Transmission of UHF radiowaves through buildings in urban microcell environments

Citation for published version (APA):

DOI:
10.1049/el:19990467

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Table 2: Performance comparison of glint identification using noise samples

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_i</td>
<td>0.9387</td>
<td>0.9505</td>
</tr>
<tr>
<td>σ_i</td>
<td>3.2482</td>
<td>3.3436</td>
</tr>
<tr>
<td>σ_2</td>
<td>22.6284</td>
<td>24.7782</td>
</tr>
</tbody>
</table>

(A): glint identification using measurements; (B): synthetic glint noise shown in Fig. 2

Results and discussion: In this Section, we present some simulation results to demonstrate the performance of the proposed algorithm. The simulation environment is summarised as follows. The position measurement y_k was generated according to eqn. 3 with $x_{k-1} = x_{k-1} + \nu_{k-1} + \alpha_7 z/2$. The initial target position was $x_0 = 10 000 \text{ m}$ and the initial velocity was $v_0 = 1500 \text{ m/s}$. The sampling period T was 0.1 s and the sample size L was 300. The target manoeuvre was set to occur from $k = 151$ to $k = 200$ with $\alpha_7 = 40 \text{ m/s}^2$. The size of the trimmed mean filter was 25 ($N = 12$) and the M in eqn. 7 was 1. Two sets of measurement noise ν_k were generated: the first was from a true mixture of two Gaussian distributions and the other was from the synthetic glint model in [1].

Fig. 2 Synthetic glint noise record

We first examined the results when the measurement noise was generated from a Gaussian mixture of parameters $c_1 = 0.9$, $\sigma_1 = 1$ and $\sigma_2 = 5$. A Monte Carlo simulation of 50 runs was conducted, and the initial parameter estimates were set as $\hat{c}_1 = 0.75$, $\hat{\sigma}_1 = 2$ and $\hat{\sigma}_2 = 10$. The mean values and the mean squared errors (MSEs) of the identified parameter are listed in Table 1. As we can see, the mean estimates for the proposed algorithm are very close to the true parameter values. Compared with the identification using the pure noise data, our method yields somewhat larger MSFs.

Next we examine the results for identifying the synthetic glint noise record in Fig. 2. The same initial estimates were used and the results are listed in Table 2. From this Table, we see that the identified parameters using the measurements are similar to those using the pure glint data. Thus, we can conclude that the proposed algorithm is effective for online glint identification.

© IEE 1999
Electronics Letters Online No: 19990459
DOI: 10.1049/et:19990459

Wen-Rong Wu (Department of Communication Engineering, National Chiao-Tung University, Hsinchu, Taiwan, Republic of China)
Kuo-Guan Wu (Department of Computer Science and Information Engineering, National Chiao-Tung University, Hsinchu, Taiwan, Republic of China)

References

Transmission of UHF radiowaves through buildings in urban microcell environments

Results are presented of high-resolution time delay and angle-of-arrival measurements behind a large building in an urban microcell. It is demonstrated that in this particular case the electromagnetic field is dominated by contributions resulting from transmission through the building. The associated loss over free-space loss is < 30dB. This makes clear the importance of modelling propagation through buildings surrounding the base station in the planning stage of urban microcells.

Introduction: The current growth of the personal wireless communications market is putting high pressure on mobile radio networks to explore capacity-increasing techniques such as the use of microcells. Whereas the base station (BS) antennas used in conventional macrocells are usually situated at high elevations, the idea of microcells is to place the BS antenna below the average height of the surrounding buildings to confine the radiated power within a small coverage area, such that the same frequency channels can be re-used at short distances without introducing an unacceptable degree of inter-user interference.

The efficient planning of microcells requires an accurate prediction of the electromagnetic field strength distribution. Various groups have been active in the development of so-called deterministic propagation models based on an accurate description of the buildings around the BS, and ray-tracing algorithms incorporating multiple reflection and diffraction [1–3]. Although considerably better than their statistical counterparts, these models have been found to provide an unsatisfactory prediction accuracy in some situations [5]. In particular, it was shown in [3] that deterministic models treating the buildings as being opaque at UHF frequencies can seriously underestimate the field strength behind the first buildings surrounding the BS. Since the shielding of the BS antenna from its nearby environment is essential in the microcellular concept, it is of special interest to obtain a better understanding of the propagation phenomena responsible for this discrepancy.

