Photoinduced absorption of \(\pi \)-conjugated polymers in solution

Institute for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106, USA.

Abstract

Near steady state photoinduced absorption (PIA) studies on soluble poly(p-phenylene vinylene) (PPV) and poly(p-phenylene ethynylene) (PPE) derivatives in various solvents reveals that the principal metastable photoexcitation is a triplet state. In contrast to poly(3 alkylthiophene) solutions, no charged photoexcitations are found in the PPV or PPE solutions.

1. INTRODUCTION

PIA spectroscopy of \(\pi \)-conjugated polymers has been successfully used to characterize the non-linear photoexcitations and their associated electronic states in the \(\pi-\pi^* \) energy gap.\(^ 1,2 \) Intrachain excitation above the \(\pi-\pi^* \) energy gap produces initially a transient singlet state which can be described by a band model (weak electron-hole correlation) or an exciton model (strong \(e^-h^+ \) correlation) depending on the nature of the polymer. The transient singlet state can decay via various pathways, e.g.: luminescence; intersystem crossing to the triplet manifold; and via the creation of long-lived charged polarons (P\(^ \pm \)) and bipolarons (BP\(^ \pm \)). The latter requires in general an interchain mechanism to prevent geminate \(e^-h^+ \) recombination. To distinguish between intrachain and interchain mechanisms, \(\pi \)-conjugated polymers have been studied in a polymer matrix (e.g. PE).\(^ 3 \) Alternatively, isolated \(\pi \)-conjugated polymer chains can be studied in dilute solutions. Recently, we have shown that the dominant metastable photoexcitation of poly(3-alkylthiophene) (P3AT) in various solvents corresponds to a (neutral) triplet state.\(^ 4 \) In a secondary process, polaronic (P\(^ \pm \)) excitations of P3AT are formed via a solvent-mediated photo-oxidation reaction.\(^ 4 \) The efficiency of the latter mechanism strongly depends on the nature of the solvent, which is actively involved in the stabilization of the ejected electrons.\(^ 4,5 \) In this contribution we present PIA studies on poly[2-methoxy-5-(2'-ethyloxyvinyl)-1,4-phenylene vinylene] (MEH-PPV), poly(bis-2,5-epi-cholestanoxy-1,4-phenylene vinylene) (BCHA-PPV), and poly(bis-2,5-epi-cholestanoxy-1,4-phenylene ethynylene) (BCHA-PPE) (Figure 1) in various solvents in order to elucidate the nature of long-lived photoexcitations in various solvents and to establish whether a branching between neutral and charged photoexcitations as observed in solutions of P3AT, also occurs in PPV and PPE.

2. EXPERIMENTAL

The synthesis and characterization of MEH-PPV, BCHA-PPV, and BCHA-PPE have been described elsewhere.\(^ 6-8 \) Their linear absorption onsets are found at 2.22, 2.25 and 2.48 eV (in THF), respectively. Deoxygenated solvents were used; samples (0.5 mg/mL) were prepared under argon in 1 mm cuvettes. PIA spectroscopy was performed with a mechanically modulated pump-and-probe technique.\(^ 3,4 \)

3. RESULTS AND DISCUSSION

3.1. MEH-PPV

The PIA spectrum of MEH-PPV in THF exhibits a single well-defined band centered at 1.55 eV (Figure 2) and increases slightly sublinear with intensity (I) according to \(\Delta T \sim I^{0.84} \). The monomolecular lifetime as determined from the modulation frequency (\(\omega \)) dependence of \(\Delta T \) is 0.7 ms (Figure 3). Similar PIA bands have been observed in a MEH-PPV/PE blend as well as in films of other dialkoxy-PPV derivatives, and have been assigned to triplet excitons.\(^ 3,5,10 \) For a charged excitation (P\(^ \pm \)),

* On leave from the Department of Chemical Engineering, Eindhoven University of Technology, The Netherlands.
Triplet excitons have recently been reported for poly(2,5-dibutane-1,4-phenylene ethynylene) in films.11

4. CONCLUSION

PIA studies on MEH-PPV, BCHA-PPV and BCHA-PPE in various solvents reveal single subgap absorptions centered at -1.55, -1.51 and -1.69 eV which are attributed to a triplet photoexcitation. The lifetime of this photoexcitation in solution at ambient temperature is on the order of 1 ms, and therefore significantly enhanced as compared to the lifetime of P3AT triplet excitons in solution ($< 50 \mu$s).4 A tentative rationalization for the fact that the $T_{1}-S_{0}$ decay in P3AT is faster than in PPV and PPE is the large spin-orbit coupling constant of sulfur which enhances intersystem crossing. In contrast to P3AT, we do not observe the formation of long-lived charged polaronic excitations in solution for the present PPV and PPE derivatives.

ACKNOWLEDGMENT

This research has been supported by the Office of Naval Research through a grant of the Chemistry Division (K. Wynne Progam Officer)

REFERENCES