Modeling of Energy Losses During Cornering for Electric City Buses

Camiel J.J. Beckers1, Igo J.M. Besselink1 and Henk Nijmeijer1

Abstract—Accurate energy consumption prediction is essential for optimal operation of battery electric buses. Conventional prediction algorithms do not consider energy losses during turning of the vehicle, which is especially relevant for city buses driving curvy routes. This paper presents a model describing steady-state cornering of such buses and analyses the additional energy consumption. The model includes multiple nonlinear effects, such as large steer angles, double rear wheels, and lateral load transfer. The resulting four nonlinear equilibrium equations are solved iteratively to obtain steady-state solutions. These reveal that both cornering resistance at the front wheels and tire scrub of the double rear wheels cause energy losses, varying as function of vehicle velocity and corner radius. Combination of the results with a recorded city trip of a battery electric bus reveals that these effects combined may account for 2.3\% of the driveline energy consumption.

Index Terms—EV energy prediction, heavy-duty vehicle, tire energy losses, cornering

I. INTRODUCTION

In the past decade, Battery Electric Buses (BEBs) have emerged as an alternative for diesel-powered public road transport. BEBs are more environmentally friendly, without local pollution, and have the potential for a low total cost of ownership, due to the low running expenses [1]. However, efficient usage of the vehicles is essential to counter the high initial purchase costs. This poses a challenge for timetable schedulers, who have to take into account the charging strategies and limited driving range of the vehicles. This driving range is often uncertain and is influenced by several environmental and vehicle parameters, resulting in conservative, sub-optimal time tables and use of redundant vehicles.

A solution to this challenge is offered by developing more accurate energy consumption prediction algorithms. These algorithms reduce the uncertainty regarding the remaining driving range and possibly enable energy efficient dynamic scheduling. While procedures for prediction of energy consumption are extensively described in the literature, for example [2], [3], [4], [5], [6], almost all algorithms - often implicitly - assume straight line driving of the vehicle. This assumption is not always valid, especially when electric city buses are considered. The city routes contain many corners, which cause additional energy losses in the tires.

There are some studies that do consider corners in the energy consumption prediction. One example is found in the paper of L. L. Ojeda, A. Chasse, and R. Gousault [6], where the effects of road curvature are included in the vehicle dynamic construction. Still, the applied vehicle energy consumption model assumes straight-line driving.

Even though these studies quantify the cornering losses for particular cases to some extent, the contribution of these losses to the overall energy consumption is rarely considered. Furthermore, the models used are either entirely or partially linearized and do not consider load transfer between the tires of the vehicle. The assumptions underlying these models are no longer valid in small-radius corners, where tire side-slip angles can become large and lateral load transfer is significant. Furthermore, little of the literature on cornering losses is focussed specifically on buses.

In this paper, the energy losses that occur during cornering of a BEB are assessed by development of a nonlinear steady-state cornering model. Two physical effects that contribute to the energy consumption are considered: cornering resistance due to side-slip of the tires and vehicle, and tire scrub of the double rear tires. Real-world vehicle data is used to assess the relative impact of cornering energy losses on the total energy consumption of the vehicle driveline.

II. METHODOLOGY

Figure 1 shows a schematic top view of a BEB, with all relevant dimensions, individual tire velocities, and the resulting tire forces indicated. Additional to a standard double track model [12], the considered vehicle has double rear tires. The two sets of double rear tires each have angular velocities ω_L for tires 3 and 4, and ω_R for tires 5 and 6. In the depicted steady-state cornering situation, the vehicle velocity $v = |\vec{v}|$ is constant, as well as the cornering radius R. The front
wheels have a constant steer angle δ_1 and δ_2, respectively, which is averaged as $\delta = \frac{1}{2}(\delta_1 + \delta_2)$. This results in a constant yaw-rate ω_z, a constant vehicle side-slip angle β, and a constant lateral acceleration $a_n = |\vec{a}_n|$. The goal of the steady-state cornering model is to determine the individual tire forces in this situation.

