Semantical aspects of an architecture for distributed embedded systems

Citation for published version (APA):

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Semantical Aspects of an Architecture for Distributed Embedded Systems*

Roel Bloo
Eindhoven University of Technology
Eindhoven, The Netherlands
bloo@win.tue.nl

Jozef Hooman
University of Nijmegen
Nijmegen, The Netherlands
hooman@cs.kun.nl

Edwin de Jong
Hollandse Signaalapparaten B.V.
Hengelo, The Netherlands
edejong@signaal.nl

Extended version including technical details

*This research is supported by the Technology Foundation STW (grant EIF.3959), applied science division of NWO and the technology programme of the Dutch Ministry of Economic Affairs.
Contents

1 Introduction 3
 1.1 Context of the research 3
 1.2 The coordination language Splice 4
 1.3 The goal of this work 6
 1.4 Examples of non-equivalent variations 7
 1.5 Tool support 9
 1.6 Structure of this report 9

2 Syntax of a Splice-like coordination language 9

3 Model with a global dataspace 11

4 Model with distributed local dataspaces 14

5 Equivalence of the two models 18
 5.1 Equivalence of the two semantics of the Close-operator ... 19
 5.2 Existence of pids 20

6 Related work 21

7 Concluding remarks 23

A PVS code 25

References 47
Abstract

We investigate the formulation of a formal semantics for the industrial software architecture Splice. In this report, we present a set of basic Splice interaction primitives that is both powerful and easy to implement. We define a semantics for this language based on a conceptual global dataspace. It is shown that this semantics is equivalent to an implementation-biased semantics where each process has its own local dataspace and communication is established by means of asynchronous message passing. Hence, our language allows both convenient reasoning using a global dataspace and efficient implementation by means of distributed dataspaces. The equivalence result is checked mechanically by means of the interactive theorem prover PVS.

1 Introduction

This introduction contains an overview of the general context of our research, an informal explanation of the Splice architecture and the aims of the work described here.

1.1 Context of the research

Our research concerns the construction of complex distributed software applications that have to satisfy strong requirements concerning functional correctness and reliability. An industrial solution to tackle this complexity is the definition of a suitable underlying architecture which provides high-level communication mechanisms and construction rules for the components. This architecture should be general enough to be suitable for a whole family of products. Our aim is to combine this solution with another technique to increase the quality and reliability of applications, namely the use of formal methods. This means that there are precise mathematical models for specifications and implementations and suitable techniques to relate the two.

As a specific case study we consider the software architecture Splice, as devised by the company Hollandse Signaalapparaten. It forms the core of many of their products, especially in the field of command and control systems. Typically, such systems receive large streams of data from sensors which are used to build a coherent image of the environment and to take appropriate action on the basis of this information. Additionally, the internal
representation is visualized for operators who interact with the system. All these tasks are carried out by a large number of parallel processes. Splice can be seen as a coordination language that provides a suitable communication mechanism where processes need not know the producers of the data they need or the consumers of the data they produce. Important is that Splice allows dynamic reconfiguration of the system and, for instance, duplication of processes, thus achieving a high degree of reliability and fault-tolerance.

Other work [8, 9] has addressed the formalization of the requirements of such command and control systems. This has resulted in a structured specification in the language of the interactive theorem prover PVS [7]. Our aim is to define a verification method to prove that a Splice program satisfies such a specification. To be able to deal with large programs, we aim at a compositional framework which allows reasoning by means of the interface specifications of components, without knowing their implementation [5].

As a starting point for such a verification method, a formal definition of the Splice interaction primitives is needed. There is already some work on the semantics of Splice, e.g., a comparison of semantic choices using an operational semantics [2, 3] and a process algebra framework [4]. We aim at a denotational semantics, however, since this is the proper starting point for compositional reasoning. Furthermore, we would like to investigate which choice of Splice primitives is most convenient for high-level reasoning and, at the same time, allows efficient implementation. Finally, to achieve convenient tool support for our work and a clear relation with the requirements specification, our semantics will be formulated in the language of PVS.

1.2 The coordination language Splice

The basic idea behind Splice [1] is that a process which consumes certain data need not know which process produces it. In fact, there may be several producers. The consumer simply registers its interest by subscribing to a certain data sort. Next it will be able to read produced data items of this sort, where it can use keys and queries to filter the data stream on certain aspects (e.g., in an air traffic management system, on flight number or distance to the airport). Similarly, the producers need not know the consumers of their data.

In the rest of this section we consider several examples of simple programs using read and write primitives. The intended meaning of these primitives will vary per example, but the basic intention is that Write\(d\) writes the
value of d to the dataspace(s) and $\text{Read}(x, q)$ asks the dataspace a query q and assigns the answer of the dataspace to its variable x.

Typical for the applications built with Splice is that it is often not needed to ensure that all data will be consumed or that it will be consumed in the order it is produced, since there is usually a continuous stream of data available from the sensor. Moreover, there are often no strong consistency requirements on processes that consume the same data.

Hence, Splice provides a simple but powerful coordination scheme that requires little overhead. Nothing is guaranteed about the speed or order at which data items of producers become available for consumers.

For instance, in the program

$$(\text{Write}(0); \text{Write}(1)) || \text{Read}(x, \text{true})$$

where the 'read' command has a true query -- to be able to read all data elements, it is possible that the value 1 is already available for the 'read'-command, whereas the value 0 cannot be read yet.

But if, for instance, ordered messages are needed, sequence numbers can be included in the data and the reader might read with a query on the next sequence number. It is also possible (and often done in practice) to include a time-stamp in the data sort and to express in the query that the data has a recent time-stamp.

Given this basic idea, there are a large number of possible variations, especially concerning the syntax and the semantics of the read operations. We list a number of questions:

1. Which queries can be formulated; a predicate on data items (e.g. "a data item with time stamp greater than 10") or a predicate on the complete set of available data items (e.g. "an available data item with maximal time stamp")?

2. Does the read operation return the set of all available data items that satisfy the query or just one item?

3. Does the read operation block if there is no item satisfying its query or is there an exception/error (or, e.g. the empty set in case a set is returned)?

4. Is the set of available data items the same for all consumers at any moment or can this be different?
1.3 The goal of this work

The last question above addresses an important point; conceptually Splice can be seen as a large global dataspace, where producers write data items and subscribers can select items to read, see figure 1.

![Diagram](image1.png)

Figure 1: Processes communicating via a global dataspace.

However, in a distributed implementation each process has a local dataspace with its own locally available items, see figure 2. Then, a write action

![Diagram](image2.png)

Figure 2: Processes communicating via local dataspaces.

is non-atomically distributed to all local dataspaces (as is done in the current distributed implementation of Splice); consequently the order of the updates at local dataspaces might be different.

Often there is a large stack of protocols to guarantee consistency of the local dataspaces. A design choice of Splice is to avoid these consistency protocols (and the computational overhead they cause) by carefully designing syntax and semantics such that the conceptual model of a single global dataspace can be implemented by distributed local dataspaces without much overhead.
The aim of our work is to formalize these ideas, that is, to define a simple but powerful Splice language with a denotational semantics based on a global dataspace and to prove that this semantics is equivalent to an interpretation with distributed local dataspaces.

1.4 Examples of non-equivalent variations

Note that the goal above is not trivial, since there are many variations of Splice-like languages where the meaning differs, depending on the dataspace model. We present a few cases where the equivalence does not hold:

- Suppose a read statement returns the set of all data items that satisfy the query. Moreover, assume read statements are blocking, so the result of a read is never the empty set. Consider the following program, where X and Y range over sets of data items.

 $\text{Write}(0) \ || \ \text{Read}(Y, \text{true}) \ || \ (\text{Read}(X, \text{true}) \ ; \ \text{Write}(1))$

 In this and the following examples in this section, we assume that all programs are “closed” in the sense that there are no other write actions than the ones shown – this is formalized later. In the distributed implementation (where write actions are distributed to the local dataspaces non-atomically), Y might get the value $\{1\}$, since it is possible that 0 arrives much later in the local dataspace of the second process.

 In the conceptual model with a single global dataspace, however, Y never becomes $\{1\}$ since 0 should be available in the dataspace before 1 can be written, so the second process can read $\{0\}$ or $\{0, 1\}$.

- Now again assume that a read statement returns the set of all data items that satisfy the query, but suppose read statements are non-blocking (returning the empty set if there are no data items satisfying the query). First observe that the program above yields the same results in both models; X might get the values \emptyset or $\{0\}$ (i.e. item 1 is never available for the second read) and Y can read any combination of 0 and 1 (i.e. \emptyset, $\{0\}$, $\{1\}$, or $\{0, 1\}$). However, then the following program shows a difference.

 $\text{Write}(0) \ || \ \text{Read}(Y, \text{true})$

 $\ || \ (\text{Read}(X, \text{true}) \ ; \ \text{if} \ X \neq \emptyset \ \text{then} \ \text{Write}(1) \ \text{fi})$
In the conceptual model with a global dataspace, value 1 is written when 0 is already available in the dataspace and, as in the previous example, \(Y \) cannot get the value \{1\}. The implementation with local dataspaces allows an execution where \(Y \) becomes \{1\}; then the value 0 becomes available in the dataspace of the third process much earlier than in that of the second process, where it arrives even after the value 1 written by the third process.

The problem here is that in this example we can observe whether a data item is present or not (this is due to the read returning all data satisfying the query). This can be exploited to observe the difference between the conceptual global dataspace model and the implementation with distributed dataspaces.

- As another example, suppose read statements are blocking and return a single data item that satisfies the query. If queries are restricted to predicates on state-variables and data, this is the language for which we show equivalence of the two semantics. However, the equivalence does not hold if the queries are predicates on the dataspace. Consider, for instance, the possibility of reading minimal or maximal values (e.g., \(\text{Read}(x, \text{min}) \) yields the minimal value available in the (local) dataspace at the moment), and the following program.

\[
(\text{Write}(0); \, \text{Write}(1))
\]
\[
\quad \quad \quad || \quad (\text{Read}(x, \text{min}); \, \text{Read}(y, \text{min}))
\]
\[
\quad \quad \quad \quad \quad || \quad (\text{Read}(u, \text{max}); \, \text{Read}(v, \text{max}))
\]

In the implementation model with local dataspaces, \(x, y, u, v \) may get values 1, 0, 0, 1 respectively, since in the dataspace of the second process 1 may arrive before \(\text{Read}(x, \text{min}) \) is executed and 0 may arrive afterwards (but before execution of the statement \(\text{Read}(y, \text{min}) \)), whereas in the dataspace of the third process 0 may arrive before 1 does. This is of course impossible in the conceptual model with one global dataspace. Observe that this example again depends on the possibility of testing for absence of data (if \(\text{Read}(x, \text{min}) \) returns value 1 then the value 0 must be absent in the dataspace).