In the framework of a collaboration between EUT, KPN Research and Swisscom, an extensive measurement campaign was carried out in several urban microcell environments in Switzerland. In this Letter, we present the results of a high-resolution angle-of-arrival (AOA) measurement conducted behind a large building obstructing the line-of-sight to the BS antenna.

Experimental arrangement: The measurements reported in this Letter were conducted using a wideband radio channel sounding system previously described in [4]. In summary, a 50MHz pseudo-noise (PN) sequence is used as the sounding signal which modulates a 2000MHz carrier, and estimation of the complex impulse response (CIR) of the radio channel is performed at the mobile receiver through correlation of the demodulated received signal with a replica PN sequence. The resulting time delay resolution is equal to the chip period T_c of the applied PN sequence, which is 20ns.

Transmission was from a 3dB BS antenna (5m above ground level, which was well below the average roof top level of the surrounding buildings) to a mobile station (MS) equipped with a rotatable 2dB omnidirectional antenna (2.2m above ground level). Impulse responses were measured along a horizontal circle with radius $r = 30$m, thus effecting a synthetic uniform circular array (UCA) consisting of $M = 106$ elements.
For each propagation delay instant \(\tau_i \) in the measured CIRs, the complex signals at the output of the \(n \)th array element (with azimuth \(\gamma_n \)) can be expressed as

\[
y_m(\tau_i) = \sum_{n=1}^{N} s_n(\tau_i) e^{j2\pi \cos(\gamma_n - \gamma_m) + j\eta_m(\tau_i)}
\]

where the summation is over the \(N \) multipath contributions to the considered delay bin, \(s_n \) and \(\eta_n \) are the complex amplitude and azimuth angle of the \(n \)th wave, \(\xi \) (\(\lambda \) is the wavelength), and \(\eta_n \) is an additive noise signal. Based on the estimated covariance matrix of the vector \([y_1(\tau) \ldots y_N(\tau)]^T \) and an estimate of \(N \), the UCA-MUSIC algorithm [4] provides high-resolution estimates of the AOAs, both in azimuth and elevation.

Fig. 1 Plan of urban microcell environment

Crosses indicate BS and MS locations

Fig. 2 Measured and predicted field strength along Rodtmatt Street

--- predicted [3]

--- measured

Fig. 3 Average measured power delay profile

Fig. 4 Temporal and angular multipath distribution

Marker size indicates multipath wave amplitude relative to total power (down to –30dB); elevation angles are represented through \(\phi = 200^\circ \), or \(\phi < 11.4^\circ \), but of transmission through BR3. The small angular spread of these multipath waves is probably the result of multiple scattering taking place inside the building. The weaker waves arriving from around \(\phi = 200^\circ \) are reflected from building BR2, which is on the other side of the MS.

The second peak of the measured delay profile displayed in Fig. 3 appears as a second cluster of points in Fig. 4. The time delay difference between both clusters suggests that the second contribution is due to reflection from building BR3 (with reflection coefficient \(-7\)dB) and subsequent transmission through BR3.

Conclusions: The presented result shows that propagation through buildings surrounding the BS antenna can be the dominant propagation mechanism in urban microcells at UHF frequencies. This mechanism is commonly not taken into account by propagation prediction models used for the planning of microcells. The associated loss over free space loss is < 30dB in the situation considered in this Letter. Disregarding such a small shielding of the BS antenna in the planning stage of urban microcells may lead to unacceptable levels of inter-user interference.

Acknowledgments: The authors thank E. Zimmermann for his assistance with the measurements, and K. Risk for making available the field strength prediction data.

© IEE 1999 8 March 1999
Electronics Letters Online No: 19990467
DOI: 10.1049/el.19990467
Y.L.C. de Jong and M.H.A.J. Herben (Eindhoven University of Technology (EUT), Department of Electrical Engineering, PO Box 513, 5600 MB Eindhoven, The Netherlands)
J.-F. Wagen (Swisscom, Corporate Information and Technology, Ostermundigenstrasse 93, CH-3000 Bern 29, Switzerland)
A. Mawira (KPN Research, PO Box 421, 2260 AK Leidschendam, The Netherlands)

References

Characterisation of rhenium Schottky contacts on n-Type Al\(_x\)Ga\(_{1-x}\)N

L. Zhou, A.T. Ping, K. Boutros, J. Redwing and I. Adesida

The electrical characteristics of Re Schottky contacts on Al\(_x\)Ga\(_{1-x}\)N \((x = 0.15, 0.22 \) and 0.26\) grown by MOCVD on sapphire substrates have been investigated. The effective barrier heights were obtained from current-voltage and capacitance-voltage measurements and were found to increase with aluminium concentration.

