Stable triplet-state di(cation radicals) of a meta-para aniline oligomer by 'acid doping'

Citation for published version (APA):

DOI:
10.1021/ja9616591

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Stable Triplet-State Di(Cation Radicals) of a Meta–Para Aniline Oligomer by “Acid Doping”

Martijn M. Wienk and René A. J. Janssen*

Contribution from the Laboratory of Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received May 17, 1996

Abstract: We describe the formation of a stable triplet-state oligoaniline di(cation radical) via a proton-triggered redox reaction between \(N,N'\)-bis[4-\((\text{phenylamino})\text{phenyl}\)]-1,3-benzenediamine (1) and \(N,N'\)-bis[4-\((\text{phenylimino})\text{cyclohexa-2,5-diynylene})\]-1,3-benzenediamine (2). In this reaction 1 is oxidized, while protonated 2 is reduced, both yielding the same di(cation radical) \(1^{2+}\). The di(cation radical) is characterized with UV/visible/near-IR and ESR spectroscopy \((D = 118 \text{ MHz}; E \approx 0 \text{ MHz})\). Variable-temperature ESR measurements are consistent with a triplet ground state for \(1^{2+}\). The high stability of \(1^{2+}\) under ambient conditions demonstrates that alternating meta and para oligoanilines are interesting building blocks for future polaronic ferromagnets.

Introduction

A promising strategy toward high-spin polymers is that of a polaronic ferromagnetic chain, in which dopable segments are interlinked by ferromagnetic coupling units.\(^1\) Doping of such a polymer may result in ferromagnetically coupled unpaired electrons, localized within these segments. A number of polymers have been prepared that demonstrate the feasibility of this strategy.\(^2\) The concept of a polaronic ferromagnet bears a strong resemblance to the redox doping of conducting polymers. A special type of doping in conducting polymers is the “acid doping” of the emeraldine base of polyaniline to the conducting emeraldine salt.\(^3\) The emeraldine base consists of an alternating sequence of fully oxidized \(p\)-quinodimine and fully reduced \(p\)-phenylenediamine units linked via \(p\)-phenylenes. Protonation of the polyaniline emeraldine base at the imine nitrogen atoms induces an internal redox reaction in which one electron is transferred from each \(p\)-phenylenediamine to a \(p\)-quinodiminiyum unit. In the resulting conducting emeraldine salt, all aniline units have the same intermediate oxidation state and all nitrogen atoms have become equivalent. This internal redox reaction produces one unpaired electron per two aniline units. In principle the same proton-induced spin unpairing can also be used to prepare high-spin polyanilines. Several high-spin oligoradicals prepared by oxidation of arylamines have been described.\(^4\) Recently, we have shown that oxidation of \(a\)-meta–\(a\)-para aniline oligomer results in a triplet di(cation radical) that combines chemical stability from the \(p\)-phenylenediamine units with ferromagnetic interaction via a \(m\)-phenylene ring.\(^5\) Here we demonstrate that the concept of acid doping can be used to prepare high-spin di(cation radical) oligoanilines. For this purpose we have prepared the fully reduced 1 and fully oxidized 2 forms of an oligoaniline, in which two para-substituted rings are linked by \(m\)-phenylene. A 1:1 mixture of 1 and 2 has the required overall oxidation state and by simply adding a drop of acid a redox reaction is initiated that produces a stable di(cation radical) as the single product (Scheme 1).

Results and Discussion

Tetraamine 1 was synthesized from \(N\)-phenyl-1,4-benzene-diamine as described in Scheme 2. Diacetylation with acetic anhydride and reaction with 0.5 equiv of 1,3-dibromobenzene in an Ullmann coupling with copper(I) iodide as a catalyst, afforded the tetra-\(N\)-acetyl oligomer, which was hydrolyzed to tetraamine 1. Tetraamine 2 was prepared from 1 by oxidation with \(\text{PbO}_2\) (Scheme 1).

Cyclic voltammetry of 1 under acid conditions (acetoniitrile, \(10^{-3} \text{ M} \) perchloric acid, \(0.1 \text{ M} \) tetrabutylammonium hexafluo-
Figure 1. UV/visible/near-IR spectra of a 1:1 mixture of 1 and 2: (••••) in MeCN; (−) in MeCN/TFA (99:1).

Scheme 2

![Scheme 2](image)

rophosphate as supporting electrolyte) reveals two chemically reversible two-electron oxidation/reductions at $E^0 = 0.63$ and $E^\circ = 0.89$ V vs SCE. These values are similar to those reported for N,N-diphenyl-1,4-benzenediamine. Apparently, up to four electrons can be removed reversibly from oligoaniline 1 under acid conditions.