Note that if read statements are non-blocking and return an error value when no data item satisfies the query (and otherwise a single data item satisfying the query), then we can also observe whether a data item \(d \)
is present, namely by simply using \(\text{Read}(x, x = d) \). Observe that the query is even a predicate on data only.

1.5 Tool support

The verification system PVS [7]\(^1\) has been used to support our research. Two versions of the semantics, one for the conceptual view of a global dataspace and one for the implementation based view of local dataspaces, have been defined in PVS. The specification language of PVS is a classical, typed higher-order logic with a large number of built-in types (e.g. booleans, integers reals) and type-constructors (as functions, sets, tuples, records), including a powerful mechanism to define abstract datatypes. Specifications can be structured by hierarchies of parameterized theories.

The PVS system contains a powerful theorem prover that can be used to construct proofs of theorems interactively. Proofs are recorded and can be rerun after changes. All results mentioned in this report have been checked mechanically by means of PVS.

1.6 Structure of this report

The structure of the report is as follows. In section 2 we introduce a simple language with Splice interaction primitives. A semantics for this language based on the conceptual model with a single global dataspace is presented in section 3. A semantics based on the implementation model with distributed local dataspaces is defined in section 4. In section 5 we show that these two semantics are equivalent. Section 6 contains a brief discussion of related work and some concluding remarks can be found in section 7. In the appendix we list the complete PVS theory that was developed for giving the formal equivalence proof.

2 Syntax of a Splice-like coordination language

To highlight the essential ideas, we incorporate the basic Splice interaction primitives in a simple imperative coordination language.

\(^1\)PVS is freely available, see http://www.csl.sri.com/sri-csl-pvs.html
With respect to the questions listed in section 1.2 the following choices have been made. Queries are predicates on data items and an internal process state, the read operation returns exactly one data item satisfying the query and blocks if there is none. The question whether the set of available data items is the same for all consumers at any time corresponds to the choice between the global or the local model.

We assume a data type \texttt{Data} and a set of variables \texttt{Vars}. Then the state of a program is a function from variables to data, i.e., \texttt{States = Vars \rightarrow Data}. Expressions are functions of type \texttt{States \rightarrow Data} and queries are predicates on data and states. Programs in our language are defined as follows:

\[
P ::= \text{Skip} \mid \text{Write}(e) \mid \text{Read}(x,q) \mid P_1 ; P_2 \mid P_1 || P_2 \mid \text{Close}(P)
\]

where \(e\) is an expression and \(q\) is a query. These statements have the following informal meaning:

- **Skip** denotes the empty program.
- **Write\((e)\)** writes the data value denoted by expression \(e\) to the data-space.
- **Read\((x,q)\)** assigns to the variable \(x\) a previously written data element satisfying the query \(q\). It blocks if there is no such element.
- **\(P_1 ; P_2\)** denotes sequential composition.
- **\(P_1 || P_2\)** denotes parallel composition. As a syntactic constraint, we require that the set of variables of the two processes in the parallel composition be disjoint.
- **\(\text{Close}(P)\)** denotes the closure operation. It specifies that all data items that have been read by statements in \(P\) also have been produced by write statements inside \(P\). There is no hiding of the produced data items, so they might be read by an external reader.

In PVS, this language is represented as an abstract datatype, which allows us to use recursive definitions and proofs by induction on the structure of programs.

Note that, for simplicity, we do not distinguish between different data-sorts. An extension to multiple sorts and adding a sort to the closure operation, is straightforward. Similarly, it is easy to add more programming
constructs such as assignment, choice, and while. See, for instance, [6] for the denotational semantics of a real-time imperative programming language in PVS.

3 Model with a global dataspace

In this section we define the semantics of our coordination language under the assumption that there is a single global dataspace. We refer to it as the *global semantics.*

The values of internal variables of a process are represented by a state, which is a function from variables to Data. Furthermore, let *Events* be a set of events. The meaning of a program *P*, given an initial state representing the values of the variables at the start of the program, is a set of semantic primitives. Each semantic primitive corresponds to a terminated execution. For simplicity we do not model blocking or infinite computations. Semantic primitives, denoted *sp*, are records in PVS with three fields:

- *st*: the final state of the program, representing the situation after the execution.
- *evs*: a subset of *Events* containing those events that occur during the execution of *P*. An event represents the occurrence of an action. Let *act* be a global function that yields for each event in the set *Events* the corresponding action. Here we have actions of the form *R(d)* and *W(d)* denoting the reading and writing, resp., of data element *d*.
- *ord*: a strict (irreflexive & transitive) partial order on the set of events (*evs*). Intuitively, we have ord(*E₁*, *E₂*) iff *E₁* is a read event occurring before *E₂*; if *E₂* is a read event then anything available in the dataspace at the moment of execution of *E₁* will also be available at the moment of execution of *E₂*, and if *E₂* is a write event then the value written by *E₂* will not be available in the dataspace at the moment of execution of *E₁* (unless there is another write action writing the same value).

Note that if we replace *evs* and *act* by a multiset of actions, then we cannot distinguish events with the same action and hence it is not possible to order them.

Next we present the formal semantics of the language constructs in the setting of the conceptual model with a single global dataspace. This is done
by defining a function \([\cdots]\) which maps a program \(P\) and an initial state \(s\) to a set of semantic primitives, denoted \([P \mid (s)\). Here, a semantic primitive, represented in PVS by a record, is denoted by a triple \((s, \text{eset}, \prec)\), where \(s\) is a state, \(\text{eset}\) a set of events and \(\prec\) a strict partial order on \(\text{eset}\). The functions \(st, evs\), and \(ord\) are used to access the first, second and third field of these triples.

\[\text{[Skip]}(s) = \{(s, \emptyset, \emptyset)\} \]

The skip statement performs no visible actions. Hence, the set of events (and its order) are empty, and the final state is equal to the initial state \(s\).

\[\text{[Write}(e)\text{]}(s) = \{(s, \{E\}, \emptyset) \mid E \in \text{Events} \wedge \text{act}(E) = \text{W}(e(s))\} \]

A write statement \(\text{Write}(e)\) performs a single event \(E\) that corresponds to a write action with the value of \(e\) evaluated in the state \(s\). The state \(s\) is unaffected.

\[\text{[Read}(x, q)\text{]}(s) = \{(s[x \mapsto d], \{E\}, \emptyset) \mid E \in \text{Events} \wedge d \in \text{Data} \wedge q(d, s) \wedge \text{act}(E) = \text{R}(d)\} \]

To understand the semantics of statement \(\text{Read}(x, q)\), it is important to recall that we aim at a denotational, hence compositional, framework. This means that the semantics of a read statement should allow the combination with any context, where in principle every possible data item could be written. So we have to take an arbitrary environment into account. This is done by including semantic primitives for all data items \(d \in \text{Data}\) that satisfy the query in the state (i.e., \(q(d, s)\) holds). So the semantics includes all possibilities and only at the point of applying a closure operation we decide about the actual values read. We use \(s[x \mapsto d]\) to denote the state that equals \(s\) except that the value of \(x\) has been replaced by \(d\).

\[[P_1; P_2](s) = \{sp \mid \exists sp_1, sp_2[sp_1 \in [P_1](s) \wedge sp_2 \in [P_2][(st(sp_1)) \wedge st(sp) = st(sp_2) \wedge evs(sp_1) \cap evs(sp_2) = \emptyset \wedge evs(sp) = evs(sp_1) \cup evs(sp_2) \wedge \forall E_1, E_2 \in evs(sp)[\text{ord}(sp)(E_1, E_2) \leftrightarrow (\text{ord}(sp_1)(E_1, E_2) \lor \text{ord}(sp_2)(E_1, E_2) \lor \text{R}(E_1))]]} \]
Here $R?(E_1)$ is an abbreviation for $\exists d [act(E_1) = R(d)]$. The meaning of $P_1 ; P_2$ expresses that the final state of this construct is produced by P_2, starting in the final state of P_1. The latter executes from the original initial state s. To prevent undesired identification of events from different components, we require that the event sets of the two components be different. This requirement can always be met simply by renaming common events, assuming that there are sufficiently many events to make this possible. Alternatively, we could define $evs(sp)$ to be the disjunct union of $evs(sp_1)$ and $evs(sp_2)$. The events of $P_1; P_2$ are those performed by P_1 or P_2. The order on the resulting event set respects the orders of P_1 and P_2; additionally, the order requires that each read action by P_1 occurs before any event of P_2.

In $P_1 || P_2$ both processes start from the initial state s and, since there are no shared variables, the final state of the parallel construct is obtained by simply combining the two final states. Similar to sequential composition, the event sets of P_1 and P_2 are assumed to be disjoint, and the events of $P_1 || P_2$ are those that occur in P_1 or P_2. No additional ordering is imposed by the parallel composition.

\[
\begin{align*}
\text{[Close}(P)\text{]}(s) &= \{ sp | \exists sp_1, sp_2 [sp_1 \in [P_1](s) \wedge sp_2 \in [P_2](s) \\
&\quad \wedge \forall x [st(sp)(x) = \begin{cases} x \in vars(P_1) & \text{then } st(sp_1)(x) \\
&\text{else } s(x) \end{cases} \\
&\quad \wedge evs(sp_1) \cap evs(sp_2) = \emptyset \\
&\quad \wedge evs(sp) = evs(sp_1) \cup evs(sp_2) \\
&\quad \wedge ord(sp) = ord(sp_1) \cup ord(sp_2) \} \}
\end{align*}
\]
The semantics of the \texttt{Close} operation formalizes the relation between read and write actions. Recall that the semantics of a read statement includes all possible data items and only at closure it can be checked which data items are actually available. This is done by imposing a strict total order on the events of \(P \), extending the existing order \(\text{ord} \), such that each read action \(R(d) \) is preceded by a corresponding write action \(W(d) \). Only the semantic primitives from \(P \) for which such a total order exists are retained in the semantics of \(\text{Close}(P) \), but the set of events is restricted to only non-read events.