A. Kinematics

Given the degrees of freedom of the model $s = [\delta, \beta, \omega_L, \omega_R]^T$ and the corner parameters (v, R), the velocity components of the Center of Gravity (CoG) are given by

$$\begin{align*}
v_x &= v \cos(\beta) \\
v_y &= -v \sin(\beta) \\
\omega_z &= \frac{v}{R}
\end{align*}$$

with v_x the longitudinal vehicle velocity and v_y the lateral vehicle velocity. For further calculations, a multibody dynamics approach is applied. The velocity components are stored in a column \vec{v} such that

$$\vec{v} = \begin{bmatrix} v_x \\ v_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \vec{e}_x \\ \vec{e}_y \\ \vec{e}_z \end{bmatrix},$$

where \vec{v} indicates the column containing the coordinates that describe the velocity vector \vec{v}, and \vec{e} is the column of unit vectors that describe a vehicle-fixed axis system that has its origin in the CoG. Using the same notation, the position of each of the six tires with respect to the CoG is expressed as

$$\vec{p}_i = \begin{bmatrix} p_{x,i} \\ p_{y,i} \end{bmatrix}, \\ i = 1, 2, ..., 6,$$

where the columns \vec{p}_i contain the tire position coordinates, solely depend on the vehicle dimensions l_f and l_r which define the distance between the vehicle CoG and the front and rear axle respectively, and the track widths defined by s_1, s_2, and Δs, which are indicated in Fig. 1.

The local tire velocity vector coordinates can be expressed in each of the tire-fixed axis systems according to

$$\vec{v}_i = A(\delta_i) \begin{bmatrix} v \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} p_{x,i} \\ p_{y,i} \end{bmatrix}, \\ i = 1, 2, ..., 6,$$ (4)

where $A(\delta_i)$ denotes the direction cosine matrix that rotates the velocity vector from the vehicle-fixed frame to the tire-fixed frame as function of the steer angle δ_i and is defined by

$$A(\delta_i) = \begin{bmatrix} \cos(\delta_i) & \sin(\delta_i) & 0 \\ -\sin(\delta_i) & \cos(\delta_i) & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$ (5)

The front wheel steer angles δ_1 and δ_2 are assumed to be related through the Ackermann steering relation [13, p. 33], which allows for the kinematic relations

$$\begin{align*}
\delta_1 &= \tan^{-1}\left(\frac{l}{\tan \delta_1} - s_1\right)^{-1} \\
\delta_2 &= \tan^{-1}\left(\frac{l}{\tan \delta_2} + s_1\right)^{-1}
\end{align*}$$

with $l = l_f + l_r$ the wheelbase of the vehicle. The steer angles of the rear wheels are zero, resulting in $A(\delta_3) = A(\delta_4) = A(\delta_6) = 1$, where I is the 3×3 unity matrix.

The column \vec{v}_i contains the coordinates of the local velocity vector with respect to the tire-fixed axis system, where the first and second component are denoted as $v_{x,i}$ and $v_{y,i}$, respectively. From these velocity components, the tire side-slip angle can be determined, according to

$$\alpha_i = \tan^{-1}\left(-\frac{v_{y,i}}{v_{x,i}}\right), \quad i = 1, 2, ..., 6.$$ (8)
Furthermore, the longitudinal slip ratio is calculated as
\[
\kappa_i = -\frac{v_{x,i} - \frac{r_{e,i}}{l_e}(F_{z,i})_\omega}{|v_{x,i}|} \quad i = 1, 2, ..., 6 ,
\] (9)
where the effective tire radius \(r_{e,i} \) is considered to be a function of the vertical force \(F_{z,i} \), acting on the tire. Longitudinal slip on the front wheels, which are not driven, is assumed to be zero. Therefore, \(\kappa_1 = \kappa_2 = 0 \).