When equimolar amounts of tetraamine 1 and tetraamine 2 are dissolved in acetonitrile, no reaction occurs. The UV/visible/near-IR spectrum of the mixture (Figure 1) is a superposition of the absorptions of 1 (4.09 eV) and 2 (2.74 and 4.05 eV), and no ESR signal is observed. Upon addition of 1% (v/v) of trifluoroacetic acid the electronic spectrum changes completely.

The initial absorption bands disappear and two new peaks at 1.75 and 3.17 eV emerge, attributed to singly oxidized p-phenylenediamine units. When equimolar amounts of tetraamine 1 and tetraamine 2 are dissolved in acetonitrile, no reaction occurs. The UV/visible/near-IR spectrum changes completely.

In this process the protonated N,N'-diphenyl-1,4-benzenediamine and its monocation radical. This suggests that the nonresonant m-phenylene ring effectively separates the electronic transitions in 1 and 122+.

Figure 2. X-Band ESR spectrum of 122+ in CH$_2$Cl$_2$/TFA recorded at 110 K. The central line is due to some doublet impurity. Inset: $\Delta M_s = \pm 2$ transition recorded at 4.0 K.

122+, while at the same time the tetraamine 1 is oxidized to exactly the same species. In acidic solution this triplet-state dication radical 122+ is stable at room temperature for several days. Reduction of 122+ with hydrazine monohydrate regenerates 1 in quantitative yield, as evidenced from the UV/visible/near-IR spectrum showing the band of tetraamine 1 at 4.09 eV with double intensity as compared to the initial spectrum.

The zero-field splitting parameters ($D = 118$ MHz; $E \approx 0$ MHz) were determined by simulation of the $\Delta M_s = \pm 1$ transitions of the ESR spectrum. Assuming a point-dipole approximation for the zero-field splitting, $D = 118$ MHz corresponds to an average distance between the unpaired electrons of 8.7 Å. This is consistent with the separation of 9.8 Å between the centers of the two p-phenylenediamine units, as estimated from standard bond lengths, assuming a planar geometry.

In order to determine the ground state of 122+, variable temperature ESR measurements were carried out. The signal intensity of the $\Delta M_s = \pm 1$ and $\Delta M_s = \pm 2$ transitions follows Curie’s law ($I = C/T$) between 4 and 100 K and is completely reversible. The Curie behavior reveals that no extra population or depopulation of the triplet state occurs in this temperature region. This can be interpreted in two possible ways. Either the triplet state is the ground state and separated from the singlet state by a substantial energy gap of a few hundreds of calories per mole or the singlet and triplet states are exactly degenerate. In either case, however, the triplet state corresponds to the lowest energy state.

Dication radical 122+ has also been prepared by chemical oxidation of tetraamine 1 in dichloromethane/tetrafluoroacetic acid (1:1), using thianthrene perchlorate or phenylidodine-III bis(tetrafluoroacetate) as oxidizing agent. Addition of <1 equiv of oxidant affords monocation radical 1+, being a mixed-valence molecule. The ESR spectrum of 1+ at room temperature exhibits a well-resolved complex pattern dominated by hyperfine interaction with two 14N nuclei and two amine protons. The isotropic couplings of $A_{\text{iso}}(N) = 5.5$ G and $A_{\text{iso}}(T) = 0.8$ G at 14.1 T.

(7) The optical absorption spectra of neutral tetraamine 1 and its dication radical 122+ are found to be identical to those of N,N'-diphenyl-1,4-benzenediamine and its monocation radical. This suggests that the nonresonant m-phenylene ring effectively separates the electronic transitions in 1 and 122+.

A_{\text{mp}}(H) = 6.5 \text{ G} are in good agreement with values reported for N,N'-diphenyl-1,4-benzenediimine.\(^6\) Hyperfine interaction with only two nitrogen nuclei demonstrates that the unpaired electron is localized within half of the molecule. Further oxidation of I\(^+\) leads to the formation of the di(cation radical) I\(^{2+}\), with electronic and ESR spectra identical to those obtained in the acid doping experiment.

Conclusion
We have demonstrated that, in addition to redox doping, acid doping can be used to generate polaronic high-spin molecules. The chemical stability of the di(cation radical), I\(^{2+}\), confirms the feasibility of alternating meta and para oligoanilines as building blocks for future polaronic ferromagnetic polymers.