Examples We present a few simple examples to illustrate the semantics. In the following program, the variable \(x \) might become 0 or 1, which is reflected in its denotational semantics.

\[
[\text{Close}((\text{Write}(0); \text{Write}(1)) || \text{Read}(x, \text{true}))](s) = \{ sp \mid (st(sp) = s[x \mapsto 0] \lor st(sp) = s[x \mapsto 1]) \\
\quad \land \text{ord}(sp) = \emptyset \\
\quad \land \exists E_1, E_2 : \text{Events}[\text{evs}(sp) = \{E_1, E_2\}] \\
\quad \land \text{act}(E_1) = W(0) \land \text{act}(E_2) = W(1)\}
\]

The following example illustrates how read actions are delayed until the requested data item arrives in the shared dataspace. Let \(P \) be the program

\[
(\text{Write}(0); \text{Write}(1)) || (\text{Read}(x, x > 0); \text{Read}(y, y < x)).
\]

Then

\[
[\text{Close}(P)](s) = \{ sp \mid st(sp) = s[x \mapsto 1][y \mapsto 0] \land \text{ord}(sp) = \emptyset \\
\quad \land \exists E_1, E_2 : \text{Events}[\text{evs}(sp) = \{E_1, E_2\}] \\
\quad \land \text{act}(E_1) = W(0) \land \text{act}(E_2) = W(1)\}
\]

4 Model with distributed local dataspaces

Here we present the semantics of an implementation-biased model with distributed local dataspaces, henceforth called the *local semantics*. To formalize that in this model, read statements of different components might observe
the write events in different order, we introduce a set ProcIdentities of process identifiers and extend the semantic primitives of the previous section. In addition to the three fields st, $eves$ and ord, we add a fourth pid field, which is a function that assigns a process identifier to each event in $eves$. This leads to so-called local semantic primitives (denoted lsp).\footnote{In the PVS code, we define an lsp as a record with two fields, one a semantical primitive sp and the other a pid function assigning a process identifier to each event in the event set of sp. The reason for this is explained in the appendix.}

For simplicity, we restrict ourselves to so-called non-nested Splice programs, denoted by S, where parallel composition does not occur inside sequential composition. In this way, we avoid a complex definition of assigning pids to processes. Consider, e.g., a program of the form $(P_1 \parallel P_2) ; P_3$. Here it is unclear whether the pid of program P_3 should be equal to the pid of P_1, P_2 or none of them.

The semantics of a non-nested Splice program S, given an initial state s, to a set of local semantic primitives, denoted $\text{SemL}(S)(s)$, is obtained by adapting the semantics of the previous section as follows.

- The local semantics of the three atomic statements Skip, $\text{Write}(e)$ and $\text{Read}(x,q)$ is basically equal to the global semantics extended with a pid field. The value of this field is not restricted and may take any possible value, e.g.:
\[
\text{SemL}(\text{Write}(e))(s) = \{(s,\{E\},\emptyset,p) \mid E \in \text{Events} \land p: \{E\} \rightarrow \text{ProcIdentities} \land \text{act}(E) = \text{W}(e(s))\}.
\]
tics, that the events of both components be assigned the same pid:

\[
\text{SemL}(P_1 ; P_2)(s) = \{lsp \mid \exists lsp_1, lsp_2 [lsp_1 \in \text{SemL}(P_1)(s) \wedge lsp_2 \in \text{SemL}(P_2)(s) \wedge st(lsp_1) = st(lsp_2) \wedge evs(lsp_1) \cap evs(lsp_2) = \emptyset \wedge evs(lsp) = evs(lsp_1) \cup evs(lsp_2) \wedge \forall E_1, E_2 \in evs(lsp)[ord(lsp)(E_1, E_2) \leftrightarrow (ord(lsp_1)(E_1, E_2) \lor ord(lsp_2)(E_1, E_2) \lor R?(E_1))]) \wedge \forall E_1 \in evs(lsp_1)[pid(lsp)(E_1) = pid(lsp_1)(E_1)] \wedge \forall E_2 \in evs(lsp_2)[pid(lsp)(E_2) = pid(lsp_2)(E_2)] \wedge \forall E_1 \in evs(lsp_1), E_2 \in evs(lsp_2)[pid(lsp_1)(E_1) = pid(lsp_2)(E_2)]\} \}
\]

- The semantics of parallel composition extends the global semantics by requiring that the events of both components are assigned different pids:

\[
\text{SemL}(P_1 || P_2)(s) = \{lsp \mid \exists lsp_1, lsp_2 [lsp_1 \in [P_1](s) \wedge lsp_2 \in [P_2](s) \wedge \forall x [st(lsp)(x) = \text{if } x \in \text{vars}(P_1) \text{ then } st(lsp_1)(x) \text{ else if } x \in \text{vars}(P_2) \text{ then } st(lsp_2)(x) \text{ else } s(x)] \wedge evs(lsp_1) \cap evs(lsp_2) = \emptyset \wedge evs(lsp) = evs(lsp_1) \cup evs(lsp_2) \wedge ord(lsp) = ord(lsp_1) \lor ord(lsp_2) \wedge \forall E_1 \in evs(lsp_1)[pid(lsp)(E_1) = pid(lsp_1)(E_1)] \wedge \forall E_2 \in evs(lsp_2)[pid(lsp)(E_2) = pid(lsp_2)(E_2)] \wedge \forall E_1 \in evs(lsp_1), E_2 \in evs(lsp_2)[pid(lsp_1)(E_1) \neq pid(lsp_2)(E_2)]\} \}
\]

- The new semantics of Close becomes more complex, as explained below.
SemL(Close(S))(s)
= \{ lsp | \exists lsp_1 [lsp_1 \in \text{SemL}(P)(s) \\
\land st(lsp) = st(lsp_1) \land ord(lsp) = \emptyset \\
\land evs(lsp) = \{ E | E \in evs(lsp_1) \land \neg R?(E) \} \\
\land \forall E \in evs(lsp)[\text{pid}(lsp)(E) = \text{pid}(lsp_1)(E)] \\
\land \exists \prec_1 [\prec_1 \text{ is a strict order on } evs(lsp_1) \\
\quad \text{and } \prec_1 \text{ is total on } \{ E \in evs(lsp_1) | R?(E) \} \\
\land \text{ord}(lsp_1) \subseteq \prec_1 \\
\land \forall E_1, E_2 \in evs(lsp_1)[E_1 \prec_1 E_2 \implies R?(E_1)] \\
\land \forall p \exists \prec_2 [\prec_2 \text{ is a strict and total order on } evs(lsp_1) \\
\quad \land \prec_1 \subseteq \prec_2 \\
\land \forall E \in evs(lsp_1), d \in \text{Data}[\text{act}(E) = R(d) \\
\quad \land \text{pid}(lsp_1)(E) = p \\
\quad \implies \exists E_1 \in evs(lsp_1)[E_1 \prec_2 E \land \text{act}(E_1) = W(d)]]\}] \}

Observe that the events of Close(S) are assigned the same pid as in S (line 5) and that the main difference with the semantics of the previous section concerns the order on the events. The requirement of a single, total order on all events is replaced by two conditions:

1. There should be a global total order \(\prec_1 \) on the read events which extends \(\text{ord} \) but does not order write events before others (lines 6 to 9).

2. For each process identifier \(p \) there exists a local total order \(\prec_2 \) which extends \(\prec_1 \) (lines 10 and 11) and is such that each read event with process identifier \(p \) has a preceding (w.r.t. \(\prec_2 \)) write event with the same value (lines 12 to 14). This local order allows write actions to be ordered differently for each process, modelling the non-atomicity of write actions.

To understand the reason for the complexity of this definition, it might be instructive to mention that in an early attempt we did not include the first condition and used only the second condition, with \(\prec_2 \) extending \(\text{ord} \). Then the proof of equivalence in PVS failed and we found that
the definition was wrong. Consider, for instance,

\[\text{Close}((\text{Read}(x, x = 0); \text{Write}(1)) \parallel (\text{Read}(y, y = 1); \text{Write}(0))) \].

As we have shown in PVS (cf. lemma empty semantics in theory counterexample in the appendix), the global semantics of this program leads to the empty set. This conforms to the intuition that for both processes the read statement blocks, i.e. the complete program leads to deadlock. Our erroneous local semantics however did not yield the empty set because for each process we could order the two read events differently.

5 Equivalence of the two models

To express the equivalence of the two semantics defined above, we remove the pids from the local semantics. This is done by a function \(\text{RmPids} \) which maps the local semantics of a non-nested Splice program to its global semantics by removing the pids from the local semantic primitives.

Now we prove, for a non-nested Splice program \(S \), that

\[[S] = \text{RmPids}(\text{SemL}(S)). \]

The main issues in the proof concern:

1. The equivalence for the \texttt{Close}-operator, especially showing that we can construct a global order for the global semantics, given the local orders for the processes in the local semantics.

2. The existence of a \(\texttt{pid} \) assignment, satisfying the constraints, for the local semantics, given a semantic primitive in the global semantics of a non-nested Splice program.

Since both issues involve quite some technical detail and proof effort, they are separated by introducing an intermediate semantics for non-nested Splice programs \(S \) with initial state \(s \), denoted \(\text{SemG}(S)(s) \), where we have added a \(\texttt{pid} \)-field to the global semantics. For \(\text{SemG}(S)(s) \), the semantics of the \texttt{Close}-operator equals the one for the global semantics plus the constraint on pids of the local semantics. All other statements have the local semantics, which equals the global one plus constraints on pids. Then the proof is split into the following two lemmas, corresponding to the two issues above:
1. \(\text{SemL} = \text{SemG} \). An outline of the proof can be found in section 5.1, see also theorem LocalPidGlobalEq in theory LocalPidGlobal in the appendix.

2. \([S] = \text{RmPids}(\text{SemG}(S)) \). The proof of this property is sketched in section 5.2, see also theorem GlobalPidGlobalEq in theory GlobalPidGlobal in the appendix.

5.1 Equivalence of the two semantics of the Close-operator

To prove \(\text{SemL}(S) = \text{SemG}(S) \), for any non-nested Splice program \(S \), first observe that it is rather straightforward to prove that if \(\text{lsp} \in \text{SemG}(S)(s) \) then \(\text{lsp} \in \text{SemL}(S)(s) \). The proof proceeds by induction on the structure of \(S \), which is possible in PVS because we have defined programs as an abstract data type. Most cases are trivial, only for the Close statement one has to observe that given a strict total order on the events, this order can be used as the required order on the read events and also as the local order for each process identity.

