

Supervisory control of discrete-event systems in an
asynchronous setting
Citation for published version (APA):
Rashidinejad, A., Reniers, M., & Fabian, M. (2019). Supervisory control of discrete-event systems in an
asynchronous setting. In 2019 IEEE 15th International Conference on Automation Science and Engineering,
CASE 2019 (pp. 494-501). Article 8843274 IEEE Computer Society.
https://doi.org/10.1109/COASE.2019.8843274

DOI:
10.1109/COASE.2019.8843274

Document status and date:
Published: 01/08/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. May. 2025

https://doi.org/10.1109/COASE.2019.8843274
https://doi.org/10.1109/COASE.2019.8843274
https://research.tue.nl/en/publications/f5a4244b-4357-49a4-b7f5-86f4cc4879e4

Supervisory Control of Discrete-Event Systems in an Asynchronous
Setting

Aida Rashidinejad1 Michel Reniers1 Martin Fabian2

Abstract— In conventional supervisory control theory, a plant
and supervisor are supposed to work synchronously such that
enabling an event by the supervisor, execution of it in the plant,
and observation of the executed event by the supervisor all
occur at once. Therefore, these occurrences are all captured
by means of a single event. However, when a supervisor
synthesized from conventional supervisory control theory is
implemented in real life, it will face problems since exact
synchronization can hardly happen in practice due to delayed
communications. In this paper, we propose a synthesis technique
to achieve a supervisor that does not face the problems caused
by inexact synchronization. For this purpose, we first introduce
an asynchronous setting in which enablement, execution, and
observation of an event do not occur simultaneously but with
some delay. We present a model representing the behavior
of the plant in the asynchronous setting which we call the
asynchronous plant. For the asynchronous plant, we present
an algorithm synthesizing an asynchronous supervisor which
satisfies (asynchronous) controllability and nonblockingness.

I. INTRODUCTION

Discrete-event systems (DES) are systems with a discrete
set of states in which transitions take place in association
with instantaneous events. Many types of physical systems
can be modeled as DES including manufacturing systems,
traffic systems, and communication networks [1], [2]. Such
systems are typically supervised in order to satisfy some
control requirements. Supervisory Control Theory (SCT) has
been developed to automatically synthesize such a supervisor
from models of the uncontrolled system and the control
requirements [3]. In a supervisory control setting, control
commands are sent from the supervisor to the actuators in the
plant through the control channel, and events occurring in the
plant are observed by the sensors and sent to the supervisor
through the observation channel. Several problems that arise
in implementation of supervisors have been reported in the
literature as briefly discussed in the following [4], [5], [6],
[7], [8]:

• avalanche effect: this is the problem of multiple state
transitions occurring on the same event, leading to
instantaneously passing through intermediate states so
that actions from those states are not executed.

• interleave sensitivity: this problem occurs when differ-
ent interleavings of events can be executed at a state,

* This research has received funding from the European Unions Horizon
2020 Framework Programme for Research and Innovation under grant
agreement no 674875.

1Aida Rashidinejad and Michel Reniers are with Department of Me-
chanical Engineering, Eindhoven University of Technology, The Netherlands
{a.rashidinejad, m.a.reniers}@tue.nl

2Martin Fabian is with Department of Electrical Engineering, Chalmers
University of Technology, Sweden fabian@chalmers.se

and the supervisor needs to make decisions based on
the order of events that it observes. The problem arises
when events may not necessarily be observed in the
same order as they have been executed in the plant.

• causality: SCT assumes all events can occur spon-
taneously in the plant, and the supervisor may only
disable a subset of them. However, (in practice) events
which are controllable need to be commanded by the
supervisor, otherwise they cannot occur.

• choice: SCT achieves a supervisor which is maximally
permissive meaning that it gives the plant the greatest
amount of freedom within the control requirements.
Therefore, in many cases, the supervisor should make a
choice between alternative transitions that are possible
at a state, and this will be highly dependent on the
implementation.

• inexact synchronization: in SCT, a supervisor is syn-
thesized based on the assumption of synchronous in-
teractions between the plant and supervisor. In other
words, a supervisor is assumed to immediately observe
an event as it is executed by the plant, and the plant
receives a control command immediately after it has
been sent from a supervisor. However, such a supervisor
will be implemented in an asynchronous setting where
sending and receiving data are subject to delays. Hence,
the synchronous assumption does not typically hold.

Here, we focus on the problem caused by inexact syn-
chronization. Additionally, we take into account the prob-
lems of causality and interleave sensitivity by allowing the
plant to execute a controllable event only if it is enabled
(commanded) by a supervisor, and also allowing consecutive
events to be observed in any possible order.

The problem caused by inexact synchronization was first
addressed by Balemi [9]. It arises in the situation where the
occurrence of an uncontrollable event invalidates a control
command (or the selection of a controllable event). This
problem is caused by a communication delay where the
occurrence of an uncontrollable event is interpreted as a
communication delay unit. Consider a state of the plant
where both a controllable event and an uncontrollable event
are enabled. If there is a communication delay, the supervisor
might send the controllable event while the plant transits to
another state on the uncontrollable event. Then, the control
command may arrive when the plant is in a state that
invalidates that command.