The study of Schottky barrier contacts on Al\(_x\)Ga\(_{1-x}\)N is of great importance for the fabrication of high power and high temperature heterostructure field effect transistors (HFETs). To make gate contacts for such devices, metals are needed which form high barrier contacts on GaN [1]. However, the major concern with using these metals is that they are not stable at high temperature operation. Refractory metals or metal silicides are more desirable for high temperature applications. Rhenium has been predicted to form thermodynamically stable contacts on GaN [3]. Rhenium is more promising than tungsten because of its higher metal work function and its demonstrated ability to withstand annealing temperatures up to 700°C for 10min without performance degradation [4]. To date, no Schottky characteristics have been reported for Re on AlGaN. Such a study is necessary for exploring the possibility of using rhenium as the gate contact metal in Al\(_x\)Ga\(_{1-x}\)N HFETs. In this Letter, we report for the first time the Schottky characteristics of Re on Al\(_x\)Ga\(_{1-x}\)N \((x = 0.15, 0.22\) and 0.26\).

Fig. 1. Forward-bias log I – V characteristic for Re on Al\(_{0.22}\)Ga\(_{0.78}\)N and GaN

Inset: linear I-V characteristic of Re contact on Al\(_{0.22}\)Ga\(_{0.78}\)N

The Al\(_x\)Ga\(_{1-x}\)N layers used for this study were grown on (0001) sapphire substrates by metal organic chemical vapour deposition (MOCVD) and consisted of 3µm thick undoped Al\(_x\)Ga\(_{1-x}\)N followed by 1µm of Si-doped Al\(_x\)Ga\(_{1-x}\)N. The nominal bulk carrier concentration of the doped layers was \(2.5 \times 10^{19}\) cm\(^{-3}\). The GaN layer used in this study had a similar structure with a nominal bulk carrier concentration of \(1.4 \times 10^{18}\) cm\(^{-3}\). Photoluminescence was used to determine the aluminium concentration in the epitaxial layer. The measured device structure consisted of an array of 250µm diameter Schottky dots separated 25µm radially from the Ohmic contact. Ohmic contacts were formed using a Ti/Al/Ti/Au multi-layer that was rapidly thermally annealed in an N\(_2\) ambient. Rhenium contact dots were patterned using the metal lift-off technique. Prior to transferring the samples into the evaporation chamber, the surfaces were cleaned with an O\(_2\) plasma desum, followed by dips in dilute HCl/HF solutions. E-beam evaporation was used to deposit Re to a thickness of 80nm. The Schottky diode characteristics were measured using current-voltage (I-V) and capacitance-voltage (C-V) techniques. The room temperature I-V and C-V (1MHz) measurements were carried out using an HP4142 and an HP4280 semiconductor analyser, respectively.

Fig. 2. \(I/C^2\) against applied reverse bias for Re contacts on Al\(_{0.22}\)Ga\(_{0.78}\)N and GaN

Table 1 summarises the Re Schottky characteristics from both the I-V and C-V measurements. Our measured barrier height for Re on n-GaN agrees very well with those obtained by Venugopalan and colleagues. The effective barrier height \(\phi\) can be determined using the relationship given by [5]

\[
1/C^2 = 2(\phi - V - kT/q)/(S^2qcN_d) \tag{3}
\]

where \(S\) is the contact area. Linearly extrapolated relative dielectric constants were used for Al\(_x\)Ga\(_{1-x}\)N based on the values for GaN and Al\(_2\)O\(_3\) \([\epsilon = 9.5\), \(\epsilon = 9.0\)] [6].

Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Re Schottky Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al({0.22})Ga({0.78})N</td>
<td>(\phi \approx 0.95)eV, (\epsilon = 9.5)</td>
</tr>
</tbody>
</table>