The proof that \(\text{lsp} \in \text{SemL}(S)(s) \) implies \(\text{lsp} \in \text{SemG}(S)(s) \) also proceeds by induction on \(S \). The main issue here is again the proof for the Close statement; given a strict total order on all read events \(\prec_1 \) and for each process identifier a total order on all events \(\prec_2 \) in the definition of \(\text{SemL}([\text{Close}(S)](s)) \) in section 4), we have to construct a global strict total order \(\prec \) on all events satisfying the constraint

\[
\forall E \in \text{evs}(\text{lsP}_1), d \in \text{Data} [\text{act}(E) = \text{R}(d) \\
\implies \exists E_1 \in \text{evs}(\text{lsP}_1)[E_1 \prec E \land \text{act}(E_1) = \text{W}(d)]].
\]

To do this, we introduced in PVS an axiom stating that there exists some total order \(\prec_{\text{events}} \) on the set of all events \(\text{Events} \) (see axiom exists_order in theory LocalPidGlobal in the appendix). This order is used to construct a
so-called minimal extension \(\prec_{me} \) of the order \(\prec_1 \):

\[
E_1 \prec_{me} E_2 \iff \\
(R?(E_1) \land E_1 \prec_1 E_2) \\
\lor (\neg R?(E_1) \land R?(E_2) \land E_2 \not\prec_1 E_1) \\
\lor \exists E_3 [(R?(E_3) \land E_3 \prec_1 E_2 \land E_3 \not\prec_1 E_1) \\
\lor (E_1 \prec_{events} E_2 \land \forall E_3 [E_3 \prec_1 E_1 \iff E_3 \prec_1 E_2])].
\]

This order \(\prec_{me} \) is minimal in the sense that write events are ordered as early as possible while respecting \(\prec_1 \). In other words, any read event that does not preceed a write event \(E \) in \(\prec_1 \) is ordered after \(E \) by \(\prec_{me} \). Hence this minimal extension orders all write events not later than any of the local orders. We have proved that this minimal extension satisfies the constraint on the read events in the definition of the global semantics \(\text{SemG(Close}(S))\text{(s)} \) (which is equal to the one in the definition of \(\text{Close}(S))\text{(s)} \) as follows:

1. We observe that \(\prec_{me} \) extends for each process identifier the corresponding order \(\prec_2 \) from the local semantics \(\text{SemL(Close}(S))\text{(s)} \).

2. For any read event \(E \in evs(lsp) \) with \(act(E) = R(d) \), this \(\prec_2 \) order yields a write event \(E_1 \in evs(lsp) \) for which \(E_1 \prec_2 E \) and \(act(E_1) = W(d) \). Then by 1., also \(E_1 \prec_{me} E \).

5.2 Existence of pids

To prove \([S] = \text{RmPids(SemG}(S)) \), first observe that one direction is quite obvious. Recall that \(\text{RmPids} \) removes the pid field of a local semantic primitive \(lsp \). Hence, \(lsp \in \text{SemG}(S)(s) \) implies \(\text{RmPids}(lsp) = [S](s) \). This has been proved in PVS by induction on \(S \); all cases for the language constructs could be proved automatically (see also lemma GlobalPidImplGlobal in theory GlobalPidGlobal in the appendix).

Next consider the other direction, i.e., \(sp \in [S](s) \) implies that there exists a local semantic primitive \(lsp \) such that \(\text{RmPids}(lsp) = sp \) and \(lsp \in \text{SemG}(S)(s) \). The problem here is to construct a pid-field that can be added to \(sp \), i.e., a function from the events to process identifiers, which satisfies the constraints of the semantics. Recall that for sequential composition, the pids

\(^3\)In theory LocalPidGlobal in the PVS code in the appendix, \(\prec_{events} \) is called events_sto, \(\prec_{me} \) is called the extension.
of events of the components should be equal, whereas for parallel composition they have to be different. Hence, as long as S does not contain any parallel composition, all events should have the same pid. Otherwise, since S is non-nested, we only have to deal with parallel composition and closure operations and then it is important to be able to choose different pids.

To formalize this, we have proved a stronger lemma expressing that if $sp \in \llbracket S \rrbracket(s)$ then

a) if S does not contain parallel composition then for each pid p there exists an lsp such that $\text{RmPids}(lsp) = sp$, $lsp \in \text{SemG}(S)(s)$ and $\forall E \in \text{evs}(lsp)[\text{pid}(lsp)(E) = p]$ (lsp has a constant pid function);

b) otherwise, for each set of pids $pset$ there exists a local semantic primitive lsp such that $\text{RmPids}(lsp) = sp$, $lsp \in \text{SemG}(S)(s)$ and $\forall E \in \text{evs}(lsp)[\text{pid}(lsp)(E) \notin pset]$ (the pid function of lsp evades $pset$).

Additionally, we have to assume that there are sufficiently many process identifiers, see axiom TwoMorePids in theory GlobalPidGlobal in the appendix. Then the lemma is strong enough to be proved by induction on the structure of program S as follows:

In the case of sequential composition $P_1 ; P_2$ we know that P_1 and P_2 do not contain parallel composition hence we only need to prove case a), which is simple.

In the case of parallel composition $P_1 || P_2$ we only need to prove case b). For any set of pids $pset$, axiom TwoMorePids gives pids $p_1, p_2 \notin pset$. Now using case a) of the induction hypothesis for p_1 and p_2 we get the required $lsp_i \in \text{SemG}(P_i)(s)$ with $\forall E \in \text{evs}(lsp_i)[\text{pid}(lsp_i)(E) = p_i]$ for $i = 1, 2$.

In the case of a closure $\text{Close}(P)$ we use the induction hypothesis and show that all properties remain valid.

6 Related work

Since our aim is to develop a compositional proof system for proving properties about Splice programs, we defined a denotational semantics for the Splice interaction primitives. There are already a few other semantic models for closely related languages. We discuss the operational semantics of [2, 3] and an algebraic framework [4].

In [2] a transition system semantics for a subset of Splice interaction primitives is presented. The resulting semantics is similar to our implementation
model semantics. Differences are the use of a new operation to fork processes instead of parallel composition, a get operation and the absence of a state so that write operations can only write values. The queries are predicates on data only.

In [3], Bonsangue et al. study the relationship between several different models for a data-oriented coordination language. Although we do not have an explicit database in the semantics, it is possible to construct one corresponding to each semantic primitive. Then our conceptual model corresponds to the unordered centralized system with a set dataspace in [3], and our implementation model is related to their distributed system with a set dataspace. Bonsangue et al. show that these two systems are equivalent for programs using read, write and test-for-absence operators. Apart from the fact that we give a denotational semantics where Bonsangue et al. give an operational semantics and that our semantics and proofs have been formalized in PVS, a difference between their work and ours is that read operations do not have queries in [3]. Simple queries on the requested data item only can be simulated in the system of Bonsangue by using a (possibly infinite) choice, but we allow stronger queries, namely on the current state as well as the data value. These queries cannot be simulated in the system of Bonsangue et al. This explains why in [3] the systems are equivalent even in the presence of a test-for-absence.

Another approach for giving a semantics to part of the Splice language has been taken in [4], where Splice is described in terms of process algebraic laws. The approach is inspired by a process algebra for describing delay-insensitive communications. Whereas the aim of [4] is to be able to reason and compute algebraically with programs, we aim at compositional assertional verification of programs. Indeed we can prove properties formally that are axiomatized as laws in the Splice Process Algebra of [4]. Below, we list some general process algebraic laws that have been proven to hold in our semantics. Corresponding lemmas have been proven using PVS and can be found in theory SPA_laws in the appendix.

1. Symmetry of \(\parallel \), i.e., \([P_1 \parallel P_2] = [P_2 \parallel P_1]\) for all programs \(P_1, P_2 \).
2. Associativity of \(\parallel \) and \(; \), that is, for all programs \(P_1, P_2, P_3 \),

\[
[P_1 \parallel (P_2 \parallel P_3)] = [(P_1 \parallel P_2) \parallel P_3]
\]

\(^4 \)The test-for-absence operator blocks if the specified value is available in the dataspace.
and

\[[P_1 ; (P_2 ; P_3)] = [(P_1 ; P_2) ; P_3]. \]

The following general law has also been proven (see lemmas writes_1 and writes_2 in theory SPA_laws in the appendix).

- Sequential composition of write statements is equivalent to their parallel composition:

\[[\text{Write}(e_1) ; \text{Write}(e_2)] = [\text{Write}(e_1) \| \text{Write}(e_2)], \]

for all expressions \(e_1, e_2 \).

Now we have, as a consequence of the first and third law above, law 10 from [4] (we translate the action-prefix of the Splice process algebra to sequential composition):

- Symmetry of sequential writes:

\[[\text{Write}(e_1) ; \text{Write}(e_2)] = [\text{Write}(e_2) ; \text{Write}(e_1)], \]

again for all expressions \(e_1, e_2 \).

7 Concluding remarks

We have proven that for the coordination language introduced in section 2, the semantics according to the conceptual model of a single global dataspace (presented in section 3) is equivalent to the semantics corresponding to the distributed implementation model with a local dataspace for each process (presented in section 4). This proof has been completely formalized and checked mechanically by means of the interactive theorem prover of PVS. We found this kind of tool support very useful for checking the correctness of the semantics definition as well as the proof itself. Without mechanized support, the error in the definition of the semantics of the Close-operator as explained in section 4 might not have been found.

Due to the equivalence it is now possible to use the global dataspace semantics for formally verifying properties of a system implemented on an architecture with local dataspaces.

Interesting subjects for further research are a formal equivalence proof of our semantics and a more operational transition system semantics in the style
of [2]. We expect that it is rather straightforward to extend the language with loops and non-blocking read operations. Furthermore, one of our goals is to study the use of formal methods and techniques in the design process leading from the formal requirements specification of a system towards its correct implementation. In other work (cf. [8, 9]), a method for writing formal requirements specifications in PVS has been developed. It is our goal to give a similar semantics as the one presented in this report to these requirements specifications, and next devise a method to formally verify properties of an implementation of such a specification.

Acknowledgements

We would like to thank Marcello Bonsangue, Michel Chaudron, Paul Dechering, Rix Groenboom, Michel Reniers and the anonymous referees of SAC20005 for their useful comments on a draft of this report.

A PVS code

In this section we list the PVS theory that we developed in order to formalize and prove the two semantics of our Splice-like language. We list the various theories one by one, starting with the more basic ones. A dump file containing these theories and all proofs can be found on the world wide web at http://www.cs.kun.nl/~hooman/SpliceSem.html.