To solve the problem caused by communication delays,
Balemi introduced the notion of “delay insensitive language”.
A language is delay insensitive if a control command is not

���

������			��
���	������������	�

�� !�!�� �!�"
#!"$��$%"�&���'������			

invalidated by an uncontrollable event. In other words, any
control command sent by the supervisor should be accepted
by the plant. If a supervised plant is delay insensitive, then
the achieved supervisor does not face any problem caused
by inexact synchronization. However, this condition is not
met by most applications.

Besides the inexact synchronization, the causality problem
was also considered by Balemi in [9] where he uses an
“input/output semantics” for the plant. In this input/output
perspective, controllable events are considered as inputs
to the plant and uncontrollable events are the outputs or
responses generated by the plant. The condition of delay in-
sensitivity was also used in [10] called “Σu−Σc-commuting”
condition. This condition has been further generalized in [5],
[11] for a sequence of uncontrollable events (representing a
bounded observation delay).

In [4], a condition for “interleave insensitivity” was in-
troduced. In this case, having an implementable supervisor
is limited to applications which require the same control
command after any interleaving of a sequence of uncon-
trollable events. In [5], delay insensitivity and interleave
insensitivity are captured in a single definition as “delay
interleave insensitivity”.

If we assume that a control command is enabled until a
disablement command is received from a supervisor, then
delays in control and observation channels may have differ-
ent effects and need to be investigated separately [12], [13].
To consider the effect of delays, in [12], a condition called
“bounded-delay implementability” has been introduced. This
condition takes into account the effects of observation and
control delays on a requirement behavior by achieving a
delayed version of the requirement. In case the delayed ver-
sion of the requirement stays within the requirement (without
delays) it can be satisfied in an asynchronous setting as well.
Furthermore, in [13] new observability and controllability
conditions under delays are introduced as “delay observabil-
ity” and “delay controllability”, respectively. A supervisor
can be synthesized for a requirement which satisfies these
conditions.

The drawback of the mentioned conditions is that they dis-
qualify many relevant cases that do not satisfy the condition.
More recently, a networked supervisory control framework
has been introduced in [14] where a networked supervisor is
synthesized to deal with communication delays. To indicate
that enabling, execution, and observation of events do not
occur at the same time, different notions for enabling and
observed events are introduced.

In this paper, we introduce an asynchronous supervisory
control setting describing the situation where a control com-
mand enabled by the supervisor stays in the control channel
until being executed in the plant. Also, the observation of an
event may occur immediately after execution in the plant or
at some point in the future. Our asynchronous supervisory
control setting is close to the networked supervisory control
framework introduced in [14]. We use the same notations for
enabling, execution, and observation of events as discussed
in [14]. However, the asynchronous setting presented here is

different from the networked supervisory control technique
presented in [14] mainly because we do not quantify the
amount of delay. The objective of this paper is to present
a method to synthesize a supervisor taking into account the
following conditions that may exist in practice:

1) A controllable event can be executed in the plant only
if it is commanded (enabled) by the supervisor. Also,
any event executed in the plant is observable to the
supervisor.

2) An uncontrollable event is not commanded (enabled)
by a supervisor, and it only occurs spontaneously in
the plant.

3) A control command sent by the supervisor may not
necessarily be accepted by the plant, and in this case
it will stay in the control channel since in the asyn-
chronous setting there is no deadline for an enabling
event to reach the plant.

4) The observation of an event, controllable as well as
uncontrollable, may occur immediately after being
executed in the plant or at some point in the future.

5) Consecutive events that occur in the plant may be
observed by the supervisor in any possible order.

The rest of the paper is organized as follows. The con-
ventional supervisory control approach is summarized in
Section II. In Section III, we present the asynchronous
supervisory control setting, and we introduce an asyn-
chronous composition operator to achieve an asynchronously
supervised plant in this setting. Afterwards, in Section IV,
we present a method for transforming a plant into an
asynchronous plant modeling the behavior of the plant as
asynchronously observed and controlled by the supervisor.
Based on the asynchronous plant, an algorithm is proposed
to synthesize an asynchronous supervisor which guarantees
(asynchronous) controllability and nonblockingness. Finally,
Section V concludes the paper and discusses future work.

II. BACKGROUND

A DES G is formally represented as a quintuple

G = (A,Σ,δ ,a0,Am), (1)

where A,Σ, δ : A× Σ → A, a0 ∈ A, and Am ⊆ A stand for
the set of states, the set of events, the (partial) transition
function, the initial state, and the set of marked states,
respectively. An automaton with a finite set of states and
a finite set of events is called a finite automaton [15]. The
notation δ (a,σ)! denotes that δ is defined for state a and
event σ , i.e., there is a transition from state a with label
σ to some state. The transition function is generalized to
words in the usual way: δ (a,w) = a′ means that there is
a sequence of subsequent transitions from state a to the
state a′ that together make up the word w ∈ Σ∗. Starting
from the initial state, the set of all possible words that may
occur in G is called the language of G and is indicated by
L(G) := {w ∈ Σ∗ | δ (a0,w)!}. Furthermore, for a state a ∈ A,
the function Reach(a) gives the set of states reachable from
state a; Reach(a) := {a′ | ∃w ∈ Σ∗,δ (a,w) = a′}. States from
which it is possible to reach a marked state are said to

��

be nonblocking. An automaton is nonblocking when each
state reachable from the initial state is nonblocking; for each
a ∈ Reach(a0), Reach(a)∩Am 	=∅.