B. Dynamics

In the calculation of the vertical tire forces, load transfer due to the longitudinal and lateral acceleration acting on the elevated CoG of the vehicle is taken into account. These accelerations are defined respectively as
\[
a_x = \sin(\beta)\frac{g^2}{R} \quad a_y = \cos(\beta)\frac{g^2}{R} .
\] (10)
Subsequently, a pitch moment \(M_{pitch} \) and roll moment \(M_{roll} \) are defined that are perceived in the vehicle fixed axis system:
\[
M_{pitch} = -h a_x m \quad M_{roll} = h a_y m ,
\] (11)
where \(h \) is the height of the center of gravity with respect to the ground, and \(m \) is the total vehicle mass. A positive pitch moment \(M_{pitch} \) would shift part of the total vertical force from the rear axle to the front. This difference in vertical force is indicated by
\[
\Delta F_{z,pitch} = \frac{M_{pitch}}{l_f + l_r} .
\] (12)
Likewise, a roll moment would result in a difference in the vertical force between the left and right track. The roll moment is distributed between the front and rear axle of the vehicle according to the roll moment distribution \(k_{dist} \), resulting in separate expressions for the lateral load transfer at the front and rear axle:
\[
\Delta F_{z,front} = -k_{dist} \frac{M_{dist}}{2s} \quad \Delta F_{z,rear} = (k_{dist} - 1) \frac{M_{dist}}{2s} .
\] (13)
The total vertical force on each of the tires is a result of the static vertical force plus the effects of the two types of load transfer, resulting in
\[
F_{z,i} = \frac{1}{2} m g \pm \Delta F_{z,front} + \Delta F_{z,pitch}/2 \quad i = 1, 2
\] (15)
\[
F_{z,i} = \frac{1}{2} m g \pm \Delta F_{z,rear} - \Delta F_{z,pitch}/4 \quad i = 3, 4, 5, 6
\]
with \(l = l_f + l_r \) and \(g \) the gravitational acceleration.

A simplified version of Pacekja’s Magic Formula [12, p. 7] is used to express both the longitudinal tire force \(F_{x,i} \) and the lateral tire force \(F_{y,i} \) of each tire as function of the slip conditions and the vertical force \(F_{z,i} \), according to
\[
F_{x,i} = f_{MF,x}(\kappa_i, F_{z,i}) \quad i = 1, 2, ..., 6 \quad \text{(16)}
\]
\[
F_{y,i} = f_{MF,y}(\kappa_i, F_{z,i}) \quad i = 1, 2, ..., 6 . \quad \text{(17)}
\]
Note that in this formulation \(f_{MF,x} \) and \(f_{MF,y} \) are considered to be independent. Thus, combined slip conditions are not taken into account. Furthermore, the longitudinal force expressions in \(f_{MF,x} \) are slightly altered with respect to the original Magic Formula to ensure monotonicity with respect to the slip ratio. This aids the convergence of Newton scheme, which will be described in Section II-C. Analysis shows that the alterations only effect extreme slip situations that do not occur in the final solutions of the model.

To describe the equilibrium equations governing the vehicle, the tire forces are transformed back to the vehicle axis system \(\mathcal{E} \) and are summed:
\[
\begin{bmatrix}
\sum_{i=1}^{6} F_{x,i} \\
\sum_{i=1}^{6} F_{z,i} \\
\sum_{i=1}^{6} F_{y,i}
\end{bmatrix} = \sum_{i=1}^{6} (\Delta^{-1}(\delta_i) \begin{bmatrix}
F_{z,i} \\
F_{y,i} \\
F_{x,i}
\end{bmatrix}) .
\] (18)

Four equilibrium equations are applicable. The first being the moment equilibrium around the vertical axis:
\[
\sum_{i=1}^{6} M_z = \sum_{i=1}^{6} p_{z,i} \times F_{z,i} = 0 .
\] (19)
Secondly, the steady-state force equilibrium should hold for both the longitudinal and lateral direction:
\[
\sum_{i=1}^{6} F_y = -m a_y = 0 \quad \sum_{i=1}^{6} F_x = -m a_x = 0 .
\] (20)
The last equilibrium equation results from the assumption that a mechanical differential distributes the torque produced by the driveline evenly and lossless between a torque on the left rear axle \(T_L \) and a torque on the right rear axle \(T_R \):
\[
T_L = (F_{x,3}r_{e,3} + F_{x,4}r_{e,4}) \quad T_R = (F_{x,5}r_{e,5} + F_{x,6}r_{e,6})
\] (21)
\[
T_L - T_R = 0 .
\] (22)

