

Routing in polygonal domains

Citation for published version (APA):
Banyassady, B., Chiu, M. K., Korman, M., Mulzer, W., van Renssen, A., Roeloffzen, M., Seiferth, P., Stein, Y.,
Vogtenhuber, B., & Willert, M. (2020). Routing in polygonal domains. Computational Geometry: Theory and
Applications, 87, [101593]. https://doi.org/10.1016/j.comgeo.2019.101593

Document license:
TAVERNE

DOI:
10.1016/j.comgeo.2019.101593

Document status and date:
Published: 01/04/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 02. Jun. 2023

https://doi.org/10.1016/j.comgeo.2019.101593
https://doi.org/10.1016/j.comgeo.2019.101593
https://research.tue.nl/en/publications/f183a589-e240-4664-9245-8597421033df

Computational Geometry 87 (2020) 101593
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Routing in polygonal domains ✩

Bahareh Banyassady a, Man-Kwun Chiu b, Matias Korman c, Wolfgang Mulzer b,∗,
André van Renssen d, Marcel Roeloffzen e, Paul Seiferth b, Yannik Stein b,
Birgit Vogtenhuber f, Max Willert b

a Zuse Institute Berlin, Berlin, Germany
b Institut für Informatik, Freie Universität Berlin, Berlin, Germany
c Department of Computer Science, Tufts University, Medford, MA, USA
d The University of Sydney, Sydney, Australia
e Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, the Netherlands
f Institute of Software Technology, Graz University of Technology, Graz, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2017
Accepted 31 July 2018
Available online 13 November 2019

Keywords:
Routing scheme
Polygonal domain

We consider the problem of routing a data packet through the visibility graph of a
polygonal domain P with n vertices and h holes. We may preprocess P to obtain a label
and a routing table for each vertex of P . Then, we must be able to route a data packet
between any two vertices p and q of P , where each step must use only the label of the
target node q and the routing table of the current node.
For any fixed ε > 0, we present a routing scheme that always achieves a routing path
whose length exceeds the shortest path by a factor of at most 1 + ε. The labels have
O (log n) bits, and the routing tables are of size O ((ε−1 + h) logn). The preprocessing time
is O (n2 log n). It can be improved to O (n2) for simple polygons.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Routing is a crucial problem in distributed graph algorithms [23,34]. We would like to preprocess a given graph G in
order to support the following task: given a data packet that lies at some source node p of G , route the packet to a given
target node q in G that is identified by its label. We expect three properties from our routing scheme: first, it should be
local, i.e., in order to determine the next step for the packet, it should use only information stored with the current node of
G or with the packet itself. Second, the routing scheme should be efficient, meaning that the packet should not travel much
more than the shortest path distance between p and q. The ratio between the length of the routing path and the shortest
path in the graph is also called stretch factor. Third, it should be compact: the total space requirement should be as small as
possible.

✩ A preliminary version appeared as B. Banyassady, M.-K. Chiu, M. Korman, W. Mulzer, A. v. Renssen, M. Roeloffzen, P. Seiferth, Y. Stein, B. Vogtenhuber,
and M. Willert. Routing in Polygonal Domains. Proc. 28th ISAAC, pp. 10:1–10.13. BB was supported in part by DFG project MU/3501-2. MC, AvR and MR were
supported by JST ERATO Grant Number JPMJER1201, Japan. MK was supported in part by KAKENHI Nos. 15H02665 and 17K12635, JSPS, Japan. WM was
supported in part by ERC StG 757609. PS was supported in part by DFG project MU/3501-1. YS was supported by the DFG within the research training
group ‘Methods for Discrete Structures’ (GRK 1408) and by GIF grants 1161 and 1367.