Moreover, in this paper, we frequently use the natural
projection operator [1].

Definition 1 (Natural projection): For sets of events Σ
and Σ′ ⊆ Σ, PΣ′ : Σ∗ → Σ′∗ is defined as follows: for e ∈ Σ
and w ∈ Σ∗

PΣ′(ε) := ε,

PΣ′(we) :=

{
PΣ′(w)e if e ∈ Σ′,
PΣ′(w) if e ∈ Σ\Σ′.

The definition of a natural projection can be extended to
a language; given a language L ⊆ Σ∗, PΣ′ : Σ∗ → Σ′∗ maps it
to a set of words from Σ′∗ where Σ′ ⊆ Σ such that PΣ′(L) :=
{w′ ∈ Σ′∗ | ∃w ∈ L,PΣ′(w) = w′} [1]. �

Note that, although natural projection is an operation
which is generally defined for languages, it is also possible to
apply it on automata [16]. For an automaton with event set Σ,
PΣ′ first replaces all events not from Σ′ by ε . Then, using the
determinisation algorithm introduced in [15], the achieved
automaton becomes deterministic again. For the projection
operator, the following lemma holds.

Lemma 1 (Nonblockingness over Projection): If an au-
tomaton G with event set Σ and set of states A is nonblocking,
then PΣ′(G) with event set Σ′ ⊆ Σ is also nonblocking. �

Proof: Consider a set of reachable states Ar in PΣ′(G).
Due to the definition of projection on automata, each state
of PΣ′(G) is a subset of A, and so one can say Ar ⊆ A. By
construction Ar is not empty and thus contains at least one
element, say ar ∈ A. By definition ar is reachable in G and
since G is nonblocking there is a w ∈ Σ∗ such that δ (ar,w)∈
Am. Then, again by construction and by the properties of the
involved determinisation procedure (determinisation makes
a state of PΣ′(G) marked if it includes at least one of the
marked states of G [15]) we have that PΣ′(w) allows to reach
a marked state in PΣ′(G).

Lemma 1 will be used in further proofs. From now on,
we assume that the plant is given as a finite automaton G
in which all events are observable. However, a subset of
events may be uncontrollable indicated by Σuc ⊆ Σ. The set
of controllable events is then given by Σc =Σ\Σuc. To satisfy
nonblockingness, a supervisor is required to be synthesized
for the plant G. A conventional supervisor S is also a DES
with the same event set as G. The conventional supervisory
control setting is depicted in Figure 1.

Here we focus on solving the basic synthesis problem to
achieve a supervisor satisfying controllability and nonblock-
ingness. As described in [17], control requirements can be
translated to the plant. By applying the basic synthesis, a
supervisor is achieved which fulfills the requirements, and it
satisfies controllability and nonblockingness.

In conventional SCT, the plant and supervisor are supposed
to work synchronously, and the automaton modeling the
supervised plant is obtained by applying the synchronous
composition operator indicated by S||G. Generally, in the

Fig. 1: Conventional supervisory control (synchronous set-
ting).

synchronous composition of two automata, a shared event
can be executed only when it is enabled by both automata,
and a non-shared event can be executed if it is enabled by
one of the automata. Since S is assumed to have the same
event set as G, each event will be executed in S||G only if the
supervisor allows it. Since uncontrollable events enabled in G
can never be disabled by S, they should always be allowed in
S||G, and this can be checked by the controllability condition
given in Definition 2.

Definition 2 (Conventional Controllability [2]): For any
DES G controlled by a conventional supervisor S, S||G is
controllable if for any w ∈ L(S||G) and u ∈ Σuc, whenever
wu ∈ L(G) then wu ∈ L(S||G). �

In the following example, we explain the problem caused
by inexact synchronization.

Example 1 (Motivating example from [4]): Consider the
plant G, given in Figure 2a, for which u1 and u2 are
uncontrollable events (indicated by dashed lines), and c1
and c2 are controllable events (indicated by solid lines). The
state a4 is blocking (marked states are indicated by double
circles) and needs to be avoided by a supervisor. Using
conventional supervisory control synthesis, the supervisor
depicted in Figure 2b is obtained. As described in [4], the
problem appears when after the execution of u1, S enables
c1; however, u2 occurs in G which invalidates the control
command sent by S (because G cannot accept c1 after
executing u2). Clearly, this problem does not occur if c1
could occur after u2 as well. This is actually the “delay
insensitive language” condition introduced in [9]. �

a0 a1 a2

a3 a4

u1 u2

c1 c2

(a) Plant

a0 a1 a2

a3

u1 u2

c1

(b) Supervisor

Fig. 2: The plant and the conventional supervisor from [4].

In order to synthesize a supervisor dealing with the prob-
lems that may arise in practice, we need to take into account
the five conditions mentioned in Section I while synthesizing
a supervisor.

��#

III. ASYNCHRONOUS SUPERVISORY CONTROL SETTING

In the synchronous setting, enabling, execution, and ob-
servation of events are assumed to occur simultaneously, and
so all of these are indicated by one and the same event. As

Fig. 3: Asynchronous supervisory control setting.

depicted in Figure 3, to indicate that the enabling, execution,
and observation of events do not occur simultaneously in
an asynchronous setting, new notions are introduced in
Definition 3. Motivated from [14], for each event σ from
the plant we introduce unique events σe and σo representing
the related enabling and observed events, respectively.