%%

syntax_prim [Data, Vars : TYPE+] : THEORY

% Represent Splice syntax, with only one type of read, no keys,
% no process creation, but allowing nested parallelism

BEGIN

Databases : TYPE = setof[Data]

% Sorts : TYPE = pred[Data] % for the moment not included

% For simplicity we have no syntax for expressions,
% an expression is just a function on the state.

States : TYPE = [Vars -> Data]

Exprs : TYPE = [States -> Data]

Queries : TYPE = pred([Data, States])

END syntax_prim

%%

Programs [Data, Vars : TYPE+] : DATATYPE

BEGIN

IMPORTING syntax_prim[Data,Vars]

% Define the syntax of programs in our programming language.

Skip : Skip?

Read(vvar : Vars, query : Queries) : Read?

25
Write(exp : Exprs) : Write?

Seq (seq1 : Programs, seq2 : Programs) : Seq?

Par (par1 : Programs, par2 : Programs) : Par?

Close (enc : Programs) : Close?

END Programs

SpliceProgs [Data, Vars : TYPE+] : THEORY

BEGIN

IMPORTING Programs_adt[Data,Vars]

prog, prog1, prog2 : VAR Programs
x : VAR Vars
e : VAR Exprs
q : VAR Queries
S : VAR setof[Data]

% Define variables of programs (i.e. variables that might change)
% and a constraint (no_clashes) on local variables

vars(prog) : RECURSIVE setof[Vars] =
 CASES prog OF
 Skip : emptyset ,
 Read(x,q) : singleton(x) ,
 Write(e) : emptyset ,
 Seq(prog1,prog2) : union(vars(prog1), vars(prog2)),
 Par(prog1,prog2) : union(vars(prog1), vars(prog2)),
 Close(prog1) : vars(prog1)
 ENDCASES
 MEASURE prog BY <<

no_clashes(prog) : RECURSIVE bool =
 CASES prog OF
 Skip : TRUE,
 Read(x,q) : TRUE,
 Write(e) : TRUE,
 Seq(prog1,prog2) : no_clashes(prog1) AND no_clashes(prog2),
Par(progl, prog2): no_clashes(progl) AND no_clashes(prog2)
 AND intersection(vars(parl(progl)),vars(par2(prog2))) = emptyset,
Close(prog1) : no_clashes(prog1)
ENDCASES MEASURE prog BY <<

% Programs should not contain variable clashes.

SpliceProgs : TYPE = { prog | no_clashes(prog) }

% Define constraints on programs:
% no_pars(prog) IFF prog contains no Par constructor
% no_nestings(prog) IFF prog has no Par constructs nested
% under Seq constructs, i.e., Seq(Par(p1, p2), p3) is not allowed.

no_pars(prog): RECURSIVE bool =
 CASES prog OF
 Skip: TRUE,
 Read(x, q): TRUE,
 Write(expr): TRUE,
 Seq(progl, prog2): no_pars(progl) AND no_pars(prog2),
 Par(progl, prog2): FALSE,
 Close(prog): no_pars(prog)
 ENDCASES MEASURE prog BY <<

no_nestings(prog): RECURSIVE bool =
 CASES prog OF
 Skip: TRUE,
 Read(x, q): TRUE,
 Write(expr): TRUE,
 Seq(progl, prog2): no_pars(progl) AND no_pars(prog2),
 Par(progl, prog2): no_nestings(progl) AND no_nestings(prog2),
 Close(prog): no_nestings(prog)
 ENDCASES MEASURE prog BY <<

% A useful lemma

NoParNoNesting : LEMMA no_pars(prog) IMPLIES no_nestings(prog)

% Restrict programs for the local database model to Splice programs
% without nested Pars

LocalSpliceProgs: TYPE = { (prog: SpliceProgs) | no_nestings(prog) }

END SpliceProgs
% We include only minimal information in semantic records
% e.g., for read query and sort have been checked before.

BEGIN
IMPORTING syntax_prim[Data,Vars]
R(d : Data) : R?
W(d : Data) : W?
END Actions

connectives [T: TYPE] : THEORY
% This theory contains the Boolean connectives lifted to predicates.
% It is taken from the library provided with the pvs-2.2 distribution
% (file /src/pvs-2.2/lib/MU/connectives.pvs)

BEGIN
f, g: VAR pred[T]

AND(f,g)(u):bool = f(u) AND g(u);
OR(f,g)(u):bool = f(u) OR g(u)
NOT(f)(u):bool = NOT f(u);
IMPLIES(f,g)(u):bool = f(u) IMPLIES g(u);
IFF(f,g)(u):bool = f(u) IFF g(u);

TRUE(u) : bool = TRUE;
FALSE(u) : bool = FALSE;

END connectives

28
GlobalDB [Data, Vars : TYPE+] : THEORY

BEGIN

% Semantics for global database, describing terminating executions.
% Blocking is not modelled explicitly, but we have a blocking read,
% which delivers one element of the database satisfying query.

IMPORTING SpliceProgs[Data,Vars], Actions[Data,Vars]

% To define semantic domain, we define events with attributes

Events : TYPE+ % occurrence of an action
E, E1, E2 : VAR Events

% Events is a non-empty type.

act : [Events -> Actions]

% Semantic domains are sets of semantical primitives.
% Given some initial state, the semantics of a program is
% a set of possibilities (semantical primitives), each containing
% a final state, a set of events, and an order on events.

% Intuition: ord(E1,E2) IFF R?(E1) and E2 is performed/occurs after E1.
% Thus if R?(E2) then E1 cannot read more than E2 and
% if W?(E2) then E1 can never read what E2 writes.

SemPrimBasic : TYPE = [# st : States,
 evs : setof[Events],
 ord : pred[[[evs),(evs)]] #]

SemPrim : TYPE = { spb : SemPrimBasic | strict_order?(ord(spb)) }

% strict_order? means irreflexive & transitive

sp, sp1, sp2 : VAR SemPrim

% Next importing is to allow overloading of boolean connectives for orders
% which are predicates on pairs of events

IMPORTING connectives([[Events,Events]])

SemDoms : TYPE = setof[SemPrim]
% Define the semantics of a program

skipprim(s) : SemPrim = (# st := 5, evs := emptyset, ord := FALSE #)

SKIP(s) : SemDoms = singleton(skipprim(s))

READ(x,q)(s) : SemDoms =
{ sp | EXISTS d, E : st(sp) = s WITH [x := d] AND q(d,s) AND
act(E)=R(d) AND
evs(sp) = singleton(E) AND
ord(sp) = FALSE }

WRITE(e)(s) : SemDoms =
{ sp | st(sp) = s AND
EXISTS E : act(E)=W(e(s)) AND
evs(sp) = singleton(E) AND
ord(sp) = FALSE }

SD1, SD2 : VAR [States -> SemDoms]

Eset1, Eset2 : VAR setof[Events]

% Corresponding to sequential composition, order reads of
% first set before all events of second set.
% Note that writes of first set are not ordered with respect
% to events of second set, this models possible delay of writes.

SeqOrder(Eset1,Eset2)(E1,E2) : bool =
 member(E1,Eset1) AND member(E2,Eset2) AND R?(act(E1))

SeqSem(sp1,sp2,sp) : bool =
 st(sp) = st(sp2) AND
 intersection(evs(sp1),evs(sp2)) = emptyset AND
 evs(sp) = union(evs(sp1),evs(sp2)) AND
 ord(sp) = (ord(sp1) OR ord(sp2) OR SeqOrder(evs(sp1),evs(sp2)))

SEQ(SD1,SD2)(s) : SemDoms =
{ sp | EXISTS sp1, sp2 : member(sp1,SD1(s)) AND member(sp2,SD2(st(sp1)))
AND
SeqSem(sp1, sp2, sp)

Vset1, Vset2 : VAR set of [Vars]

CombineStates(Vset1, Vset2, s0, s1, s2) : States = LAMBDA x :
 IF member(x, Vset1) THEN s1(x)
 ELSIF member(x, Vset2) THEN s2(x)
 ELSE s0(x) ENDIF

CombineEvsOrd(sp1, sp2, sp) : bool =
 intersection(evs(sp1), evs(sp2)) = emptyset AND
 evs(sp) = union(evs(sp1), evs(sp2)) AND
 ord(sp) = (ord(sp1) OR ord(sp2))

PAR(Vset1, Vset2, SD1, SD2)(s) : SemDoms =
 { sp | EXISTS sp1, sp2 : member(sp1, SD1(s)) AND member(sp2, SD2(s)) AND
 CombineEvsOrd(sp1, sp2, sp) AND
 st(sp) = CombineStates(Vset1, Vset2, s, st(sp1), st(sp2)) }

CloseRel(sp1, sp2) : bool =
 st(sp) = st(sp1) AND
 evs(sp) = ({ E | member(E, evs(sp1)) AND NOT R?(act(E)) }) AND
 ord(sp) = FALSE

before : VAR pred[[Events, Events]]

ExtendsOrder(sp, before) : bool =
 (FORALL (E1, E2 : (evs(sp))) :
 ord(sp)(E1, E2) IMPLIES before(E1, E2))

WrittenBefore(d, E, Eset1, before) : bool =
 EXISTS E1 : member(E1, Eset1) AND before(E1, E) AND act(E1) = W(d)

ReadOK(sp, before) : bool =
 (FORALL (E : (evs(sp))), d :
 act(E) = R(d) IMPLIES WrittenBefore(d, E, evs(sp), before))

CLOSE(SD1)(s) : SemDoms =
 { sp | EXISTS sp1 : member(sp1, SD1(s)) AND CloseRel(sp1, sp) AND
 (EXISTS (sto : (strict_total_order?((evs(sp1))))):
 ExtendsOrder(sp1, sto) AND ReadOK(sp1, sto)) }

prog, progl, prog2 : VAR Programs
[1] \text{(prog)}(s) : \text{RECURSIVE} \ \text{SemDoms} = \\
\text{CASES} \ prog \ \text{OF} \\
\quad \text{Skip} : \text{SKIP}(s), \\
\quad \text{Read}(x,q) : \text{READ}(x,q)(s), \\
\quad \text{Write}(e) : \text{WRITE}(e)(s), \\
\quad \text{Seq}(\text{prog}_1,\text{prog}_2) : \text{SEQ}([(\text{prog}_1 \mid \text{prog}_2)])(s), \\
\quad \text{Par}(\text{prog}_1,\text{prog}_2) : \text{PAR}(\text{vars(\text{prog}_1)},\text{vars(\text{prog}_2)},[(\text{prog}_1 \mid \text{prog}_2)])(s), \\
\quad \text{Close}(\text{prog}_1) : \text{CLOSE}([(\text{prog}_1 \mid \text{prog}_2)])(s) \\
\text{ENDCASES} \\
\text{MEASURE} \ prog \ \text{BY} \ \lll \\

