s|p_{in}, p_e) + D\bar{h}(s|p_{in}, p_e) + Ez(t). \] (11)

Here bold symbols indicate vectors. The input vector \(z \) contains the reservoir temperatures: \(z = (\theta_H(t) \: \theta_L(t)) \). By using semi-implicit Euler time integration (Cellier and Kofman, 2006), numerical simulation of the evolution over time \(\Delta t \) of the state vector \(s = [s_1 \: s_2 \: s_3 \: s_4] \) is possible
\[s_{n+1} = Q (S s_n + \Delta t F), \] (12)
where
\[Q = (S - \Delta t B)^{-1}, \] (13)
\[F = C \theta(s_{n+1} | p_{in}, p_e) + D \bar{h}(s_{n+1} | p_{in}, p_e) + E z_{n+1}. \] (14)

Here \(B, C, D, E \) and \(S \) in (11)-(14) are denoted as the system matrices.

3.2 Steam quality penalty

To prevent damage to the turbine blades, often a by-pass is used which only allows steam to enter the expander. To capture this in the model, a penalty \(p_x \) is added,
\[p_x = \min \left(1, \left(\frac{u_3}{u_3|p_b} \right)^k \right), \] (15)
with exponent \(k = 70 \) and \(u_3|p_b \) represents the internal energy at the saturated line of vapor at pressure \(p_b \).

Combining (12-14) with the penalty from (15), the work exchanges in pump \(W_p \) and turbine \(W_t \) can be calculated by
\[W_p = \dot{m}_o \left(h(s_1|p_e) - h(s_2|p_b) \right) - m_p \left(\gamma_1 \alpha_p \frac{ds_1}{dt} + \gamma_2 (1 - \alpha_p) \frac{ds_2}{dt} \right), \] (16)
\[W_t = p_x \left(\dot{m}_o \left(h(s_3|p_e) - h(s_4|p_c) \right) - m_t \left(\gamma_3 \alpha_t \frac{ds_3}{dt} + \gamma_4 (1 - \alpha_t) \frac{ds_4}{dt} \right) \right). \] (17)

The flow being by-passed is expanded over an expansion valve.

3.3 Complete waste heat recovery model

With the ORC modeling principle, as explained in previous sections, a WHR submodel can be created, which has inputs \(\theta_H \) and \(\theta_L \) and outputs \(W_t, W_p \) and \(P_{fa} \). The input-output schematic is illustrated in Fig. 3.

![Fig. 3. Input-output diagram of the ORC submodel](image)

For the high temperature \(\theta_H \) the temperature of the exhaust gases from the ICE is used and \(\theta_L \) the temperature in the cooling circuit. The exhaust gas temperature \(\theta_H \) is determined using a look-up map,
\[\theta_H = f_1(T_e, \omega_e), \] (18)
where \(T_e \) and \(\omega_e \) are the torque and the rotational speed of the ICE. The lower reservoir temperature \(\theta_L \) is assumed to be constant at 293 K.

The outputs of the submodel together represent the WHR output power \(P_w \),
\[P_w = \eta_m W_t + W_p, \] (19)
here the efficiency of the electric machine connected to the turbine \(\eta_m \) is taken into account. The mechanical pump power \(W_p \) yields negative values, as the component consumes power.

The output \(P_{fa} \) represent the consumption of the fan to cool the condenser of the WHR system, which is based upon simplified expressions of the condenser cooling \(Q_L \). \(P_{fa} \) is negative, as the component consumes power.

4. COMPARISON OF ORGANIC RANKINE CYCLE MODELS

No comparison could be made with experimental ORC data, because of the unavailability of experimental data. Therefore, to create at least some insight in the performance of the ORC model, a comparison was made with a more detailed model (Chowdhury et al., 2015), which uses an FV model for the boiler. Therefore, the response in specific enthalpy \(h_3 \) at the outlet of the boiler is compared,
which is done by a step in the mass flow rate \dot{m}_o from 0.25 kg/s to 0.1 kg/s (see Fig. 4). In the comparison, the initial conditions and parameters from (Chowdhury et al., 2015) are used, which are represented in Table 1.

