mode (denoted by the arrow in Fig. 3a) was seven modes away from the central mode of LD₂, which corresponded to a wavelength difference of 7.91 nm. When the injection locking took place, the centre mode jumped to the injected mode, and other modes were clearly suppressed as shown in Fig. 3b. The peak power ratio of the locked mode to the injected FWM component was 24.2 dB, and the sidemode suppression ratio (SMSR) was 14.3 dB. Note that the SMSR was somewhat degraded because the amplified spontaneous emission noise of the EDFA as well as FWM component was injected into LD₁.

Under those conditions, the locking half bandwidth Δf was 2.42 GHz. The theoretical value of the locking half bandwidth is given by [6]

\[\Delta f = \frac{1}{4\pi T_p} \sqrt{\frac{P_{FWM}}{P_{LD}}} \]

where \(T_p \) is the photon lifetime, and \(P_{FWM} \) and \(P_{LD} \) are the FWM power and the LD power inside the cavity of LD₁, respectively. By substituting the typical value of \(T_p = 2.0 \times 10^{-12} \) s into eqn. 1 and using the measured value of \(P_{FWM}/P_{LD} = 24.2 \) dB, the locking half bandwidth \(\Delta f \) is calculated as 2.45 GHz. This value agrees well with measurements.

In conclusion, we have proposed a novel intermodal injection locking for FP-LDs using FWM to realise the spare sources for WDM systems. The principle was confirmed by an experiment in which the injection locking of the 1.55-μm FP-LD was achieved by injecting the FWM component generated in a 1/4-shifted DFB-LD. The injection locking occurred up to seven modes away from the central mode of the FP-LD, which corresponded to a wavelength difference of 7.91 nm. The locking half bandwidth was 2.42 GHz, and the SMSR was 14.3 dB.

By using this technique, stable spare sources with wide tunable wavelength range can be realised.

© IEE 1999

Electronics Letters Online No: 19990790
DOI: 10.1049/el:19990790

R. Goto, N. Nishizawa and T. Goto (Department of Quantum Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan)

M. Mori (Department of Information Network Engineering, Aichi Institute of Technology, Yachigusa 1247, Yakusa-cho, Toyota 470-0392, Japan)

K. Yamane (Optical Systems Development Department, Fujitsu Ltd., Kamikodanaka 4-1-1, Nakahara-ku, Kawasaki 211-8580, Japan)

Optically preamplified receiver with low quantum limit

1. Tafur Monroy

An optically preamplified receiver configuration resulting in a very low quantum limit is presented.

Introduction: Optical amplifiers are proven to efficiently enhance the receiver sensitivity of optical communication systems. In optical communications it is common practice to compare the system's ultimate sensitivity in terms of the quantum limit. The (standard) quantum limit is defined as the average number of photons per bit in the optical signal needed to achieve a bit error probability of 10⁻⁴ assuming ideal detection conditions, which for a preamplified receiver means that a large amplifier gain is assumed. In this letter we present an optically preamplified OOK/DD receiver scheme with a very low quantum limit, which is predicted to outperform previously studied configurations.

![Fig. 1 Optically preamplified OOK receiver](image)

System model: The schematic diagram of the studied receiver is illustrated in Fig. 1. The preamplifier is an EDFA (erbium-doped fibre amplifier) which is modelled as a linear optical field amplifier with gain \(G \) and AWG (additive white Gaussian) noise \(n(t) \) representing the ASE (amplified spontaneous emission) noise. The spectral parameter of \(n(t) \) is given by \(\xi_n = n_n (G - 1) h \), where \(n_n \) is the amplifier spontaneous emission factor, \(h \) is Planck's constant, and \(v \) the optical frequency. An optical filter \(f(t) \) is used to limit the effect of ASE on the system performance, and in the case of WDM (wavelength division multiplexing) systems, to select the desired channel. The incoming signal is a binary sequence of rectangular pulses \(S(t) \). At the output of the filter \(f(t) \) the signal is denoted by \(Y(t) \) and the resultant coloured Gaussian noise by \(X(t) \). With the above notation the incident optical field on the photodetector becomes \(B(t) = Y(t) + X(t) \). The optical filter is a finite-time integrator over the bit duration time \([0, T]\), the impulse response \(r(t) \) of which is given by

\[r(t) = \begin{cases} \frac{1}{d} & 0 \leq t \leq T \\ 0 & \text{otherwise} \end{cases} \]

The postdetection filter is assumed to be an integrate-and-dump filter. The integration interval \(T \) is chosen to be \([T - dt/2, T + dt/2]\). The parameter \(d \) is selected so as to yield the lowest bit-error probability.

Performance analysis: For the performance analysis we need a complete statistical description of the receiver decision variable. The moment generating function (MGF) provides us with such statistical information. The MGF for the decision variable \(Z \) is given by \(M_A(s) = M_A(e^{(s-1)} \), where \(A \) is the so-called Poisson parameter \([1, 2, 3] \). For an integrate-and-dump postdetection filter \(\Lambda = \frac{1}{T} \int_0^T Y(t) + X(t)dt \). Based on the MGF for the decision variable \(Z \), error probabilities are expediently computed by the so-called saddlepoint approximation \([2, 3] \). The general mathematical form for the MGF of \(A \), \(M_A(s) = E(e^{(s-1)} \), is well known, e.g. \([2] \), and can be represented as

\[M_A(s) = [D(s)]^{-1} \exp(F(s)) \]

where \(F(s) \) and \(D(s) \) are found by solving the so-called Fredholm integral equations, e.g. \([2, 4] \). For the present case we have

\[F(s) = mG[H_1(s) + (6 - h^2 + h^2)H_2(s) + (h^2 + h^2)] \]

with

\[H_1(s) = \frac{8}{\beta E_{\cos A}} \sin \beta (2d - 4) + \sin \beta (4 - d^2 / 2 - 2d) \]
d(202s), and

tion only a single past and one succeeding bit (with respect to the
transmitted symbol 'one'. The parameter o_2 is presented in Fig. 2. We observe that the lowest quantum limit is
proposed receiver scheme has a lower quantum limit compared to
the previously studied configurations; for instance, to the author's
situation is the case when the optical signal is assumed to pass
the optical filter undistorted and that

for a receiver with an optical matched filter
small and optimised (yielding the lowest error probability), the
16.2 photon/bit for a factor d

dT

Fig. 2 Quantum limit against integration interval d

- - - saddlepoint
-- ----- Gaussian approximation

Gaussian approximation: The error probabilities may also be com-
puted by using the common Gaussian approximation for the sta-
tistics for the receiver decision variable. This approximation requires that the mean E_A and variance VarA, of the parameter A to
be known. These magnitudes can be determined either by using
the properties of the MGf or by solving a set of integrals involv-
ing $X(t)$ and the autocorrelation of $X(t)$ [4]. The resultant expres-
sions are

$$E_A = mG[H_2(s) = \frac{2}{\sigma^2 \beta \cos \beta} \sin \beta \sin x - \frac{d \cos x}{\sigma^2 \beta \cos \beta}$$

$$+ \frac{2}{\sigma^2 \beta \cos \beta} \sin \beta - \sin x)$$

$$H_2(s) = \frac{s}{\sigma^2 \beta \cos \beta} \sin \beta - d \sin x - \frac{d^2 \sin \beta}{2}$$

$$+ \frac{d \cos x}{\sigma^2 \beta \cos \beta} - \frac{2}{\sigma^2 \beta \cos \beta} \sin x - \frac{d \sin \beta}{2}$$

$$H_3(s) = \frac{1}{\beta \cos \beta} \left[(2d^2 \sin \beta / 4 - \frac{1}{\sigma^2} (d \cos x / 2 + \sin \beta - \sin x) \right]$$

where m is the number of received photons in an optical pulse for
a transmitted symbol ‘one’. The parameter d is $m(G - 1)$, $\beta = \sqrt{(202s)}$, and $x = [1 - d^2]$. The Fredholm determinant is given by $D(s) = \cos((202s)^{d/2})$. We observe that for this receiver configuration
only a single past and one succeeding bit (with respect to the
present observed bit b_0) presents intersymbol interference on the
present transmitted bit. Hence the bit sequence of interest is (b_1, b_0, b_0).

A plot of the quantum limit against the integration interval dT

Fig. 2 shows the result of the Gaussian approximation for the
quantum limit (dotted line). The minimum value is 24.8 photon/bit
for an integration interval $d = 0.12$.

Summary: We have shown that if the optical filter is a finite-time
integrator and the postdetection filter an integrator over a small
interval centred around the end of each bit interval then a quan-
tum limit of 16.2 photon/bit can be achieved. Although a finite-
time integrator optical filter (corresponding to a filter with a sinc
shaped transfer function) is probably difficult to realise, the pre-

tended receiver configuration outperforms previously studied
schemes. An interesting question, open for study, is which value
constitutes the ultimate theoretical lowest quantum limit for opti-
cally preamplified OOK/DD receivers.

© IEE 1999

References

1. Tafur Monroy (Eindhoven University of Technology, Telecommunications Technology and Electromagnetics, PO Box 513, 5000 MB Eindhoven, The Netherlands)

E-mail: i.tafur@ele.tue.nl

OTDM applications of dispersion-
imbalanced fibre loop mirror

I.Y. Khrushchev, I.D. Phillips, A.D. Ellis,
R.J. Manning, D. Nesbit, D.G. Moodie, R.V. Penty
and L.H. White

Improvement of the signal quality from 10GHz directly-
modulated sources and crosstalk suppression in an 80Gbit/s
OTDM system are demonstrated for the first time by means of nonlinear switching in a dispersion-imbalanced fibre loop mirror (DILM).

The nonlinear transformation of optical pulses in fibre interferom-
eters has long been of interest for the purposes of high-capacity
data transmission. Recently, a novel approach has been applied to the
generation of high-quality optical pulses from simple, directly-
modulated sources in a compact fibre device based on self-switching
in a dispersion-imbalanced fibre loop mirror (DILM) [1, 2].

High quality femtosecond and picosecond pulse generation

have been demonstrated from an ordinary gain-switched laser diode,
with pedestal extinction ratio > 20dB in the output signal, this fig-
ure being limited by the resolution of the apparatus used at the
time.

In this Letter, we describe an application of the above method for pulse quality improvement in conjunction with an electroab-
sorption modulator (EAM). Furthermore, the same method is
implemented for interchannel crosstalk reduction after demulti-
plexing. Pulse characterisation is achieved using a novel correla-
tion technique (coherence time analysis) which provides a dynamic
range of 70dB [3].

The unique switching properties of the DILM allow considera-
able improvements in the BER performance of the demultiplexer, making it possible to faithfully retrieve the data even from an inadequately demultiplexed data stream. We demonstrate that while high capacity systems may be implemented using multiple high specification components [4 – 6], the DILM allows either a significant relaxation of the component specification, or alterna-

tively, offers the potential for greatly increased capacity.