% \text{A useful lemma: in the semantics of programs, only read events} \\
% \text{are ordered below other events} \\
\text{first_read_np : LEMMA} \\
\quad [\lll \text{prog}_1\rr](s)(\text{sp}) \ \text{AND evs(\text{sp})(E1)} \ \text{AND evs(\text{sp})(E2)} \\
\quad \text{AND ord(\text{sp})(E1,E2)} \ \text{IMPLIES} \ R?(\text{act}(E1)) \\

% \text{Another convenient lemma} \\
\text{EventsDiffer : LEMMA} \ \text{intersection(evs(\text{sp}_1),evs(\text{sp}_2)}) = \text{emptyset} \ \text{IMPLIES} \\
\text{FORALL E : NOT(evs(\text{sp}_1)(E) \ \text{AND evs(\text{sp}_2)(E)}))} \\
\text{END \ GlobalDB} \\

XX
VAR Data
d
Eset : VAR setof[Events]
Vset1, Vset2 : VAR setof[Vars]

ProcIdentities : NONEMPTY_TYPE

p : VAR ProcIdentities

% Semantical primitives are extended with a pid function.
% Perhaps it seems more straightforward to define
% LocalSemPrimBasic : TYPE = [# st: States,
% evs: setof[Events],
% ord: pred[(evs),(evs)],
% pid: [(evs(sempr)) -> ProcIdentities] #]
% LocalSemPrim: TYPE =
% { lspb: LocalSemPrimBasic | strict_order?(ord(lspb)) },
% but then we cannot easily use results for SemPrim on the sempr field
% of a LocalSemPrim as we can do now.

LocalSemPrim : TYPE = [# sempr : SemPrim,
 pid : [(evs(sempr)) -> ProcIdentities] #]

lsp, lsp1, lsp2 : VAR LocalSemPrim

LocalSemDoms : TYPE = setof[LocalSemPrim]

LSD1, LSD2 : VAR [States -> LocalSemDoms]

% Now define semantic functions with changes:
% SEQL and PARL have restrictions on pid function.
% NOTE: we avoided any pid restrictions on other constructs.

SKIPL(s) : LocalSemDoms =
 { lsp | member(sempr(lsp), SKIP(s)) } % ie, nothing said about
 pids(lsp)

READL(x,q)(s) : LocalSemDoms =
 { lsp | member(sempr(lsp), READ(x,q)(s)) } % idem

WRITEL(e)(s) : LocalSemDoms =
 { lsp | member(sempr(lsp), WRITE(e)(s)) } % idem

PidsEqual(lsp1,lsp2) : bool =

33
FORALL (El : (evs(sempr(lspl))), (E2 : (evs(sempr(lsp2)))):
pid(lspl)(El) = pid(lsp2)(E2)

somepid : ProcIdentities

CopyPids(lspl,lsp2,Eset) : [(Eset) -> ProcIdentities] =
LAMBDA (E : (Eset)):
 IF member(E, evs(sempr(lspl)))
 THEN pid(lspl)(E)
 ELSIF member(E, evs(sempr(lsp2)))
 THEN pid(lsp2)(E)
 ELSE somepid
 ENDIF

SEQL(LSD1,LSD2)(s) : LocalSemDoms =
{ lsp | EXISTS lspl, lsp2 :
 member(lspl,LSD1(s)) AND
 member(lsp2,LSD2(s)) AND
 SeqSem(sempr(lspl),sempr(lsp2),sempr(lsp)) AND
 PidsEqual(lspl,lsp2) AND
 pid(lsp) = CopyPids(lspl,lsp2, evs(sempr(lsp))) }

PidsDifferent(lspl,lsp2) : bool =
FORALL (El : (evs(sempr(lspl))), (E2 : (evs(sempr(lsp2)))):
pid(lspl)(El) /= pid(lsp2)(E2)

PARL(Vset1, Vset2, LSD1, LSD2)(s)
: LocalSemDoms =
{ lsp | EXISTS lspl, lsp2 :
 member(lspl,LSD1(s)) AND
 member(lsp2,LSD2(s)) AND
 CombineEvsOrd(sempr(lspl),sempr(lsp2),sempr(lsp)) AND
 st(sempr(lsp)) =

 CombineStates(Vset1,Vset2,s, st(sempr(lspl)), st(sempr(lsp2))) AND
 PidsDifferent(lspl,lsp2) AND
 pid(lsp) = CopyPids(lspl,lsp2, evs(sempr(lsp))) }

% Now we define some extra boolean functions to structure the definition
% of CLOSE.

ord1, ord2 : VAR pred[[Events,Events]]

ExtendsOrders(lsp,ord1,ord2) : bool =

34
FORALL (E1, E2 : (evs(sempr(lsp)))) :
ord1(E1,E2) IMPLIES ord2(E1,E2)

TotalOnReads(lsp,ord1) : bool =
FORALL (E1, E2 : (evs(sempr(lsp)))) :
R?(act(E1)) AND R?(act(E2)) IMPLIES
(ord1(E1, E2) OR ord1(E2, E1) OR E1 = E2)

FirstRead(lsp,ord1) : bool =
FORALL (E1, E2 : (evs(sempr(lsp)))) : ord1(E1, E2) IMPLIES R?(act(E1))

ReadPidOK(lsp,ord1,p) : bool =
FORALL (E : (evs(sempr(lsp)))) d :
act(E) = R(d) AND pid(lsp)(E) = p
IMPLIES WrittenBefore(d,E, evs(sempr(lsp)),ord1)

RestrictPid(lsp1,Eset) : [(Eset) -> ProcIdentities] =
LAMBDA (E : (Eset)) :
IF member(E, evs(sempr(lsp1))) AND NOT R?(act(E))
THEN pid(lsp1)(E)
ELSE somepid
ENDIF

% Definition of CLOSEL uses two levels of order;
% rto is a strict order which is total on the read events in lsp1,
% then for each process, a strict total order sto on all events
% (extending rto) is required for which the reads are OK.
% The requirement FirstRead(lsp1, rto) prevents rto from imposing
% too much order already.

CLOSEL(LSD1)(s) : LocalSemDoms =
{ lsp | EXISTS lsp1 : member(lsp1,LSD1(s)) AND
CloseRel(sempr(lsp1),sempr(lsp)) AND
pid(lsp) = RestrictPid(lsp1, evs(sempr(lsp))) AND
EXISTS (rto: (strict_order?[(evs(sempr(lsp1)))])) :
ExtendsOrder(sempr(lsp1),rto) AND
TotalOnReads(lsp1,rto) AND
FirstRead(lsp1,rto) AND
(FORALL p :
(EXISTS (sto : (strict_total_order?[(evs(sempr(lsp1)))])) :
ExtendsOrders(lsp1,rto,sto) AND
ReadPidOK(lsp1,sto,p)))
}

SemL(prog)(s) : RECURSIVE LocalSemDoms =
CASES prog OF
Skip : SKIPL(s),
Read(x,q) : READL(x,q)(s),
Write(e) : WRITEL(e)(s),
Seq(progi,prog2) : SEQL(SemL(progi), SemL(prog2))(s),
Par(progi,prog2) :
PARL(vars(progi),vars(prog2),SemL(progi),SemL(prog2))(s),
Close(progi) : CLOSEL(SemL(progi))(s)
ENDCASES
MEASURE prog BY <<

END LocalDB

%%

GlobalPid [Data, Vars : TYPE+] : THEORY

BEGIN
% Semantics for global database, with Pids as intermediate proof step.

IMPORTING LocalDB[Data,Vars]

prog, progi, prog2 : VAR Programs
x : VAR Vars
e : VAR Exprs
q : VAR Queries
s : VAR States
lsp, lspi : VAR LocalSemPrim
LSDi : VAR [States -> LocalSemDoms]

% Most definitions are as in local DB semantics.
% Only Close follows global formulation plus definition pid

CLOSEPID(LSDi)(s) : LocalSemDoms =
{ lsp | EXISTS lspi : member(lspi,LSDi(s)) AND
 CloseRel(sempr(lspi),sempr(lsp)) AND
 (EXISTS (sto : (strict_total_order?[(evs(sempr(lspi))))]) :
 ExtendsOrder(sempr(lspi),sto) AND ReadOK(sempr(lspi),sto))
 AND
 pid(lsp) = RestrictPid(lspi,evs(sempr(lsp))) }

SemG(prog)(s) : RECURSIVE LocalSemDoms =
CASES prog OF
 Skip : SKIPL(s),
 Read(x,q) : READL(x,q)(s),

36
Write(e) : WRITEL(e)(s),
Seq(progl,prog2) : SEQL(SemG(progl), SemG(prog2))(s),
Par(progl,prog2) :
PARL(vars(progl),vars(prog2),SemG(progl),SemG(prog2))(s),
 Close(progl) : CLOSEPID(SemG(prog1))(s)
ENDCASES
MEASURE prog BY <<
END GlobalPid

%%%
countable[P: TYPE+]: THEORY
BEGIN
% For technical reasons we need a notion of countable.
% We also prove two useful lemmas here.
pset: VAR setof[P]
countable(pset): bool =
 EXISTS (f: [(pset) -> nat]): injective?(f)

countable_emptyset: LEMMA
 countable(emptyset)

union_countable: LEMMA
 FORALL (psetl, pset2: setof[P]): countable(psetl)
 AND countable(pset2) IMPLIES countable(union(psetl, pset2))

END countable

%%%
GlobalPidGlobal[Data, Vars : TYPE+]: THEORY
% Relate the two global semantics, with and without pids.
BEGIN
% Here we import the notion of countable, for reasons explained below.
IMPORTING GlobalPid[Data, Vars], countable[ProcIdentities]
E : VAR Events
prog : VAR Programs
s : VAR States
lsp : VAR LocalSemPrim
sp : VAR SemPrim
d : VAR Data

% Here we have to abstract from pids

LSD : VAR [States -> LocalSemDoms]

RmPids(LSD) : [States -> SemDoms] =
 LAMBDA s : { sp | EXISTS lsp : member(lsp,LSD(s)) AND sp = sempr(lsp) }

% Some auxiliary functions

somepid : ProcIdentities
addpid(sp) : LocalSemPrim =
 (# sempr := sp,
 pid := LAMBDA (E : (evs(sp))) : somepid #)

lsprog : VAR LocalSpliceProgs
p : VAR ProcIdentities

addpid(sp,p) : LocalSemPrim =
 (# sempr := sp,
 pid := LAMBDA (E : (evs(sp))) : p #)

AllPidsEqual(lsp,p) : bool =
 FORALL (E : (evs(sempr(lsp)))) : pid(lsp)(E) = p

pset : VAR setof[ProcIdentities]

AllPidsDifferent(lsp,pset) : bool =
 FORALL (E : (evs(sempr(lsp)))) : NOT member(pid(lsp)(E),pset)

pids(lsp) : setof[ProcIdentities] =
 { p | EXISTS (E : (evs(sempr(lsp)))) : pid(lsp)(E) = p }

% Next axiom is needed for ParPidLem.
% Note that we have NOT no_pars then, so we need new pids different
% from certain pid set pset.
The axiom essentially says that the type ProcIdentities is uncountable.