* Corresponding author.
E-mail addresses: banyassady@zib.de (B. Banyassady), cmk.kenny@gmail.com (M.-K. Chiu), matias.korman@tufts.edu (M. Korman),

mulzer@inf.fu-berlin.de (W. Mulzer), andre.vanrenssen@sydney.edu.au (A. van Renssen), m.j.m.roeloffzen@tue.nl (M. Roeloffzen), pseiferth@inf.fu-berlin.de
(P. Seiferth), yannikstein@inf.fu-berlin.de (Y. Stein), bvogt@ist.tugraz.at (B. Vogtenhuber), willerma@inf.fu-berlin.de (M. Willert).
https://doi.org/10.1016/j.comgeo.2019.101593
0925-7721/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2019.101593
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:banyassady@zib.de
mailto:cmk.kenny@gmail.com
mailto:matias.korman@tufts.edu
mailto:mulzer@inf.fu-berlin.de
mailto:andre.vanrenssen@sydney.edu.au
mailto:m.j.m.roeloffzen@tue.nl
mailto:pseiferth@inf.fu-berlin.de
mailto:yannikstein@inf.fu-berlin.de
mailto:bvogt@ist.tugraz.at
mailto:willerma@inf.fu-berlin.de
https://doi.org/10.1016/j.comgeo.2019.101593
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2019.101593&domain=pdf

2 B. Banyassady et al. / Computational Geometry 87 (2020) 101593
Here is an obvious solution: for each node v of G , we store at v the complete shortest path tree for v . Thus, given
the label of a target node q, we can send the packet for one more step along the shortest path from v to q. Then, the
routing scheme will have perfect efficiency, sending each packet along a shortest path. However, this method requires that
each node stores its entire shortest path tree, making it not compact. Thus, the challenge lies in finding the right balance
between the conflicting goals of compactness and efficiency.

Thorup and Zwick introduced the notion of a distance oracle [42]. Given a graph G , the goal is to construct a compact
data structure to quickly answer distance queries for any two nodes in G . A routing scheme can be seen as a distributed
implementation of a distance oracle [36].

The problem of constructing a compact routing scheme for a general graph has been studied for a long time [1,3,16,18,
21,35,36]. One of the most recent results, by Roditty and Tov, dates from 2016 [36]. They developed a routing scheme for
a general graph G with n vertices and m edges. Their scheme needs to store a poly-logarithmic number of bits with the
packet, and it routes a message from p to q on a path with length O (k� + m1/k), where � is the shortest path distance
between p and q and k > 2 is any fixed integer. The routing tables use mnO (1/

√
log n) total space. In general graphs, any

routing scheme with constant stretch factor needs to store �(nc) bits per node, for some constant c > 0 [34]. Thus, it is
natural to ask whether there are better algorithms for specialized graph classes. For instance, trees admit routing schemes
that always follow the shortest path and that store O (log n) bits at each node [22,37,41]. Moreover, in planar graphs, for
any fixed ε > 0, there is a routing scheme with a poly-logarithmic number of bits in each routing table that always finds a
path that is within a factor of 1 + ε from optimal [40]. Similar results are also available for unit disk graphs [26], and for
metric spaces with bounded doubling dimension [29].

Another approach is called geometric routing. Here, the graph is embedded in a geometric space, and the routing al-
gorithm has to determine the next vertex for the data packet based on the location of the source and the target vertex,
the current vertex, and its neighborhood, see for instance [9,10] and the references therein. The most notable difference
between geometric routing and our setting is that in geometric routing, vertices are generally not allowed to store routing
tables, so that routing decisions are based solely on the geometric information available at the current vertex (and possibly
information stored in the message). We note that the location of the source vertex may or may not be needed, depending on
the routing algorithm. For example, the routing algorithm for triangulations by Bose and Morin [13] uses the line segment
between the source and the target for its routing decisions. A recent result by Bose et al. [10] is very close to our setting.
They show that when vertices do not store any routing tables (i.e., each vertex stores only the edges that can be followed
from it), no geometric routing scheme can achieve stretch factor o(

√
n). This lower bound applies regardless of the amount

of information that may be stores in the message.
Here, we consider the class of visibility graphs of a polygonal domain. Let P be such a polygonal domain with h holes

and n vertices. Two vertices p and q in P are connected by an edge if and only if they can see each other, i.e., if and only
if the line segment between p and q is contained in the (closed) region P . We note that this definition implies that the
visibility graph contains the shortest path between any two vertices of the polygonal domain. The problem of computing a
shortest path between two vertices in a polygonal domain has been well-studied in computational geometry [2,4,24,25,27,
28,30,31,33,38,39,43]. Nevertheless, to the best of our knowledge, prior to our work there have been no routing schemes for
visibility graphs of polygonal domains that fall into our model.