Fig. 4. Comparison of specific enthalpy h_3 response on a step in mass flow rate \dot{m}_o with (Chowdhury et al., 2015).

Globally, both models follow a similar trend, however it can be observed that differences exists in the response. The observed differences are likely attributed to the differences in heat-transfer coefficient techniques as the ORC model in this paper assumes only a constant value for this.

Table 1. Configuration of ORC for comparison with (Chowdhury et al., 2015).

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid in ORC cycle</td>
<td>A_b</td>
<td>0.8 m2</td>
</tr>
<tr>
<td>Heat transfer area</td>
<td>A_c</td>
<td>0.8 m2</td>
</tr>
<tr>
<td>Mass of boiler (estimated)</td>
<td>m_b</td>
<td>16 kg</td>
</tr>
<tr>
<td>Initial mass flow rate in ORC</td>
<td>\dot{m}_o</td>
<td>0.25 kg/s</td>
</tr>
<tr>
<td>Initial temperate of ORC</td>
<td>$\theta_1, \theta_2, \theta_3, \theta_4$</td>
<td>305 K</td>
</tr>
<tr>
<td>Temperature of heat source</td>
<td>θ_H</td>
<td>523 K</td>
</tr>
<tr>
<td>Pressure at boiler side</td>
<td>p_b</td>
<td>6 MPa</td>
</tr>
</tbody>
</table>

5. PARALLEL HYBRID VEHICLE MODEL WITH WASTE HEAT RECOVERY

The WHR model is integrated in a backwards facing simulation model of a parallel (p2) hybrid heavy-duty truck. Fig. 5 depicts the powertrain configuration, whereby the WHR system is added. The vehicle has a CE with maximum power of 330 kW, an EM with a maximum power of 150 kW, a 17.8 kWh battery, and a 12-speed gearbox.

5.1 Transmission model and torque-split

A simple transmission model is considered with an automated manual transmission (AMT). The final drive is modelled as a fixed efficiency η_{fd} and the efficiency in the gearbox η_g is gear-dependent, but fixed per gear g.

$$T_g = \begin{cases} \frac{T_v}{\eta_g \eta_{fd}(x_g) r_{fd} r_g(x_g)} & \text{if } T_v > 0, \\ \frac{r_{fd} r_g(x_g)}{T_v} & \text{if } T_v \leq 0. \end{cases}$$

For positive torque requests at the wheel ($T_v > 0$) and ($T_v \leq 0$) for negative torque requests, with the gearbox power P_g being

$$P_g = T_g \omega_g.$$

Moreover, a torque-split u_{ts} is taken into account, which divides the total torque at the gearbox T_g to torque demand from the EM, T_m, and the ICE, T_e,

$$T_e = (1 - u_{ts}) T_g + T_{ma},$$

$$T_m = \begin{cases} u_{ts} T_g & \text{if } T_g > 0, \\ (1 - u_{ts}) T_g & \text{if } T_g \leq 0. \end{cases}$$

where T_{ma} is denoted as the torque coming from the mechanical auxiliaries, including the alternator, oil pump and power steering.

5.2 Internal combustion engine and electric machine

The mass flow rate of fuel \dot{m}_f and EM power P_m are calculated by using a steady-state look-up map,

$$\dot{m}_f = f_2(T_e, \omega_e),$$

$$P_m = f_3(T_m, \omega_m).$$

The inverter losses are included in (25).

5.3 Battery model

The battery is modeled using an equivalent circuit model. The battery open circuit voltage V_{oc} and internal resistance R are a function of the state of charge ξ of the battery

$$V_{oc} = f_4(\xi), \quad R = f_5(\xi).$$

The battery current I_B is calculated using

$$I_B = \frac{\eta_C (V_{oc} - \sqrt{V_{oc}^2 - 4 R P_B})}{2 R},$$

where η_C is the coulomb efficiency. Furthermore, P_B represent the power flow on the high voltage bus,

$$P_B = P_a + P_m - P_w + P_{fa},$$

where P_a is the electrical auxiliary power.
6. OPTIMAL CONTROL PROBLEM

In the optimal control problem, the control input vector \(u \) and state vector \(x \),