C. Newton Iterations

To find the steady-state solution of the model, (19), (20), (21), and (22) are solved simultaneously for the degrees of freedom \(\mathbb{X} = [\mathbf{\delta}, \beta, \omega_L, \omega_R]^T \). The solution is found iteratively, using adapted Newton iterations [14] to minimize the error in each of the four equilibrium equations. Specifically, \(\mathbb{X}_{k+1} = \mathbb{X}_k + \gamma (-J_k^{-1}(\mathbb{X}_k)) \quad k = 0, 1, 2, ... \) is evaluated repeatedly. In this equation, \(J_k \) is the Jacobian matrix of \(\mathbb{X}_k \) with respect to the degrees of freedom \(\mathbb{X}_k \), which is determined numerically using a finite difference method. The factor \(\gamma \) determines the adapted Newton step size and is in this case chosen inversely proportional to \(|\mathbb{X}_k|^3 \).

As starting point for the iterative scheme, the solution of the linearized single track model at low velocity is used:
\[
\mathbb{X}_0 = \begin{bmatrix}
\tan^{-1}(l/\sqrt{R^2 - l_e^2}) \\
\tan^{-1}(-l_r/\sqrt{R^2 - l_e^2})
\end{bmatrix} .
\] (24)
When, after repeated evaluation of (23), the errors of the four equilibrium equations reach a certain tolerance the solution \(\mathbb{X}_k \) is considered to describe a steady-state situation.
III. MODEL RESULTS

The methods described in the previous section allow for the calculation of the individual tire forces of all six tires for any realistic cornering situation defined by the vehicle velocity v and the cornering radius R. A cornering situation of $v = 20\text{ km/h}$ and $R = 10\text{ m}$ is considered for a typical BEB, of which the parameters are shown in Table I. Compared to conventional buses, BEBs are significantly heavier and have a higher CoG. By applying the methods in Section II-C to this situation, errors in the equilibrium equations of the model are minimized as displayed in Fig. 2. Furthermore, the starting solution of the linearized model and the final solution of the nonlinear model are summarized in Table II.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle mass</td>
<td>m</td>
<td>15000 kg</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>l</td>
<td>6 m</td>
</tr>
<tr>
<td>Longitudinal CoG position</td>
<td>l_f</td>
<td>3.5 m</td>
</tr>
<tr>
<td>CoG height above road</td>
<td>h</td>
<td>1.5 m</td>
</tr>
<tr>
<td>Average trackwidth</td>
<td>$2\delta = 2\delta_2 + \Delta s$</td>
<td>2 m</td>
</tr>
<tr>
<td>Roll moment distribution</td>
<td>k_{dls}</td>
<td>1/4</td>
</tr>
</tbody>
</table>

$v = 20\text{ km/h}$ and $R = 10\text{ m}$ are referred to as realistic cornering situations. The results show that the initial degree of freedom values, obtained from the linear single track model, serve as a suitable initial guess for the Newton scheme, but differ from the final results of the nonlinear model. The solution converges in 20 iterations and takes roughly 0.07 s to compute.

The model results for this small radius cornering situation, displayed in Fig. 3, show that the resulting vehicle side-slip angle and front wheel steering angles are significant. Consequently, the lateral tire force, indicated by red arrows originating from the center of these front wheels, is partially directed in the rearward direction. The tangential rearward components of these front wheel tire forces slow the vehicle down and are often referred to as **cornering resistance**.

Due to both cornering resistance and tire scrub, extra power is required to corner a BEB, additional to the existing roadloads, such as rolling resistance and aerodynamic drag. Using the described model, this additional power due to both tire effects can be calculated for a range of cornering situations (v, R). The results for the cornering resistance power P_{cRes}, in Fig. 5a, show that this power is highest for high velocity, low radius cornering situations, and lower for either low velocity or large radius corners. The cornering resistance power can reach values of up to 20 kW. The power lost due to tire scrub P_{scrub}, displayed in Fig. 5b, is generally lower than P_{cRes} and shows less velocity dependence. Nevertheless, for $R < 20\text{ m}$ values in excess of 0.4 kW are visible.