When we relax the requirement on the length of the path, we enter the domain of spanners: given a graph G , a subgraph
H of G is a k-spanner of G if for all pairs of vertices p and q in G , dH (p, q) ≤ k · dG(p, q), for k ≥ 1. The spanning properties
of various geometric graphs have been studied extensively in the literature (see [15,32] for a comprehensive overview). We
briefly mention the results that are most closely related to the approach we will take here, namely Yao-graphs [45] and
�-graphs [17]. Intuitively, these graphs form geometric networks where each vertex connects to its nearest visible vertex
in a certain number of different directions (a formal definition is given in Section 3). Both types of graphs are spanners,
where the stretch factor depends on the number of cones used [5–8,14,19,20]. These graphs have also been considered for
geometric routing purposes. For example, Bose et al. [9] gave an optimal geometric routing algorithm for the half-�6-graph
(the �-graph with six cones where edges are added in every other cone). When considering obstacles, �-graphs have
recently been used to route on (subgraphs of) the visibility graph [10–12], though these algorithms do not provide a bound
on the total length of the routing path, only on the number of edges followed by the routing scheme. However, as mentioned
earlier, these geometric routing schemes cannot achieve a stretch factor of o(

√
n), as they are not allowed to store routing

tables at the vertices.
We introduce a routing scheme that, for any ε > 0, needs O ((1/ε + h) log n) bits in each routing table, and for any two

vertices p and q, it produces a routing path that is within a factor of 1 + ε of optimal. This shows that by allowing a
routing table at each vertex, we can do much better than in traditional geometric routing, achieving a stretch factor that is
arbitrarily close to 1.

2. Preliminaries

Let G = (V , E) be an undirected, connected and simple graph. In our model, G is embedded in the Euclidean plane: a node
p = (px, p y) ∈ V corresponds to a point in the plane, and an edge {p, q} ∈ E is represented by the line segment pq. The
length |pq| of an edge {p, q} is the Euclidean distance between the points p and q. The length of a shortest path between
two nodes p, q ∈ V is denoted by d(p, q).

B. Banyassady et al. / Computational Geometry 87 (2020) 101593 3
We formally define a routing scheme for G . Each node p of G is assigned a label �(p) ∈ {0, 1}∗ that identifies it in the
network. Furthermore, we store with p a routing table ρ(p) ∈ {0, 1}∗ . The routing scheme works as follows: the packet
contains the label �(q) of the target node q, and initially it is situated at the start node p. In each step of the routing
algorithm, the packet resides at a current node p′ ∈ V . It may consult the routing table ρ(p′) of p′ and the label �(q) of the
target to determine the next node q′ to which the packet is forwarded. The node q′ must be a neighbor of p′ in G . This is
repeated until the packet reaches its destination q. The scheme is modeled by a routing function f : ρ(V) × �(V) → V .

In the literature, there are varying definitions for the notion of a routing scheme [26,36,44]. For example, we may
sometimes store additional information in the header of a data packet (it travels with the packet and can store information
from past vertices). Similarly, the routing function sometimes allows the use of an intermediate target label. This is helpful
for recursive routing schemes. Here, however, we will not need any of these additional capabilities.