Experimental Section

General Methods. Commercial grade reagents were used without further purification. Solvents were purified following standard procedures. NMR spectra were recorded on a Bruker AM-400 spectrometer, chemical shifts are relative to TMS for \(^1\)H and \(^13\)C NMR spectra. Cyclic voltammograms were obtained with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte using a Potentiostatic Wenking POS73 potentiostat.

N-Phenyl-N,N'-1,4-phenylenebis(acetamide) (3). Acetic anhydride (3.8 mL, 40 mmol) was added slowly to N-phenyl-1,4-benzenediimine (3.68 g, 20 mmol) in acetic acid (20 mL). After the addition was complete, the reaction mixture was heated to 70°C for 24 h. The acetic acid was removed by distillation under reduced pressure. Column chromatography (SiO\(_2\), EtOAc) and recrystallization from hexane/EtOAc (1:1) provided 3 (5.83 g, 87%) as a white crystalline solid: mp 137 °C; \(^1\)H NMR (300 K, CDCl\(_3\)).\(^9\) \(\delta 2.09 (3H, s, CH\(_3\)), 2.16 (3H, s, CH\(_3\)), 7.18 (2H, d, J = 8.7 Hz, H-2 and H-6), 7.20–7.25 (3H, m, H-4 and H-2'H and H-6'), 7.30 (1H, bs, N-H), 7.33 (2H, dd, J = 8.4 Hz and 6.9 Hz, H-3' and H-5'), 7.43 (2H, bd, J = 8.7 Hz, H-3 and H-5); \(^13\)C NMR (300 K, CDCl\(_3\)) \(\delta 23.45 (\text{CH}_3), 23.86 (\text{CH}_2), 120.80 (C-3 + C-5), 126.87 (C-4'), 127.23 (C-2 + C-6 or C-2' + C-6'), 126.70 (C-2'O or C-6'O and C-2' + C-6'), 129.19 (C-3' + C-5'), 137.4 (C-4'), 138.61 (C-1), 143.13 (C-1), 168.73 (CO), 170.53 (CO). Anal. Calcd for C\(_{34}\)H\(_{38}\)N\(_2\)O\(_2\): C, 71.62; H, 6.01; N, 10.44. Found: C, 72.14; H, 5.94; N, 10.54.

N,N'-Bis[4-(N-phenylacetylamino)phenyl]-1,3-phenylenebis(acetamide) (4). Diamide (3.69 g, 10 mmol), 1,3-dibromobenzene (1.18 g, 10 mmol), K\(_2\)CO\(_3\) (1.38 g, 10 mmol), and Cuf (0.05 g, 0.25 mmol) in ethoxylated ether (25 mL) were heated to reflux for 24 h. The hot reaction mixture was filtered over Hyflo and the filtrate thoroughly washed with EtOAc. The combined organic fractions were concentrated by vacuum distillation, and the crude product was purified by column chromatography (SiO\(_2\), CHCl\(_3\)/MeOH 9:1) and recrystallization from hexane/EtOAc, providing 4 (3.11 g, 51%) as a white solid: mp 160–165 °C;\(^{10}\) \(^1\)H NMR (300 K, CDCl\(_3\)) \(\delta 1.98 (6H, s, CH\(_3\)), 1.99 (6H, s, CH\(_3\)), 7.06 (2H, d, J = 8.1 Hz, H-4 and H-6), 7.16 (4H, d, J = 8.8 Hz, H-2' and H-6'), 7.2–7.3 (12H, m, H-2, H-5, H-2' + H-6', H-3' + H-5', and H-4'), 3.54 (4H, t, J = 7.7 Hz, H-3' + H-5'); \(^13\)C NMR (330K, CDCl\(_3\)) \(\delta 23.74 (\text{CH}_3), 125.46 (C-4 + C-6), 126.65 (C-2), 127.44, 127.54, 127.87 and 128.06 (C-2', C-6', C-3' + C-5', C-2' + C-6', and C-4'), 129.61 (C-3' + C-5'), 129.91 (C-5), 140.72 and 141.86 (C-1' + C-4'), 143.13 (C-1'), 143.83 (C-1 + C-3), 170.01 and 170.10 (CO). Anal. Calcd for C\(_{34}\)H\(_{38}\)N\(_2\): C, 74.74; H, 5.61; N, 9.17. Found: C, 74.30; H, 4.89; N, 9.39.

Conclusion
We have demonstrated that, in addition to redox doping, acid doping can be used to generate polaronic high-spin molecules. The chemical stability of the di(cation radical), I\(^{2+}\), confirms the feasibility of alternating meta and para oligoanilines as building blocks for future polaronic ferromagnetic polymers.