Definition 3 (Enabling and Observed Events [14]): For
a plant G = (A,Σ,δ ,a0,Am), to each controllable event
σ ∈ Σc an enabling event σe ∈ Σe and to any event σ ∈ Σ
an observed event σo ∈ Σo are associated. �

As it is clear from Figure 3, the plant and supervisor do not
have the same event set in the proposed asynchronous setting.
The event set of an asynchronous supervisor includes only
the enabling and observed events. To achieve the supervised
plant in the asynchronous setting, we need to define an
asynchronous composition operator. To indicate how events
may be observed in a supervisory control system, we assume
that an event σ ∈ Σ executed in the plant will be stored in the
observation channel until being observed as σo ∈ Σo. Since
it is assumed that events may not necessarily be observed in
the same order as they have been executed in the plant, the
observation channel is represented as a multiset. The multiset
given in Definition 4 is a representation of the contents of
the observation channel which will be used in determining
the occurrences of the observed events.

Definition 4 (Observation Channel Representation): The
set M is defined as M = Σ×N. Moreover, we define the
following operations for all m ∈ M, and σ ,σ ′ ∈ Σ:

• m(σ) denotes the number of events σ in m.
• [] denotes the empty multiset, i.e, the function m with

m(σ) = 0 for all σ ∈ Σ.
• |m|= ∑σ∈Σ m(σ) denotes the number of elements in m
• m
 [σ] inserts σ to m. Formally, it denotes the function

m′ for which m′(σ) = m(σ)+1 and m′(σ ′) = m(σ ′) for
σ ′ 	= σ .

• m \ [σ] removes σ from m once. Formally, it denotes
the function m′ for which m′(σ) = max(m(σ)− 1,0)
and m′(σ ′) = m(σ ′) for σ ′ 	= σ .

• σ ∈ m denotes that σ is present in m, it holds if m(σ)>
0. �

Similarly, control commands sent by a supervisor are as-
sumed to be stored in a control channel until being executed
in the plant. However, since events will be executed based
on the order that they have been commanded, the control
channel is represented by a list as given in Definition 5.

Definition 5 (Control Channel Representation): The set L
is defined as L = Σ∗. Moreover, we define the following
operations for all σ ∈ Σ, and l ∈ L:

• app(l,σ) adds the element σ to the end of l.
• head(l) gives the first element of l (for nonempty lists).
• tail(l) denotes the list after removal of its head. �
Based on the representations of observation and control

channels, an operator is presented in Definition 6 to obtain
the asynchronously supervised plant. This operator is derived
from the “networked supervised plant operator” introduced
in [14] where similar representations are proposed for ob-
servation and control channels. Note that this asynchronous
composition operator is only meaningful if G and AS are
in accordance with the presented asynchronous supervisory
control setting.

Definition 6 (Asynchronous Composition Operator):
Consider the plant G = (A,Σ,δ ,a0,Am) controlled by the
supervisor AS = (Y,ΣAS,δAS,y0,Ym) in an asynchronous
setting. Then, the asynchronous composition of G and AS,
denoted by AS|/|G gives the asynchronously supervised
plant as the following automaton

AS|/|G = (Z,ΣASP,δASP,z0,Zm),

where
Z = A×Y ×M×L,

ΣASP = ΣAS ∪Σ,
z0 = (a0,y0, [],ε),

Zm = Am ×Ym ×M×L.

Moreover, for a ∈ A, y ∈ Y , m ∈ M, and l ∈ L, δASP : Z ×
ΣASP → Z is defined as follows:

1) When an enabling event σe ∈ Σe is executed in AS,
it will be stored in l until being received by G. If
δAS(y,σe)!:

δASP((a,y,m, l),σe) = (a,δAS(y,σe),m,app(l,σ)).

2) An uncontrollable event σ ∈ Σuc can be executed in
AS|/|G only if it is executed in G. In addition, the event
will be put in the observation channel to be received
by AS later. If δ (a,σ)!:

δASP((a,y,m, l),σ) = (δ (a,σ),y,m
 [σ], l).

3) A controllable event σ ∈ Σc can be executed in AS|/|G
if the enabling event σe was sent by the supervisor, and
it is the first enabling event in the control channel to
be executed. In addition, the event will be put in the
observation channel. If δ (a,σ)! and head(l) = σ :

δASP((a,y,m, l),σ) = (δ (a,σ),y,m
 [σ], tail(l)).

���

4) An observed event σo ∈ Σo can be executed in AS|/|G
if σ ∈ m, subsequently σ is removed from m. If
δAS(y,σo)! and σ ∈ m:

δASP((a,y,m, l),σo) = (a,δAS(y,σo),m\ [σ], l). �
For the asynchronous composition operator presented in

Definition 6, the following lemma holds.
Lemma 2 (Asynchronously Supervised Plant Transitions):

Considering the asynchronously supervised plant obtained
from Definition 6, for any w ∈ Σ∗

ASP with δASP(z0,w)!, we
have δASP(z0,w) = (δ (a0,PΣ(w)),δAS(y0,PΣAS(w)),m, l) for
some m ∈ M, l ∈ L. �

Proof: Let w ∈ Σ∗
ASP with δASP(z0,w)!. We prove

that δASP(z0,w) = (δ (a0,PΣ(w)),δAS(y0,PΣAS(w)),m, l) for
some m ∈ M, l ∈ L by induction on the structure of w. First,
assume that w = ε then we have δASP(z0,w) = (a0,y0, [],ε)
= (δ (a0,ε),δAS(y0,ε), [],ε). Now, assume that w = vσ
for some v ∈ Σ∗

ASP with δASP(z0,v)!. By induction we
have δASP(z0,v) = (δ (a0,PΣ(v)),δAS(y0,PΣAS(v)),m

′, l′) for
some m′ ∈ M and l′ ∈ L. It is sufficient to prove that
δASP(z0,vσ) = (δ (a0,PΣ(vσ)),δAS(y0,PΣAS(vσ)),m, l)
for some m ∈ M and l ∈ L. For σ ∈ ΣASP one
of the following cases could occur; if σ ∈ Σ, then
δASP(z0,vσ) = (δ (δ (a0,PΣ(v)),σ),δAS(y0,PΣAS(v)),m, l),
and if σ ∈ ΣAS, then δASP(z0,vσ) =
(δ (a0,PΣ(v)),δAS(δAS(y0,PΣAS(v)),σ),m, l) where in
each case due to Definition 1 we get δASP(z0,vσ) =
(δ (a0,PΣ(vσ)),δAS(y0,PΣAS(vσ)),m, l).

Lemma 2 will help us with the proofs to come. Note
that the definition of nonblockingness and controllability
stays the same as given in Section II. However, because
of introducing new sets of enabling and observed events,
the formal definition of conventional controllability needs
to be adapted for the asynchronous setting given as asyn-
chronous controllability in Definition 7. A supervisor is
(asynchronously) controllable for the plant if any uncontrol-
lable event that could occur in the plant can be executed in
the asynchronously supervised plant.

Definition 7 (Asynchronous Controllability): Consider
the plant G with event set Σ. Then, supervisor AS is
asynchronously controllable for G if for all w ∈ L(AS|/|G)
and u ∈ Σuc, if PΣ(w)u ∈ L(G) then wu ∈ L(AS|/|G). �

In the proposed asynchronous setting, by definition, an
uncontrollable plant event can occur whenever it is enabled in
the plant, even though the plant is controlled by a supervisor.
Therefore, as we prove in Property 1, the asynchronous con-
trollability condition is always guaranteed by the definition of
the asynchronous composition operator. Note that, although
the Σo events are uncontrollable, they are not enabled in the
plant and therefor not considered as such in asynchronous
controllability.

Property 1 (Controllable Asynchronous Supervisor): For
any AS and G, AS is asynchronously controllable for G. �

Proof: Take w ∈ L(AS|/|G) and u ∈ Σuc such that
PΣ(w)u∈ L(G). Then, we need to prove that wu∈ L(AS|/|G).
For w ∈ L(AS|/|G), from Lemma 2, we have δASP(z0,w) =
(δ (a0,PΣ(w)),δAS(y0,PΣAS(w)),m, l) for some m ∈ M, l ∈ L .

Then, from item 2 of Definition 6, we know that u occurs
in AS|/|G only if it is enabled by the plant where due to
the assumption we have δ (a0,PΣ(w)u)!. So from δASP(z0,w),
the event u can occur which results in δASP(z0,wu) =
(δ (a0,PΣ(w)u),δAS(y0,PΣAS(w)),m
 [u], l).

Problem Statement In the following, for a given plant
G, we aim to find an asynchronous supervisor AS such that
AS|/|G is nonblocking.

IV. SYNTHESIS

In a real implementation, a supervisor determines the
enabling commands based on the observations that it re-
ceives. Moreover, it could be possible that although the
supervisor has sent a control command, the plant executes
an uncontrollable event (or simply ignores the command
because it cannot execute it). The control command will then
stay in the control channel and it may, in some cases, block
other controllable events waiting in the control channel to be
executed in the plant. To achieve an asynchronous supervisor
providing controllability and nonblockingness in the asyn-
chronous setting, we do the synthesis on the “asynchronous
plant” which is indicated in Figure 4.

The asynchronous plant is a model for how events are
executed in the plant based on enabling events, and also
how observations of the executed events may occur in the
asynchronous setting. To achieve the asynchronous plant
automaton, we need to determine all possible cases that the
control commands (enabling events) could have been sent in
the asynchronous setting. Since enabling events are based on
observations, we first start by presenting a model for how the
plant is actually observed in an asynchronous setting which
we call the “observed plant”, and it is shown in Figure 4.
The formal definition of the observed plant is presented in
Definition 8. To achieve a finite representation, the size of
the observation channel is considered to be limited to No.

Fig. 4: Asynchronous plant and observed plant.

Definition 8 (Observed Plant): For a plant G = (A, Σ, δ ,
a0, Am), we define

ϒ(G,No) := (Q,ΣOP,δOP,q0,Qm),

��

where
Q = A×M, ΣOP = Σ∪Σo,

q0 = (ao, []), Qm = Am ×M.

The states of ϒ(G,No) depend on the current states of the
plant and of the medium. Initially, no event has occurred yet,
and thus the medium is empty. Whenever an event occurs in
the plant, it will be stored in the medium until it is observed.