As mentioned, the routing scheme operates by repeatedly applying the routing function. More precisely, given a start
node p ∈ V and a target label �(q), the scheme produces the sequence of nodes p0 = p and pi = f (ρ(pi−1), �(q)), for
i ≥ 1. Naturally, we want routing schemes for which every packet reaches its desired destination. More precisely, a routing
scheme is correct if for any p, q ∈ V , there exists a finite k = k(p, q) ≥ 0 such that pk = q (and pi 	= q for 0 ≤ i < k). We call
p0, p1, . . . , pk the routing path between p and q. The routing distance between p and q is defined as dρ(p, q) = ∑k

i=1 |pi−1 pi |.
The quality of the routing scheme is measured by several parameters:

1. the label size maxp∈V |�(p)|,
2. the table size maxp∈V |ρ(p)|,
3. the stretch factor maxp 	=q∈V dρ(p, q)/d(p, q), and
4. the preprocessing time.

Let P be a polygonal domain with n vertices. The boundary ∂ P of P consists of h pairwise disjoint simple closed polyg-
onal chains: one outer boundary and h − 1 hole boundaries, or h hole boundaries with no outer boundary. All hole boundaries
lie inside the outer boundary, and no hole boundary lies inside another hole boundary. In both cases, we say that P has h
holes. The interior induced by any hole boundary and the exterior of the outer boundary are not contained in P . We denote
the (open) interior of P by int P , i.e., int P = P \ ∂ P . We assume that P is in general position: no three vertices of P lie on
a common line, and for each pair of vertices in P , the shortest path between them is unique. Let ni , 0 ≤ i ≤ h − 1, be the
number of vertices on the i-th boundary of P . For each boundary i, we number the vertices from 0 to ni − 1, in clockwise
order if i is a hole boundary, or in counterclockwise order if i is the outer boundary. The kth vertex of the ith boundary is
denoted by pi,k .

Two points p and q in P can see each other in P if and only if pq ⊂ P . By our general position assumption, pq touches
∂ P only if pq is itself an edge of P . The visibility graph of P , VG(P), has the same vertices as P and an edge between two
vertices if and only if they see each other in P . We show the following main theorem:

Theorem 2.1. Let P be a polygonal domain with n vertices and h holes. For any ε > 0, we can construct a routing scheme for VG(P)

with labels of O (logn) bits and routing tables of O ((1/ε + h) log n) bits per vertex. For any two sites p, q ∈ P , the scheme produces a
routing path with stretch factor at most 1 + ε. The preprocessing time is O (n2 log n). If P is a simple polygon, the preprocessing time
reduces to O (n2).

3. Cones in polygonal domains

Let P be a polygonal domain with n vertices and h holes. Furthermore, let t ≥ 3 be an integer parameter, to be deter-
mined later. Following Yao [45] and Clarkson [17], we subdivide the visibility polygon of each vertex in P into t cones with
a small enough apex angle. This will allow us to construct compact routing tables that support a routing algorithm with
small stretch factor.

Let p be a vertex in P and p′ the clockwise neighbor of p if p is on the outer boundary, or the counterclockwise
neighbor of p if p lies on a hole boundary. We denote with r(p) the ray from p through p′ . To obtain our cones, we rotate
r(p) by certain angles. Let α be the inner angle at p. For j = 0, . . . , t , we write r j(p) for the ray r(p) rotated clockwise by
angle j · α/t .

Now, for j = 1, . . . , t , the cone C j(p) has apex p, boundary r j−1(p) ∪ r j(p), and opening angle α/t; see Fig. 1. For
technical reasons, we define r j(p) not to be part of C j(p), for 1 ≤ j < t , whereas we consider rt(p) to be part of Ct(p).
Furthermore, we write C(p) = {C j(p) | 1 ≤ j ≤ t} for the set of all cones with apex p. Since the opening angle of each cone
is α/t ≤ 2π/t and since t ≥ 3, each cone is convex.

The following proof is similar to the one given by Clarkson [17] and Narasimhan and Smid [32], though the former shows
only that the construction leads to an O (1/ε)-spanner instead of showing a more precise bound in terms of the number of
cones.

Lemma 3.1. Let p be a vertex of P and let {p, q} be an edge of VG(P) that lies in the cone C j(p). Furthermore, let s be a vertex of P
that lies in C j(p), is visible from p, and that is closest to p. Then, d(s, q) ≤ |pq| − (1 − 2 sin(π/t)) |ps|.