\[
\mathbf{u}(t) = [u_{ts}(t) \ u_g(t)]^T,
\]

\[
x(t) = [\xi(t) \ x_g(t) \ s_1(t) \ s_2(t) \ s_3(t) \ s_4(t)]^T,
\]

are used to minimize equivalent fuel consumption \(\dot{m}_{eq} \). The optimal control problem, with corresponding cost function \(J \) and constraints \(h_i, g_i \), can be written as,

\[
\min_u J(x(t), u(t), \Lambda(t)) = \int_{t_0}^{t_f} \dot{m}_{eq}(x(t), u(t), \Lambda(t)) \, dt,
\]

s.t.

\[
\begin{align*}
h_{1,2} : & \quad \dot{x}(t) = f(x(t), u(t), t), \\
h_{3,4} : & \quad \xi(t_0) = \xi(0), \\
g_{4,5} : & \quad -1 \leq u_{ts} \leq 1, \\
g_{6,7} : & \quad -I_{min}^{t_B} \leq I_B(u_{ts}, x_g) \leq I_{max}^{t_B}, \\
g_{8,9} : & \quad T_{min}^{e} \leq T_e(u_{ts}, x_g) \leq T_{max}^{e}, \\
g_{10,11} : & \quad \omega_{\min} \leq \omega_e(u_{ts}, x_g) \leq \omega_{\max}, \\
g_{12,13} : & \quad \omega_{\min} \leq \omega_m(u_{ts}, x_g) \leq \omega_{\max},
\end{align*}
\]

with upper and lower boundaries (e.g. for battery current noted with superscripts min and max: \(I_{\text{min}}^{t_B} \) and \(I_{\text{max}}^{t_B} \)), the gear number \(x_g \), the state of charge \(\xi \) of the battery, the torque-split \(u_{ts} \) and the gear-shift command \(u_g \). The gear position \(x_g \in \{1, 2, \ldots, 12\} \) is calculated as,

\[
x_g(t) = x_g(t-1) + u_g(t),
\]

with the discrete gear shift \(u_g = \{-1, 0, 1\} \). Here \(-1\) denotes a downshift, \(1\) a upshift and \(0\) when the gear is sustained. The drive cycle is denoted as \(\Lambda(t) \), which consists of a velocity \(v(t) \) and the slope \(\phi(t) \) profile.

6.1 Heuristic optimal control

ECMS (Guzzella and Sciarretta, 2007) is applied to solve the optimal control problem, inspired by Pontryagin’s Minimum Principle (PMP) formulation. Formally, PMP derivation requires for every state a co-state (Maamria, 2015). In this paper this is simplified and only one co-state is adopted within the Hamiltonian \(\mathcal{H} \), given by,

\[
\mathcal{H}(\mathbf{u}(t), x(t)) = \dot{m}_{f}(\mathbf{u}(t), x_g(t)) + \lambda(t) \cdot \frac{\partial \xi}{\partial t} + p_g |u_g|,\quad (33)
\]

where \(\lambda(t) \) is the co-state. Moreover, a gear-shift penalty \(p_g \) was added to penalize frequent gear-shifting. A constant value of \(p_g = 1e^{-4} \, [\text{kg/s}] \) provides a good balance between frequent gear-shifting and comfortable driving. With (33) the optimal control trajectory \(u^*(t) \) is obtained,

\[
u^*(t) = \arg \min_{u \in \mathcal{U}} \mathcal{H}(\mathbf{u}(t), x(t)), \quad (34)
\]

by minimizing the Hamiltonian \(\mathcal{H} \) for each time instant.