A second effect that is visible in Fig. 3 is **tire scrub**, due to the double rear wheels at each rear axle having a slightly different radius with respect to the corner center. This effect is visible as the opposing direction of the longitudinal tire forces on each of the sets of rear wheels. The inner wheel of each set creates a forward force, while the outer wheel creates a smaller rearward force. Together, the forces are positive and oppose the front wheel cornering resistance.

The figure also indicates the side-slip angles of the tires, highlighting the difference between the left and right side of the vehicle. Furthermore, the effects of lateral load transfer are evident in the vertical tire forces, displayed in Fig. 4.

A. Varying Cornering Situations

- **Front**
- **Rear**

![Vertical tire force](image)

Fig. 4. Vertical tire force of the steady-state solution for each of the six tires in case $v = 20\text{ km/h}$ and $R = 10\text{ m}$.

A. Varying Cornering Situations

Due to both cornering resistance and tire scrub, extra power is required to corner a BEB, additional to the existing roadloads, such as rolling resistance and aerodynamic drag. Using the described model, this additional power due to both tire effects can be calculated for a range of cornering situations (v, R). The results for the cornering resistance power P_{cRes}, in Fig. 5a, show that this power is highest for high velocity, low radius cornering situations, and lower for either low velocity or large radius corners. The cornering resistance power can reach values of up to 20 kW. The power lost due to tire scrub P_{scrub}, displayed in Fig. 5b, is generally lower than P_{cRes} and shows less velocity dependence. Nevertheless, for $R < 20\text{ m}$ values in excess of 0.4 kW are visible.

The powerlosses due to cornering resistance and tire scrub are summed and displayed in Fig. 6 as the combined cornering loss P_{loss}. The results are comparable to the results of solely the cornering resistance power (Fig. 5a), but with slightly higher values in the low velocity, small radius region. At large radii (straight line driving) the total cornering losses
Power losses due to rear wheel tire scrub: 2.33% + 0.34% = 8.59 kWh

Corner radius [m]: 0.171 / 0.029 / 0.200

Corner radius [m]: 0.01 / 0.01 / 0.04 / 0.04 / 0.04 / 0.04 / 0.1 / 0.1 / 0.3 / 0.3 / 0.7 / 0.7 / 1.6 / 1.6 / 3.8 / 3.8 / 8.9 / 8.9 / 20.7 / 20.7 / 48.3 / 48.3 / 1.129 / 1.129 / 0.062 / 0.062 / 0.023 / 0.023 / 0.009 / 0.009 / 0.003 / 0.003 / 0.001 / 0.001

Vehicle velocity [km/h]: 0 10 20 30 40 50 60 70 80

Table III

<table>
<thead>
<tr>
<th>Energy</th>
<th>[kWh]</th>
<th>UE_{driveline}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{driveline}</td>
<td>8.59</td>
<td></td>
</tr>
<tr>
<td>E_{cRes}</td>
<td>0.171</td>
<td>1.99%</td>
</tr>
<tr>
<td>E_{Scrub}</td>
<td>0.029</td>
<td>0.34%</td>
</tr>
<tr>
<td>E_{cRes} + E_{Scrub}</td>
<td>0.200</td>
<td>2.33%</td>
</tr>
</tbody>
</table>

The final results indicate that the cornering effects described by the model account for a significant 2.3% of the total driveline energy during the trip. It is also shown that the cornering losses can momentarily reach values of several kW during tight, fast corners. This is in accordance with the findings of Maclaurin [10], who simulated a vehicle of comparable weight and dimensions, and with the research performed by Gynes, Williams, and Simmons [7], who simulated and measured the cornering losses of articulated trucks. The latter study concludes that for long freight trucks,
a maximum of 3% of the total energy consumption can be
ascribed to cornering losses.

While the results appear plausible, some uncertainty in
recorded cornering radius is expected, as the calculation
relies on noisy GPS-data only. Nevertheless, the resulting
corner situation distribution is assumed to be realistic.

The model results show that the cornering resistance
losses are relatively large compared to the tire scrub losses.
This indicates that even in heavy-duty vehicles that are not
equipped with double rear tires, cornering losses might play
an important role. It is therefore also surprising that these
effects are hardly ever included in most energy consumption
prediction algorithms for single-tire vehicles.

The equilibrium equations of the proposed model are
solved using an iterative numerical method, where the so-
olution of a simplified, linearized model is used as an initial
guess. Even though this linearized model provides a decent
starting point for the iterative scheme, the final solution of
the nonlinear model differs from the solution of the linearized
model. This indicates the importance of using a nonlinear
model, without small angle assumptions, to simulate these
tight cornering situations. Furthermore, the importance of
using a double track model is highlighted by the simulation
results in Fig. 3 and Fig. 4, where the difference in side-
slip angles of the individual wheels and the difference in tire
forces of the left and right track are evident.

Even though the presented model contains many nonlin-
earities, not all physical effects are taken into account. The
tire model does not include turn slip or camber dynamics.
Although these effects could be included in the Magic
Formula [12, p. 183], they are assumed to have a negligible
effect on the power losses. Additionally, turn slip is small
when \(R \) is large compared to the tire width. Furthermore,
the current model presented here does not include aerodynamic
resistance or rolling resistance. Instead of quantifying the to-
tal resistance force, the model exclusively determines the tire
losses additional to these conventional road-loads. Therefore,
the model also does not account for the energy losses due to
the deceleration and subsequent acceleration of the vehicle
before and after the turn. Lastly, it is assumed that the losses
during a dynamic corner situation can be represented by a
summation of different steady-state cornering results.

While the main results indicate that the cornering losses are
significant in one particular city trip with a BEB in
city driving, more data from a variety of trips will have
to be evaluated to obtain more conclusive results regarding
the route-dependency of the results. Furthermore, dedicated
steady-state cornering tests with a full size vehicle are
considered as future work to match the outcome of the model
with a measured energy consumption during cornering.

V. CONCLUSIONS

In this paper, the energy losses that occur during cornering
of a BEB are modeled. The equations for a nonlinear
steady-state cornering model for a BEB are derived and
a solution method is proposed. The results indicate that
during cornering of a BEB, both cornering resistance and
tire scrub contribute to additional power losses, where the
former effect is more profound for most cornering situations.
Combining the cornering model analysis outcome with the
measured driveline energy consumption of a BEB reveals
that the mentioned effects constitute a significant 2.3% of
the total energy. Therefore, these effects should be taken into
account to improve energy consumption prediction accuracy
for BEBs.

REFERENCES

Nylund, “Fully electric city buses - the viable option,” in IEEE Int.
[Online]. Available: https://doi.org/10.1109/IEVC.2014.7056145

vehicle energy consumption modelling for range estimation,” Int.
Available: https://doi.org/10.1080/14746616.2017.135336

consumption prediction for electric vehicles based on real-world
Available: https://doi.org/10.3390/en8088573

consumption of electric vehicles and plug-in hybrid electric vehicles
under real-world driving conditions,” IET Intell. Transp. Syst.,
https://doi.org/10.1049/iet-its.2012.0114

“Development and validation of energy demand uncertainty
https://doi.org/10.1016/j.trd.2018.06.004

https://doi.org/10.1109/ITSC.2017.8317613

[7] L. Gyenes, T. Williams, and I. C. P. Simmons, “Power requirements
of articulated vehicles under cornering conditions,” Department
of the Environment Department of Transport, Crowthorne,
TRRL Supplementary Report 484, 1979. [Online]. Available:
https://htr.co.uk/sites/default/files/SR484.pdf

“Direct yaw moment control and power consumption of in-
wheel motor vehicles in steady-state turning,” Veh. Syst. Dyn.,
https://doi.org/10.1080/00423114.2016.1246737

cornering resistance in over-actuated vehicles using optimal control,”
2017. [Online]. Available: https://doi.org/10.4271/2017-01-1568

[10] B. Maclaurin, “Comparing the steering performances of skid- and
Available: https://doi.org/10.1243/09544070AUTO67

http://dx.doi.org/10.1016/j.proeng.2017.09.393

https://www.taylorfrancis.com/books/9781420049088

Available: http://ebooks.cambridge.org/etid/CBO9780511626418

of data by simplified least squares procedures.” Anal. Chem.,
https://doi.org/10.1021/ac60214a047