4 B. Banyassady et al. / Computational Geometry 87 (2020) 101593
Fig. 1. The cones and rays of a vertex p with apex angle α.

Fig. 2. Illustration of Lemma 3.1. The points s and s′ have the same distance to p. The dashed line represents the shortest path from s to q.

Proof. Let s′ be the point on the line segment pq with |ps′| = |ps|; see Fig. 2. Since p can see q, we have that p can
see s′ and s′ can see q. Furthermore, s can see s′ , because p can see s and s′ and we chose s to be closest to p, so the
triangle �(p, s, s′) cannot contain any vertices or (parts of) edges of P in its interior. Now, the triangle inequality yields
d(s, q) ≤ |ss′| +|s′q|. Let β be the inner angle at p between the line segments ps and ps′ . Since both segments lie in the cone
C j(p), we get β ≤ 2π/t . Thus, the angle between s′ p and s′s is γ = π/2 − β/2. Using the sine law and sin 2x = 2 sin x cos x,
we get

|ss′| = |ps| · sinβ

sinγ
= |ps| · sinβ

sin ((π/2) − (β/2))
= |ps| · 2 sin(β/2) cos(β/2)

cos(β/2)
≤ 2|ps| sin(π/t).

Furthermore, we have |s′q| = |pq| − |ps′| = |pq| − |ps|. Thus, the triangle inequality gives

d(s,q) ≤ 2|ps| sin(π/t) + |pq| − |ps| = |pq| − (1 − 2 sin(π/t)) |ps|,
as claimed. �
4. The routing scheme

Let ε > 0, and let P be a polygonal domain with n vertices and h holes. We describe a routing scheme for VG(P) with
stretch factor 1 + ε. The idea is to compute for each vertex p the corresponding set of cones C(p) and to store a certain
interval of indices for each cone C j(p) in the routing table of p. If an interval of a cone C j(p) contains the target vertex
t , we proceed to the nearest neighbor of p in C j(p); see Fig. 3. We will see that this results in a routing path with small
stretch factor.

In the preprocessing phase, we first compute the label of each vertex pi,k . The label of pi,k is the binary representation
of i, concatenated with the binary representation of k. Thus, all labels are distinct binary strings of length �log h
 + �log n
.

Let p be a vertex in P . Throughout this section, we will write C and C j instead of C(p) and C j(p). The routing table of
p is constructed as follows: first, we compute a shortest path tree T for p. For a vertex s of P , let Ts be the subtree of T
with root s, and denote the set of all vertices on the i-th hole in Ts by Is(i). The following well-known observation lies at
the heart of our routing scheme. For completeness, we include a proof.

Observation 4.1. Let q1 and q2 be two vertices of P . Let π1 be the shortest path in T from p to q1 , and π2 the shortest path in T from p
to q2 . Let l be the lowest common ancestor of q1 and q2 in T . Then, π1 and π2 do not cross or touch in a point x with d(p, x) > d(p, l).

B. Banyassady et al. / Computational Geometry 87 (2020) 101593 5
Fig. 3. The idea of the routing scheme. The first edge on a shortest path from p to q (red) is contained in C j(p). The routing algorithm will route the packet
from p to s (green), the closest vertex to p in C j . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Two shortest paths that originate in p cannot cross.

Fig. 5. The shortest path from p to a (green) crosses the shortest path from p to q1 (red). This gives a contradiction by Observation 4.1.

Proof. Suppose first that π1 touches π2 in a point x with d(p, x) > d(p, l). The edges of T are line segments, so this can
only happen if x is a vertex. But then T would contain a cycle, which is impossible.