For a ∈ A, m ∈ M and σ ∈ Σ, the transition function δOP :
Q×ΣOP → Q is defined as follows:

1) If δ (a,σ)! and |m|< No

δOP((a,m),σ) = (δ (a,σ),m
 [σ]).

2) If σ ∈ m

δOP((a,m),σo) = (a,m\ [σ]).

Note that when there are multiple events in the medium,
these can be observed in all possible orders. �

Example 2: Let us again consider the plant from Example
1. The observed plant obtained from Definition 8 is given in
Figure 5. �

a0

[]

a1

[u1]

a2

[u1,u2]

a2

[u1]

a4

[u1,u2,c2]

a4

[u1,c2]

a4[u1,u2]

a4[u1] a4

[u2]

a4[c2]

a4[]

a4[u2,c2]

a3

[u1,c1]

a1

[]

a2

[u2]

a2 []

a3

[c1]

a3

[]

a3

[u1]

u1 u2 u2o

c1 u1o u1o u1o

u2 u2o

u1o c1

c1o

c1o

u1o

c2

c2 u2o c2o

c2o u2o u1ou1o

u1o

u2o

c2o
u1o

c2o
u2oc2

c2

Fig. 5: Observed plant for G from Example 1.

The next step is to determine all feasible enabling events
that could have been sent in the asynchronous setting
based on the observed plant. However, since enabling events
are only related to controllable events, we leave out the
uncontrollable events of the observed plant. We also use
the plant model to determine how events will be executed
in the plant, and how the observations can occur in the
asynchronous plant. The asynchronous plant automaton is
achieved using the operator given in Definition 9. To obtain a
finite automaton, the size of observation and control channels
are limited to No and Nc, respectively. These limitations are
required to guarantee the finiteness of the set of states in the
presence of an event-loop.

Definition 9 (Asynchronous Plant Operator): For a given
plant, G = (A,Σ,δ ,a0,Am) and constants Nc and No, Π gives
the asynchronous plant as the following automaton:

Π(G,Nc,No) = (X ,ΣASP,δAP,x0,Xm), (2)

Let OP′ = PΣOP\Σuc(ϒ(G,No)) = (Q′,ΣOP,δOP′ ,q′0,Q
′
m), and

X = A×Q′ ×M×L,

x0 = (a0,q′0, [],ε),
Xm = Am ×Q′ ×M×L.

For a∈ A, q′ ∈Q′, m∈M and l ∈ L, the transition function
δAP : X ×ΣASP → X is defined as follows:

1) If δOP′(q′,σ)!, σ ∈ Σc and |l|< Nc

δAP((a,q′,m, l),σe) = (a,δOP′(q′,σ),m,app(l,σ)).

2) If δ (a,σ)!, head(l) = σ ,σ ∈ Σc and |m|< No

δAP((a,q′,m, l),σ) = (δ (a,σ),q′,m
 [σ], tail(l)).

3) If δ (a,σ)!,σ ∈ Σuc and |m|< No

δAP((a,q′,m, l),σ) = (δ (a,σ),q′,m
 [σ], l).

4) If σ ∈ m, δOP′(q′,σo)!

δAP((a,q′,m, l),σo) = (a,δOP′(q′,σo),m\ [σ], l).

5) If σ ∈ m, ¬δOP′(q′,σo)!

δAP((a,q′,m, l),σo) = (a,q′,m\ [σ], l). �
Proposition 1 (Finite Asynchronous Plant): For a given

plant G which is being supervised and observed through the
control and observation channels with limited capacities Nc
and No, respectively, Π(G,Nc,No) is a finite automaton. �

Proof: Π(G,Nc,No) is finite if it has a finite set of states
and a finite set of events. Let us first prove that X is finite.
Due to Definition 9, X = A×Q′ ×M×L. To prove that X is a
finite set, it is sufficient to guarantee that A,Q′,M and L are
finite sets because as proved in [18] the Cartesian product of
finite sets is finite. A is a finite set since we assumed that the
plant is modeled by a finite automaton. For each q′ ∈ Q′, we
know that q′ ⊆ Q. So, we should prove that Q is a finite set.
Q = A×M is finite since A and M are finite as the maximum
size of M is limited to a finite number No. Finally, L is finite
since its size is limited to Nc.

Example 3: For the plant given in Example 1, we use
the projected observed plant OP′ depicted in Figure 6 to
determine the occurrences of the enabling events in the
asynchronous plant for which we do not need the state
information of OP. The asynchronous plant is given in Figure
7. Each state indicates the current states of G and OP′,
and also the events existing in the control and observation
channels which are not shown in the figure due to lack of
space. �

The asynchronous plant determines all the feasible en-
abling commands, executions of events in the plant, and
observations of them. An asynchronous supervisor is then
synthesized for the asynchronous plant to determine which
of the enabling events need to be disabled. The synthesis
algorithm is presented in Algorithm 1 in which we use the
following additional concepts:

• Blocking(AP) is the set of blocking states in AP.
• UnconAP(BS) is the smallest set of states such that

1) BS ⊆ UnconAP(BS);

���

q′0 q′1 q′11

q′10 q′12

q′14 q′13q′9

q′15

q′8

q′4 q′2 q′3

q′6q′7

q′5

u2o

c1 u1o u1o

u2o

u1o c1

c1o

c1o

u1o

c2

c2 u2o c2o

c2o u2o u1ou1o

u1o

u2o

c2o
u1o

c2o
u2oc2

c2

Fig. 6: OP′ for G from Example 1.