TwoMorePids: AXIOM
FORALL pset : countable(pset) IMPLIES
(EXISTS (p1, p2 : ProcIdentities):
p1 /= p2 AND NOT member(p1,pset) AND NOT member(p2,pset))

% Do cases for close and par separately

SemG_countable: LEMMA
FORALL pset, prog, s, lsp:
SemG(prog)(s)(lsp) IMPLIES countable(pids(lsp))

Close1_var, Par1_var, Par2_var : VAR Programs

% We prove the two difficult cases (those for the Par and Close operator)
% of theorem GlobalImplGlobalPid below
% as lemmata ParPidLem and ClosePidLem.

ParPidLem: LEMMA
(no_clashes[Data, Vars](Par1_var) AND no_nestings[Data, Vars](Par1_var)
IMPLIES
(FORALL (s: States[Data, Vars], sp: SemPrim[Data, Vars]):
member(sp, [] Par1_var |](s))
IMPLIES IF no_pars(Par1_var)
THEN FORALL (p: ProcIdentities[Data, Vars]):
(EXISTS (lsp: LocalSemPrim[Data, Vars]):
member(lsp, SemG(Par1_var)(s))
AND sempr(lsp) = sp AND AllPidsEqual(lsp, p))
ELSE FORALL (pset: setof[ProcIdentities]):
countable(pset) IMPLIES
(EXISTS (lsp: LocalSemPrim[Data, Vars]):
member(lsp, SemG(Par1_var)(s))
AND sempr(lsp) = sp AND AllPidsDifferent(lsp, pset))
ENDIF)) AND
(no_clashes[Data, Vars](Par2_var) AND no_nestings[Data, Vars](Par2_var)
IMPLIES
(FORALL (s: States[Data, Vars], sp: SemPrim[Data, Vars]):
member(sp, [] Par2_var |](s))
IMPLIES IF no_pars(Par2_var)
THEN FORALL (p: ProcIdentities[Data, Vars]):
(EXISTS (lsp: LocalSemPrim[Data, Vars]):
member(lsp, SemG(Par2_var)(s))
AND sempr(lsp) = sp AND AllPidsEqual(lsp, p))
ELSE FORALL (pset: setof[ProcIdentities]):
countable(pset) IMPLIES
(EXISTS (lsp: LocalSemPrim[Data, Vars]):
 member(lsp, SemG(Par2_var)(s))
 AND sempr(lsp) = sp AND AllPidsDifferent(lsp, pset))

ENDIF) AND
no_clashes[Data, Vars](Par(Par1_var, Par2_var)) AND
no_nestings[Data, Vars](Par(Par1_var, Par2_var)) AND
member(sp, [[Par(Par1_var, Par2_var) |]](s))

IMPLIES
(IF no_pars(Par(Par1_var, Par2_var))
 THEN FORALL (p: ProcIdentities[Data, Vars]):
 (EXISTS (lsp: LocalSemPrim[Data, Vars]):
 member(lsp, SemG(Par(Par1_var, Par2_var))(s))
 AND sempr(lsp) = sp AND AllPidsEqual(lsp, p))
 ELSE FORALL (pset: setof[ProcIdentities]):
 countable(pset) IMPLIES
 (EXISTS (lsp: LocalSemPrim[Data, Vars]):
 member(lsp, SemG(Par(Par1_var, Par2_var))(s))
 AND sempr(lsp) = sp AND AllPidsDifferent(lsp, pset))
 ENDIF) AND

ClosePidLem : LEMMA
(no_clashes[Data, Vars](Close1_var) AND
no_nestings[Data, Vars](Close1_var)
IMPLIES
(FORALL (s: States[Data, Vars], sp: SemPrim[Data, Vars]):
 member(sp, [[Close1_var]](s))
 IMPLIES IF no_pars(Close1_var)
 THEN FORALL (p: ProcIdentities[Data, Vars]):
 (EXISTS (lsp: LocalSemPrim[Data, Vars]):
 member(lsp, SemG(Close1_var)(s))
 AND sempr(lsp) = sp AND AllPidsEqual(lsp, p))
 ELSE FORALL (pset: setof[ProcIdentities]):
 countable(pset) IMPLIES
 (EXISTS (lsp: LocalSemPrim[Data, Vars]):
 member(lsp, SemG(Close1_var)(s))
 AND sempr(lsp) = sp AND AllPidsDifferent(lsp, pset))
 ENDIF) AND

no_clashes[Data, Vars](Close(Close1_var)) AND
no_nestings[Data, Vars](Close(Close1_var)) AND
member(sp, [[Close(Close1_var)]](s))
IMPLIES
IF no_pars(Close(Close1_var))
THEN FORALL (p: ProcIdentities[Data, Vars]):
 (EXISTS (lsp: LocalSemPrim[Data, Vars]):

 40
member(lsp, SemG(Close(Close1_var))(s))
 AND sempr(lsp) = sp AND AllPidsEqual(lsp, p))
ELSE FOR ALL (pset: setof[ProcIdentities]):
 countable(pset) IMPLIES
 (EXISTS (lsp: LocalSemPrim[Data, Vars]):
 member(lsp, SemG(Close(Close1_var))(s))
 AND sempr(lsp) = sp AND AllPidsDifferent(lsp, pset))
ENDIF

% Now we use the two previous lemmas for the difficult cases
% of the non-trivial implication of the theorem below

GlobalImplGlobalPid : LEMMA
 member(sp, [[lsprog]](s))
 IMPLIES
 IF no_pars(lsprog)
 THEN FOR ALL p :
 (EXISTS lsp : member(lsp, SemG(lsprog)(s)) AND
 sempr(lsp) = sp AND
 AllPidsEqual(lsp, p))
 ELSE FOR ALL pset :
 countable(pset) IMPLIES
 (EXISTS lsp : member(lsp, SemG(lsprog)(s)) AND
 sempr(lsp) = sp AND
 AllPidsDifferent(lsp, pset))
 ENDIF

% next lemma is the trivial implication of the theorem below;
% it is proved by induction on prog and we use grind for all cases;

GlobalPidImplGlobal : LEMMA
 member(lsp, SemG(prog)(s)) IMPLIES member(sempr(lsp), [[prog]](s))

% main theorem

GlobalPidGlobalEq : THEOREM [[lsprog]] = RmPids(SemG(lsprog))

END GlobalPidGlobal
LocalPidGlobal[Data, Vars : TYPE+] : THEORY

% Show that local semantics is equivalent with
% global semantics with Pids.

BEGIN

IMPORTING GlobalPid[Data, Vars]

E, E1, E2, e1, e2, e3 : VAR Events
prog, prog1, prog2 : VAR Programs
v : VAR Vars
e : VAR Exprs
q : VAR Queries
s, s0, s1, s2 : VAR States
lp, lp1, lp2 : VAR LocalSemPrim
S : VAR setof[Data]
d : VAR Data
se1, se2, events : VAR setof[Events]
sto : VAR (strict_total_order?[Events])
rto : VAR (strict_order?[Events])

% We state by axiom that events_sto is a strict total order on all events
% This is needed to relate two (unordered) write events in the Close-case
% of lemma LocalImplGlobalPid below.

exists_order: AXIOM
(strict_total_order?[Events])(events_sto)

is_minimal_total_extension(sto, rto): bool =
(FORALL e1, e2: rto(e1, e2) IMPLIES sto(e1, e2))
AND FORALL e1: W?(act(e1)) IMPLIES
(FORALL e2: (R?(act(e2)) AND NOT(rto(e2, e1))) IMPLIES sto(e1, e2))

minimality_check(rto, e1, e2): bool =
(EXISTS e3: rto(e3, e2) AND NOT(rto(e3, e1))) OR
((FORALL e3: rto(e3, e1) IFF rto(e3, e2)) AND events_sto(e1, e2))

% the_extension is used to create the minimal strict total order
% on all events from the strict order which is total on all read events.
the_extension(rto): [Events, Events -> bool] =
lambda e1, e2: IF R?(act(e1)) THEN rto(e1, e2)
ELSE IF R?(act(e2)) THEN NOT rto(e2, e1)
ELSE (EXISTS e3: R?(act(e3)) AND rto(e3, e2) AND NOT rto(e3, e1))
is_sto_the_extension: LEMMA
(FORALL (rto):
 ((FORALL e1, e2:
 (R?(act(e1))
 AND R?(act(e2)))
 IMPLIES (rto(e1, e2) OR rto(e2, e1) OR e1 = e2))
 AND
 (FORALL e1,e2:
 rto(e1, e2) IMPLIES R?(act(e1)))
 IMPLIES strict_total_order?(the_extension(rto)))

minimal_write_extension: LEMMA
FORALL rto:
 ((FORALL e1,e2: (R?(act(e1)) AND R?(act(e2)))
 IMPLIES (rto(e1, e2) OR rto(e2, e1) OR e1 = e2))
 AND
 FORALL e1,e2: rto(e1, e2) IMPLIES R?(act(e1)))
 IMPLIES is_minimal_total_extension(the_extension(rto),rto)

% Two auxiliary lemmas for theorem LocalPidGlobalEq.
% In the proof of the first lemma, the Close-case is essential,
% (other cases can be solved by (grind)); we must construct
% a global order from the local for each process identity.