Next, suppose that π1 and π2 cross in a point x with d(p, x) > d(p, l). Suppose further that x lies on the edge e1 = (s1, t1)

of π1 and the edge e2 = (s2, t2) of π2; see Fig. 4. Without loss of generality, we have d(l, s1) + |s1x| ≤ d(l, s2) + |s2x|. Since
x ∈ int P , there is a δ > 0 such that the disk D with center x and radius δ is contained in P . Now consider the intersection
y1 of ∂ D with s1x and the intersection y2 of ∂ D with xt2. We have y1 y2 ⊂ D ⊂ P , and the triangle inequality yields
|y1x| + |xy2| > |y1 y2|. Hence, the path s1 y1 y2t2 is a shortcut from l to t2, a contradiction to π2 being a shortest path. �
Lemma 4.2. Let e = (p, s) be an edge in T . Then, the indices of the vertices in Is(i) form an interval. Furthermore, let f = (p, s′) be
another edge in T , such that e and f are consecutive edges in T around p.1 Then, the indices of the vertices in Is(i) ∪ Is′ (i) are again
an interval.

Proof. For the first part of the lemma, suppose that the indices for Is(i) do not form an interval. Then, there are two vertices
q1, q2 ∈ Is(i) such that if we consider the two polygonal chains H1 and H2 with endpoints q1 and q2 that constitute the
boundary of hole i, there are two vertices a, b /∈ Is(i) with a ∈ H1 and b ∈ H2 (see Fig. 5). Let π1 and π2 be the shortest
paths in T from s to q1 and from s to q2. Let r be the last common vertex of π1 and π2, and let π̃1 be the subpath of π1
from r to q1 and π̃2 the subpath of π2 from r to q2. Consider the set D of (open) connected components of P \ (π̃1 ∪ π̃2).
Any vertex of P that is on the boundary of two different components of D must lie on π̃1 ∪ π̃2. Hence, p, a, and, b each
lie on the boundary of exactly one component in D, and the components Da and Db with a and b on the boundary are
distinct. Suppose without loss of generality that p /∈ ∂ Da . Then, there has to be a child s̃ of p in T such that a ∈ I s̃(i) and

1 By this, we mean that there is no other edge of T incident to p in the cone that is spanned by e and f and that extends into the interior of P .

6 B. Banyassady et al. / Computational Geometry 87 (2020) 101593
such that the shortest path from s̃ to a crosses π1 ∪ π2. Since p is the lowest common ancestor of a and q1 and of a and
q2, this contradicts Observation 4.1.

The proof for the second part is very similar. We assume for the sake of contradiction that the indices in Is(i) ∪ Is′ (i) do
not form an interval, and we find vertices q1, q2 ∈ Is(i) ∪ Is′ (i) such that if we split the boundary of hole i into two chains
H1 and H2 between q1 and q2, there are two vertices a, b /∈ Is(i) ∪ Is′ (i) with a ∈ H1 and b ∈ H2. Furthermore, we may
assume that a 	= p and b 	= p, because otherwise q1 and q2 would be the two vertices of P that share an edge with p, and
thus q1 and q2 would be the only two children of p in T and Is(i) ∪ Is′ (i) would be an interval. Let π1 be the shortest path
in T from s to q1 and π2 the shortest path in T from s′ to q2, and consider the lowest common ancestor r of q1 and q2
in T (now r might be p). Let π̃1 be the subpath of π1 from r to q1 and π̃2 the subpath of π2 from r to q2. Consider the
set D of (open) connected components of P \ (π̃1 ∪ π̃2). As before, any vertex that lies on the boundaries of two distinct
components of D must belong to π̃1 ∪ π̃2, so a and b are on the boundaries of two uniquely defined distinct components
in D. We call these components Da and Db . Now, s and s′ are consecutive around p, so at least one of Da and Db contains
no other child of p in T on its boundary. Let it be Da . Then, the shortest path from p to a must cross π1 ∪π2, contradicting
Observation 4.1. �

Lemma 4.2 indicates how to construct the routing table ρ(p) for p. We set

t =
⌈
π/arcsin

(
1

2 (1 + 1/ε)

)⌉
, (1)

and we construct a set C of cones for p as in Section 3. Let C j ∈ C be a cone, and let �i be a hole boundary or the outer
boundary. We define C j � �i as the set of all vertices q on �i for which the first edge of the shortest path from p to q lies
in C j . By Lemma 4.2, the indices of the vertices in C j � �i form a (possibly empty) cyclic interval [k1, k2]. If C j � �i = ∅,
we do nothing. Otherwise, if C j � �i 	= ∅, there is a vertex r ∈ C j closest to p, and we add the entry (i, k1, k2, �(r)) to ρ(p).
This entry needs 2 · �log h
 + 3 · �log n
 bits.