2) if δAP(x,σ) ∈ UnconAP(BS) for some x ∈ X and
σ ∈ Σ∪Σo, then x ∈ UnconAP(BS);

Intuitively this set provides all the states from which a
state from BS can be reached in an uncontrollable way.

• Events executed in the plant are unknown to a supervi-
sor until it receives the observations. Therefore, while
doing synthesis we need to be careful that the plant
events are unobservable in the asynchronous plant, and
a supervisor should make the same decision for any two
words that it cannot distinguish between. To consider
this issue in the synthesis algorithm, we use the function
OBSAP(x) = {x′ ∈ X | ∃w,w′ ∈ Σ∗

AP,δAP(x0,w) = x ∧
δAP(x0,w′) = x′ ∧PΣe∪Σo(w) = PΣe∪Σo(w

′)} which gives
the set of states reachable through the same observa-
tion (observationally equivalent states). For instance,
OBSAP(x0) = {x0,x1,x2} in Figure 7.

Algorithm 1 Asynchronous supervisory control synthesis
Input: AP = (X ,ΣASP,δAP,x0,Xm), Σuc, Σc
Output: AS = (Y,ΣAS,δAS,y0,Ym) or no result

1: AS ← AP
2: BS ← Blocking(AS)
3: while x0 /∈ BS∧BS 	=∅ do
4: for y ∈ Y ∧σ ∈ Σe do
5: if δAS(y,σ) ∈ UnconAP(BS) then
6: for y′ ∈ OBSAP(y) do
7: δAS(y′,σ)← undefined
8: AS ← Reach(AS)
9: BS ← Blocking(AS)

10: if x0 ∈ BS then
11: no result
12: AS ← PΣASP\Σ(AS)

Additionally, we could also have assumed that some events
from Σe are unobservable. In this case, there would be more
states which become observationally equivalent, and so the

x0 x1 x2 x3

x22 x23

x4 x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15

x16 x17

x18 x19 x20 x21

x24 x25 x26 x27 x28

x29 x30 x31

u1

c1e

c2e

u2

u1o

c1e

c2e

u2o

u1o

c1e

c2e c2

u1o

c2o

u1e u1o

u1 u2

u1o c1 u2o u1o

u1o

u2

c1 u1o
c1o u1o u2o

c1o u1o

u2o

u1 u2

u1o u1o

c2

u2o

u1o

u2o

u2 c2

u2o

u2o c2o

c1e

u2

c2

u2o

Fig. 7: Asynchronous plant for G from Example 1.

resulting supervisor could be more restrictive since a control
command should be disabled at all observationally equivalent
states if it needs to be disabled at one of them.

Starting from AS = AP, Algorithm 1 changes AS by
disabling transitions at line 7, and delivering the reachable
part at line 8.

Lemma 3 (Algorithm Termination): The synthesis algo-
rithm presented in Algorithm 1 terminates. �

Proof: Let the output of the algorithm at iteration i
be indicated by AS(i). In each iteration, say iteration i, of
Algorithm 1 at least one of its reachable states (from the
nonempty set BS) is removed (by making all edges leading
into those states undefined (line 7)). Since the automaton is
finite state initially, this can only be done finitely often.

Example 4: Let us reconsider the plant from Example
1. By applying Algorithm 1, we achieve the asynchronous
supervisor given in Figure 8. Note that if c2 was replaced by
c1 in the plant (Figure 2a), then no result exists, precisely
because in the asynchronous setting observation of u2 is not
immediate. �

Note that for any asynchronous supervisor resulting from
Algorithm 1, the asynchronously supervised plant is a finite
automaton. Moreover, as discussed in Property 1, controlla-
bility of the synthesized asynchronous supervisor is already
guaranteed. In Theorem 1, we prove that the asynchronous
supervisor obtained from Algorithm 1 guarantees nonblock-
ingness.

Theorem 1 (Nonblocking Asynchronous Supervisor): For

��

y0 y1 y2

y3

y5y4 y6 y7

y8 y9

c1e

u2o u1o

u2o

u1o

c1o

u1o

u1o u2o

c1e

c1o

u2o

u1o

Fig. 8: Asynchronous supervisor for G from Example 1.

G = (A,Σ,δ ,a0,Am) and AS = (Y,ΣAS,δAS,y0,Ym) achieved
from Algorithm 1, AS|/|G is nonblocking. �

Proof: AS|/|G = (Z,ΣASP,δASP,z0,Zm) is nonblock-
ing if for all z ∈ Reach(z0) there exists a word w ∈
Σ∗

ASP such that δASP(z,w) ∈ Zm. Take z ∈ Reach(z0) where
z = (a,y,m, l), then we need to find w ∈ Σ∗

ASP for which
δ (a,PΣ(w)) ∈ Am and δAS(y,PΣAS(w)) ∈ Ym since Zm = Am ×
Ym ×M × L. From Lemma 2, we know that δASP(z0,w) =
(δ (a0,PΣ(w)),δAS(y0,PΣAS(w)),m, l) for some m ∈ M, l ∈ L.
We also have AS is nonblocking when Algorithm 1 termi-
nates successfully which means that there is no blocking
state to be removed (BS = ∅) and also due to Property 1
the projection operator does not change the nonblockingness
of an automaton. So, we can say that for y ∈ Reach(y0)
there exists a word w′ ∈ Σ∗