LocalImplGlobalPid : LEMMA
 member(lsp,SemL(prog)(s)) IMPLIES member(lsp,SemG(prog)(s))

% first_read helps to shorten the proof of the second lemma.
first_read: LEMMA
 member(lsp,SemL(prog)(s)) AND evs(sempr(lsp))(E1) AND
 evs(sempr(lsp))(E2) AND ord(sempr(lsp))(E1,E2) IMPLIES R?(act(E1))

GlobalPidImplLocal : LEMMA
 member(lsp,SemG(prog)(s)) IMPLIES member(lsp,SemL(prog)(s))

% Main theorem of this theory
LocalPidGlobalEq : THEOREM SemL = SemG

END LocalPidGlobal
LocalGlobal[Data, Vars : TYPE+] : THEORY

% combine results and relate local an global without pids

BEGIN

IMPORTING LocalPidGlobal[Data, Vars], GlobalPidGlobal[Data, Vars]

lsprog : VAR LocalSpliceProgs

LocalGlobalEq : THEOREM [lsprog] = RmPids(SemL(lsprog))

END LocalGlobal

%%%%%%%%%%%%%%%%%1.%1.1.1.1.%1.%%%%%%1.%%%%%%%%1.1.1.1.1.1.%%%%1.%%%1.1.%%%1.%%1.%%%%%%%%%%%

SPA_laws[Data, Vars: TYPE+] : THEORY

BEGIN
% Some laws of Splice Process Algebra hold for our language

IMPORTING LocalGlobal[Data, Vars]

lsp1, lsp2, lsp3: VAR LocalSpliceProgs
sp1, sp2: VAR SemPrim[Data, Vars]

% A lemma used in the proof of par_associative and seq_associative
restriction: LEMMA
strict_order?[(evs(sp1))](ord(sp1)) AND
strict_order?[(evs(sp2))](ord(sp2)) AND
empty?((intersection(evs(sp1), evs(sp2)))) IMPLIES
strict_order?(restrict[[Events[Data, Vars], Events[Data, Vars]],
[(union(evs(sp1), evs(sp2))), (union(evs(sp1), evs(sp2)))]], boolean)
(extend[[Events[Data, Vars], Events[Data, Vars]],
[(evs(sp1)), (evs(sp1))], bool, FALSE](ord(sp1))
OR extend[[Events[Data, Vars], Events[Data, Vars]],
[(evs(sp2)), (evs(sp2))], bool, FALSE](ord(sp2))))

% Parallel composition is associative and symmetric
par_associative: LEMMA
no_clashes(Par(lsp1, Par(lsp2, lsp3))) IMPLIES
[\ Par(lsp1, Par(lsp2, lsp3)) ||] = [\ Par(Par(lsp1, lsp2), lsp3) ||]

par_symmetric: LEMMA
no_clashes(Par(lsp1, lsp2)) IMPLIES
[\ Par(lsp1, lsp2) ||] = [\ Par(lsp2, lsp1) ||]
% Sequential composition is associative
seq_associative: LEMMA
 [[Seq(lspl, Seq(lsp2, lsp3))]] = [[Seq(Seq(lspl, lsp2), lsp3)]]
e1, e2: Exprs

% Sequential composition of write actions is equivalent to parallel composition of write actions
writes_1: LEMMA
 FORALL (sp: SemPrim), (st: States):
 [[Seq(Write(e1), Write(e2))]]((st)(sp)) IMPLIES
 [[Par(Write(e1), Write(e2))]]((st)(sp))
writes_2: LEMMA
 FORALL (sp: SemPrim), (st: States):
 [[Par(Write(e1), Write(e2))]]((st)(sp)) IMPLIES
 [[Seq(Write(e1), Write(e2))]]((st)(sp))

% Sequential composition of write actions is symmetric
writes_3: LEMMA
 [[Seq(Write(e1), Write(e2))]] = [[Seq(Write(e2), Write(e1))]]
x, y: VAR Vars
q1, q2: VAR Queries
P: VAR Programs

% The lemma below is not true: the order between the two events differs...
waiting_twice: LEMMA
 NOT x = Y IMPLIES
 [[Seq(Read(x, q1), Read(y, q2))]] = [[Seq(Read(y, q2), Read(x, q1))]]

END SPA_laws

counterexample[Data, Vars: TYPE+]: THEORY
BEGIN
IMPORTING LocalGlobal[Data, Vars]
s: VAR States
x, y: VAR Vars
z, d0, d1: VAR Data

% First, two useful lemmas
reads_differ: LEMMA
 NOT d₀ = d₁ IMPLIES NOT R(d₀) = R(d₁)

writes_differ: LEMMA
 NOT d₀ = d₁ IMPLIES NOT W(d₀) = W(d₁)

% Then, the lemma that two processes waiting for data from each other
% before sending end up in a deadlock
empty_semantics: LEMMA
 NOT d₀ = d₁ IMPLIES
 empty?([| Close(Par(Seq(Read(x, lambda z, s: z=d₀), Write(lambda s: d₁)),
 Seq(Read(y, lambda z, s: z=d₁), Write(lambda s: d₀)))) |](s))

END counterexample

Splice_semantics: THEORY

BEGIN

% Declare some generic non-empty types.
Vars: TYPE+
Data: TYPE+

IMPORTING GlobalPid[Vars, Data] % import global and local splice semantics
IMPORTING GlobalPidGlobal[Vars, Data] % proves [||] = RmPids(SemG)
IMPORTING LocalPidGlobal[Vars, Data] % proves SemL = SemG

lsprog : VAR LocalSpliceProgs

% The main theorem...
LocalGlobalEq : THEOREM [lsprog] = RmPids(SemL(lsprog))

% Prove some laws that hold in the Splice Process Algebra
IMPORTING SPA_laws[Vars, Data]

% Proves an empty semantics for some deadlocking program
IMPORTING counterexample[Data, Vars]

END Splice_semantics
References

Computing Science Reports

In this series appeared:

96/01 M. Voorhoeve and T. Basten
96/02 P. de Bra and A. Aerts
96/03 W.M.P. van der Aalst
96/05 T. Basten and W.M.P. v.d. Aalst
96/06 W.M.P. van der Aalst and T. Basten
96/07 M. Voorhoeve
96/08 A.T.M. Aerts, P.M.E. De Bra, J.T. de Munk
96/09 F. Dignum, H. Weigaard, E. Verharen
96/10 R. Bloo, H. Geuvers
96/11 T. Laan
96/12 F. Kamareddine and T. Laan
96/13 T. Borghuis
96/14 S.H.J. Bos and M.A. Reniers
96/15 M.A. Reniers and J.J. Vereijken
96/17 E. Boiten and P. Hoogendijk
96/18 P.D.V. van der Stok
96/19 M.A. Reniers
96/20 L. Feijs
96/21 L. Bijnima and R. Nederpelt
96/22 M.C.A. van de Graaf and G.J. Houben
96/23 W.M.P. van der Aalst
96/24 M. Voorhoeve and W. van der Aalst
96/25 M. Vaccari and R.C. Backhouse
97/02 J. Hooman and O. v. Roosmalen
97/03 J. Blanco and A. v. Deursen
97/04 J.C.M. Baeten and J.A. Bergstra
97/05 J.C.M. Baeten and J.J. Vereijken
97/06 M. Franssen
97/07 J.C.M. Baeten and J.A. Bergstra
97/08 P. Hoogendijk and R.C. Backhouse

Department of Mathematics and Computing Science
Eindhoven University of Technology

Process Algebra with Autonomous Actions, p. 12.
Multi-User Publishing in the Web: DrSS, A Document Repository Service Station, p. 12.
A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.
Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.
Structural Petri Net Equivalence, p. 16.
AUTOMATH and Pure Type Systems, p. 30.
A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.
Priorization Tense Logics in Modal Pure Type Systems, p. 61.
The i^2 C-bus in Discrete-Time Process Algebra, p. 25.
Completeness in Discrete-Time Process Algebra, p. 139.
Nested collections and polytypism, p. 11.
Real-Time Distributed Concurrency Control Algorithms with mixed time constraints, p. 71.
Static Semantics of Message Sequence Charts, p. 71.
Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent Environment, p. 27.
Designing Effective Workflow Management Processes, p. 22.
Structural Characterizations of sound workflow nets, p. 22.
Conservative Adoption of Workflow, p. 22
Deriving a systolic regular language recognizer, p. 28
Basic Conditional Process Algebra, p. 20.
Bounded Stacks, Bags and Queues, p. 15.
When do datatypes commute? p. 35.

97/13 W.M.P. van der Aalst Exploring the Process Dimension of Workflow Management, p. 56.

97/14 J.F. Groote, F. Monin and J. Springintveld A computer checked algebraic verification of a distributed summation algorithm, p. 28.

97/15 M. Franssen λP: A Pure Type System for First Order Logic with Automated Theorem Proving, p. 35.

97/16 W.M.P. van der Aalst On the verification of Inter-organizational workflows, p. 23.

97/17 M. Vaccari and R.C. Backhouse Calculating a Round-Robin Scheduler, p. 23.

98/02 M. Voorhoeve State / Event Net Equivalence, p. 25.

98/03 J.C.M. Brieten and J.A. Bergaart Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

98/05 D. Dams Flat Fragments of CTL and CTL*: Separating the Expressive and Distinguishing Powers, P. 22.

98/10 T. Basten and J. Hoeman Process Algebra in PVS

98/11 J. Zwanenburg The Proof-assistant Yarrow, p. 15

98/14 T. Verhoef (artikel volgt)

99/01 V. Box and J.J.T. Kleijn Structured Operational Semantics of χ, p. 27

99/02 H.M.W. Verbeek, T. Basten and W.M.P. van der Aalst Diagnosing Workflow Processes using Woflan, p. 44

99/03 R.C. Backhouse and P. Hoogendijk Final Dialgebras: From Categories to Allegories, p. 26

99/04 S. Andova Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81
99/05 M. Franssen, R.C. Veltkamp and W. Wesselink

99/06 T. Baslen and W. v.d. Aalst

99/07 P. Brusilovsky and P. De Bra

99/08 D. Bosnacki, S. Mauw, and T. Willemse

99/09 J. v.d. Pol, J. Hoosman and E. de Jong

99/10 T.A.C. Willemse

99/11 J.C.M. Baeten and C.A. Middelburg

99/12 S. Andova

99/13 K.M. van Hee, R.A. van der Twom, J. van der Woode and P.A.C. Verkoulen

99/14 A. Engels and S. Mauw

99/16 G.J. Houben, P. Lemmens

99/17 T. Baslen, W.M.P. v.d. Aalst

99/18 J.C.M. Baeten and T. Baslen

99/19 J.C.M. Baeten and C.A. Middelburg

99/20 Proceedings Conferentie Informatiewetenschap 1999

00/01 J.C.M. Baeten and J.A. Borgstra

00/02 J.C.M. Baeten

00/03 S. Mauw and M.A. Reniers