6.2 Newton-Raphson shooting method

At initial \(t_0 \) and final time \(t_f \), the equality constraint \(h_{1,2} \) (31) needs to hold, hence the parallel hybrid configuration needs to maintain a charge sustaining strategy. This is achieved by tuning \(\lambda \), which is a constant value over the drive cycle. By doing so, battery usage can either be favored (by selecting lower values for \(\lambda \)) or discouraged (by selecting higher values for \(\lambda \)). To obtain a value for \(\lambda \) that satisfies the terminal constraint \((\xi(t_f) = \xi_0) \), the Newton-Raphson shooting approach is deployed,

\[
\lambda_{k+1} = \lambda_k + \frac{\Delta \lambda}{\Delta \xi(t_f)} (\xi(t_f) - \xi_0) \quad \text{with} \quad k \in \{1, 2, \ldots, n\},
\]

whereby \(k \) is the number of the shooting attempt, and \(\frac{\Delta \lambda}{\Delta \xi(t_f)} \) is actively re-calibrated with the best two shooting attempts. One shooting attempt means running the drive cycle once. In order to converge to a charge sustaining solution, usually three up to five shooting attempts are required. The routine is illustrated in Fig. 6 for the urban dynamometer driving schedule (UDDS).

7. SIMULATION RESULTS OF OPTIMAL CONTROL TRAJECTORY

Given the configuration as mentioned in Table 2, the optimal control is solved by the ECMS routine \(^1\) over the UDDS drive-cycle, which is 8.9 km long. The results of the WHR power \(P_w \), the optimal trajectory for the gear position \(x_g^* \), and the difference in optimal trajectory for the torque split between the vehicle with WHR \(u_{ts,w}^* \) and the baseline vehicle \(u_{ts,b}^* \), are shown in Fig. 7.

The upper figure of Fig. 7 shows that the WHR systems needs some time to warm up before starting to produce power, which at maximum goes up to 8 kW. The presence of a WHR system, increases the availability of electrical energy and favors the use of the EM, hence the higher values for the torque split when a WHR system is present \(u_{ts,w}^* \). Another interesting observation is that higher gears are favored when including a WHR system. A possible explanation for this is that higher gears have a higher efficiency but also lead to higher torques at the ICE. Due to the presence of a WHR system, the EM has more electrical energy available to reduce the torque at the ICE, so that a higher gear can be chosen. The total benefit of adding the WHR system for this particular vehicle on this drive cycle, under the assumptions made in Section 3, is a 2.5% improvement in fuel economy.

Simulations are also run on a more highway type of drive cycle with a length of 100 km. Here, similar observations are seen, however, on this cycle is also clearly seen that the

\(^1\) Total simulation time was 34.2 seconds with a 2.2 Ghz Intel Core i7 and 8 GB RAM using MATLAB R2016B. Four shooting attempts were required to converge to a charge sustaining solution.
configuration with WHR requires less charging \((u_{ts} < 0)\) by the ICE, because of the WHR that on average produces 5.5 kW. On this highway cycle a 6% improvement in fuel economy is calculated. In other literature, fuel savings in the range of 2.7 - 7.5% have been calculated for highway driving for trucks (Lion et al., 2017a), 3.5 % by (Peru et al., 2016), and 5.1 - 6.0 % (Stanton, 2013). However, these systems use heat from both the EGR system as the exhaust. Exhaust only WHR shows fuel savings more in the range of 2% (Nelson, 2008). Thus, the results found are rather high for an exhaust only WHR case. This might be related to the assumption of an ideal turbine.

8. CONCLUSION

The goal was to create a waste heat recovery model, with low computational expenses and number of model parameters, to be used in a powertrain model for the purpose of integrated powertrain design optimization. The proposed model can be scaled for the individual components of the organic Rankine cycle and captures the transient behavior by only four thermodynamic states. The model was compared with a finite volume model (Chowdhury et al., 2015). Both models yield similar behavior, however, still differences in time response and steady-state values does exist.

The model was integrated into the simulation model of a parallel hybrid heavy-duty truck. ECMS linked with a Newton-Raphson shooting method, was used to solve the optimal control problem over a drive cycle. Results on the UDDS drive cycle showed more use of the electric machine, the use of higher gears, and a 2.5% improvement in fuel economy (6% on a more highway type of cycle) when including a WHR in the powertrain. Future work focuses on a more extensive validation of the ORC model, a benchmark with dynamic programming on the optimality of the control approach, and a full powertrain design optimization, including the WHR model.

REFERENCES