AS such that δAS(y,w′) ∈ Ym.
From Algorithm 1, we have AS ⊆ PΣAS(AP) since we start
the algorithm from AS = AP and we remove transitions
leading to blocking states, and finally we use the projection
to leave out the Σ events. The state y ⊆ X is a set of
observationally equivalent states of AP. Since δAS(y,w′)!,
we can say that ∀x ∈ y,∃w ∈ Σ∗

ASP,δAP(x,w) ∈ Xm because
otherwise all observationally equivalent transitions have been
removed and ¬δAS(y,w′)!. Take w ∈ Σ∗

ASP,δAP(x,w) ∈ Xm,
we only need to prove that δ (a,PΣ(w)) ∈ Am. δAP(x,w) ∈
Xm,Xm = Am ×Q′ ×M ×L. So, δAP(x,w) ∈ Xm implies that
δ (a,PΣ(w)) ∈ Am.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the problem of inexact syn-
chronization that may cause a conventionally synthesized
supervisor to fail in practice. For this purpose, we first
present an asynchronous supervisory control setting in which
control commands may arrive in the plant after some delay,
and events executed in the plant may not be immediately
observed. We also assume that events executed in the plant in
some order could be observed in a different order. Moreover,
we assume that the plant can execute controllable events
only if they are commanded by the supervisor. On the
other hand, the plant is free to execute a control command
sent by the supervisor or ignore it. In the asynchronous
setting, uncontrollable events may be executed in the plant
spontaneously, and a supervisor has no role in the occurrence
of them. Therefore, controllability is always guaranteed by

the definition of asynchronous composition. Furthermore,
we present a method for achieving an automaton called the
asynchronous plant representing the behavior of the plant in
the asynchronous setting. Finally, a synthesis algorithm is
presented for obtaining an asynchronous supervisor guaran-
teeing nonblockingness.

In this paper, we solved the basic synthesis problem to
provide nonblockingness. To synthesize an asynchronous
supervisor satisfying control requirements, we can first trans-
late the requirements to the plant, and then apply the basic
synthesis technique.

For cases with large state spaces, we must deal with the
scalability problem of the asynchronous plant, which we aim
to consider in future research.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer Science & Business Media, 2009.

[2] W. M. Wonham, “Supervisory control of discrete-event systems,”
Encyclopedia of Systems and Control, pp. 1396–1404, 2015.

[3] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 39, no. 2, pp. 329–342, 1994.

[4] M. Fabian and A. Hellgren, “PLC-based implementation of super-
visory control for discrete event systems,” in Decision and Control,
1998. Proceedings of the 37th IEEE Conference on, vol. 3. IEEE,
1998, pp. 3305–3310.

[5] F. Basile and P. Chiacchio, “On the implementation of supervised
control of discrete event systems,” IEEE Transactions on Control
Systems Technology, vol. 15, no. 4, pp. 725–739, 2007.

[6] A. B. Leal, D. L. Da Cruz, and M. d. S. Hounsell, “Supervisory control
implementation into programmable logic controllers,” in Emerging
Technologies & Factory Automation, 2009. ETFA 2009. IEEE Con-
ference on. IEEE, 2009, pp. 1–7.

[7] J. Zaytoon and B. Riera, “Synthesis and implementation of logic
controllers–a review,” Annual reviews in control, vol. 43, pp. 152–
168, 2017.

[8] L. Prenzel and J. Provost, “PLC implementation of symbolic, modular
supervisory controllers,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 304–
309, 2018.

[9] S. Balemi, “Communication delays in connections of input/output
discrete event processes,” in 1992 31st IEEE Conference on Decision
and Control. IEEE, 1992, pp. 3374–3379.

[10] P. Malik, “Generating controllers from discrete-event models,” 2002.
[11] S.-J. Park and K.-H. Cho, “Delay-robust supervisory control of

discrete-event systems with bounded communication delays,” IEEE
Transactions on Automatic Control, vol. 51, no. 5, pp. 911–915, 2006.

[12] S. Xu and R. Kumar, “Asynchronous implementation of synchronous
discrete event control,” in Discrete Event Systems, 2008. WODES
2008. 9th International Workshop on. IEEE, 2008, pp. 181–186.

[13] F. Lin, “Control of networked discrete event systems: Dealing with
communication delays and losses,” SIAM Journal on Control and
Optimization, vol. 52, no. 2, pp. 1276–1298, 2014.

[14] A. Rashidinejad, M. Reniers, and L. Feng, “Supervisory control of
timed discrete-event systems subject to communication delays and
non-fifo observations,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 456 –
463, 2018, 14th IFAC Workshop on Discrete Event Systems WODES
2018.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to
automata theory, languages, and computation,” ACM SIGACT News,
vol. 32, no. 1, pp. 60–65, 2001.

[16] S. Ware and R. Malik, “The use of language projection for composi-
tional verification of discrete event systems,” in 2008 9th International
Workshop on Discrete Event Systems. IEEE, 2008, pp. 322–327.

[17] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional
synthesis of maximally permissive supervisors using supervision
equivalence,” Discrete Event Dynamic Systems, vol. 17, no. 4, pp.
475–504, 2007.

[18] T. Jech, Set theory. Springer Science & Business Media, 2013.

��

