Economic measure of manufacturing performance in advanced manufacturing systems

de Ron, A.J.

Published in:
Proceedings 12th International Conference on Production Research (ICPR), Lappeenranta, Finland, 16-20 August 1993

Published: 01/01/1993

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. Jan. 2019
Economic measure of manufacturing performance in advanced manufacturing systems.

Ad J. de Ron

Eindhoven University of Technology, Faculty of Industrial Engineering and Management Science, Manufacturing Technology Group, P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract
Advanced production systems have a great potential for improving the manufacturing performance. However, a well-defined indicator for comparing such systems and for supporting the decisions concerning the large initial investments are not yet developed.

The purpose of this research is to arrive at a manufacturing performance indicator which includes the flexibility and the quality of the production system and the products.

1. INTRODUCTION

As a performance indicator, Son and Park [1] come with the so-called 'Integrated Manufacturing Performance' which is a combination of the productivity, the flexibility and the quality, where the quality consists of the process and the product quality, and the flexibility consists of the machine, the process, the product and the demand flexibility.

However, the combination of productivity, quality and flexibility is expressed in costs which results in opportunity costs. As in the productivity concept the costs are input quantities, they use the opportunity costs also as inputs, although these costs have to do with the output. This gives results which describe the performance in a wrong way [2].

As quality and flexibility influence the output of a production system, we have derived a concept by considering the dependence of this output.

2. THE INFLUENCE OF QUALITY AND FLEXIBILITY

The output quantity of a production system as used for defining the productivity is the real result, that is the nett
production quantity. This quantity differs from the gross production quantity as a result of imperfections of the quality and the flexibility.

If we call \(\alpha_q \) and \(\alpha_f \) the fractions of the production losses caused by these imperfections, the relation between the nett production result \((R_n) \) and the gross production result \((R_g) \) can be expressed by:

\[
R_n = (Q + F - 1)R_g
\]

where \(Q = 1 - \alpha_q \) and \(F = 1 - \alpha_f \).

By dividing both production results by the productivity costs, we obtain:

\[
P_t = (Q + F - 1)P_{t,o}
\]

where \(P_t \) is the total productivity and \(P_{t,o} \) the theoretical productivity which could be obtained.

Eq. (2) shows that the productivity can be improved by increasing the quality and/or flexibility and the theoretical productivity (by decreasing the production costs).

By using simulations, we have compared the productivity from eq. (2) with the integral manufacturing performance (IMP) for a job shop task and the same task using FMS.

These results show that our method can be used fruitfully to indicate the quality and flexibility influences [2].

3. CONCLUSIONS

By considering the output of a production system we have derived an expression for the productivity including the flexibility and the quality. Simulations show that this indicator can be used well to express the influence of the flexibility and the quality.

4. REFERENCES

2 De Ron, A.J., The influence of quality and flexibility upon the productivity of a production system (in Dutch), Intern rapport TUE/BDK/FT-9201, Eindhoven, University of Technology