Now, the routing function f : ρ(V) × �(V) → V is quite simple. Given the routing table ρ(p) for the current vertex p
and a target label �(q) = (i, k), indicating vertex k on hole i, we search ρ(p) for an entry (i, k1, k2, �(r)) with k ∈ [k1, k2]. By
construction, this entry is unique. We return r as the next destination for the packet (see Fig. 3).

5. Analysis

We analyze the stretch factor of our routing scheme and give upper bounds on the size of the routing tables and the
preprocessing time. Let ε > 0 be fixed, and let 1 + ε be the desired stretch factor. We set t as in (1). First, we bound t in
terms of ε. This immediately gives |C(p)| ∈ O (1/ε), for every vertex p.

Lemma 5.1. We have t ≤ 2π (1 + 1/ε) + 1.

Proof. For x ∈ (0, 1/2], we have sin x ≤ x, so for z ∈ [2, ∞), we get that sin(1/z) ≤ 1/z. Applying arcsin(·) on both sides, this
gives 1/z ≤ arcsin(1/z) ⇔ 1/ arcsin(1/z) ≤ z. We set z = 2(1 + 1/ε) and multiply by π to derive the desired inequality. �
5.1. The routing table

Let p be a vertex of P . We again write C for C(p) and C j instead of C j(p). To bound the size of ρ(p), we need some
properties of holes with respect to cones. For i = 0, . . . , h −1, we write m(i) for the number of cones C j ∈ C with C j ��i 	= ∅.
Then, ρ(p) contains at most |ρ(p)| ≤ O

(∑h−1
i=0 m(i) log n

)
bits. We say that �i is stretched for the cone C j if there are indices

0 ≤ j1 < j < j2 < t such that C j1 � �i , C j � �i and C j2 � �i are non-empty. If �i is not stretched for any cone of p, then
m(i) ≤ 2. We prove the following lemma:

Lemma 5.2. For every cone C j ∈ C , there is at most one boundary �i that is stretched for C j .

Proof. Let �i be a hole boundary that is stretched for C j . There are indices j1 < j < j2 and vertices q ∈ C j1 ��i , r ∈ C j ��i ,
and s ∈ C j2 � �i . We subdivide P into three regions Q , R and S: the boundary of Q is given by the shortest path from p
to r, the shortest path from p to q, and the part of �i from r to q not containing s. Similarly, the region R is bounded by
the shortest path from p to r, the shortest path from p to s and the part of �i between r and s that does not contain q.
Finally, S is the closure of P \ (Q ∪ R). The interiors of Q , R , and S are pairwise disjoint; see Fig. 6.

Suppose there is another boundary � that is stretched for C j . Then, � must lie entirely in either Q , R , or S . We discuss
the first case, the other two are symmetric. Since � is stretched for C j , there is an index j′ > j and a vertex t ∈ C j′ � �.
Consider the shortest path π from p to t . Since j′ > j, the first edge of π lies in R or S , and π has to cross or touch the
shortest path from p to q or from p to r. Furthermore, by definition, we have C j ∩ C j′ = {p} and C j1 ∩ C j′ = {p}. Therefore,
p is the lowest common ancestor of all three shortest paths, and Observation 4.1 leads to a contradiction. �

B. Banyassady et al. / Computational Geometry 87 (2020) 101593 7
Fig. 6. The shortest paths from p to q, r, s (blue). The hole � contains t and lies in Q .

For i = 0, . . . , h − 1, let s(i) be the number of cones in C for which �i is stretched. By Lemma 5.2, we get
∑h−1

i=0 s(i) ≤
|C(p)| ∈ O (1/ε). Since m(i) ≤ s(i) + 2, we conclude

|ρ(p)| ∈ O

(
h−1∑
i=0

m(i) log n

)
= O

(
h−1∑
i=0

(s(i) + 2) log n

)
= O ((|C(p)| + 2h) log n) = O ((1/ε + h) log n) .

5.2. The stretch factor

Next, we bound the stretch factor. First, we prove that the distance to the target decreases after the first step. This will
then give the bound on the overall stretch factor.

Lemma 5.3. Let p and q be two vertices in P . Let s be the next vertex computed by the routing scheme for a data packet from p to q.
Then, d(s, q) ≤ d(p, q) − |ps|/(1 + ε).

Proof. By construction of ρ(p), we know that the next vertex q′ on the shortest path from p to q lies in the same cone as
s. Hence, by the triangle inequality and Lemma 3.1, we obtain

d(s,q) ≤ d(s,q′) + d(q′,q) ≤ |pq′| − (1 − 2 sin(π/t)) |ps| + d(q′,q)

= d(p,q) − (1 − 2 sin(π/t)) |ps| ≤ d(p,q) −
(

1 − 1

1 + 1/ε

)
|ps| (definition of t)

= d(p,q) − |ps|/(1 + ε),

as desired. �
Lemma 5.3 immediately shows the correctness of the routing scheme: the distance to the target q decreases strictly in

each step and there is a finite number of vertices, so there is a k = k(p, q) ≤ n so that after k steps, the packet reaches q.
Using this, we can now bound the stretch factor of the routing scheme.

Lemma 5.4. Let p and q be two vertices of P . Then, dρ(p, q) ≤ (1 + ε)d(p, q).

Proof. Let π = p0 p1 . . . pk be the routing path from p = p0 to q = pk . By Lemma 5.3, we have d(pi+1, q) ≤ d(pi, q) −
|pi pi+1|/(1 + ε). Thus,

dρ(p,q) =
k−1∑
i=0

|pi pi+1| ≤ (1 + ε)

k−1∑
i=0

(d(pi,q) − d(pi+1,q)) = (1 + ε) (d(p0,q) − d(pk,q)) = (1 + ε)d(p,q),

as claimed. �
5.3. The preprocessing time

Finally, we discuss the details of the preprocessing algorithm and its time complexity.

Lemma 5.5. The preprocessing time for our routing scheme is O (n2 log n + n/ε) for polygonal domains and O (n2 + n/ε) for simple
polygons.

Proof. Let p be a vertex of P . We compute the shortest path tree T for p. In polygonal domains, this takes O (n log n) time
using the algorithm of Hershberger and Suri [25], and in simple polygons, this needs O (n) time, using the algorithm of
Guibas et al. [24]. We perform a circular sweep around p to find for each cone C j ∈ C the set X j of the children of p in T
that lie in C j . This requires O (n + 1/ε) steps.

8 B. Banyassady et al. / Computational Geometry 87 (2020) 101593
Fig. 7. In this polygon, p and q can see each other, so their hop-distance is 1. Our routing scheme routes from one spire to the next, giving stretch factor
�(n).

For each cone C j , we find the child r ∈ X j that is closest to p. We traverse all subtrees of T that are rooted at some child
in X j , and we collect the set V j of all their vertices. We group the vertices in V j according to the hole boundaries they
belong to. This takes O (|V j|) time, using the following bucketing scheme: once for the whole algorithm, we set up an array
B of buckets with h entries, one for each hole boundary. Each bucket consists of a linked list, initially empty. This gives a
one-time initialization cost of O (h). When processing the vertices of V j , we create a linked list N of non-empty buckets,
also initially empty. For each v ∈ V j , we add v into its corresponding bucket B[i]. If v is the first vertex in B[i], we add i
to N . This takes O (|V j |) time in total, and it leads to the desired grouping of V j . Once we have processed V j , we use N in
order to reset all the buckets we used to empty, in another O (|V j |) steps.

Now, for each hole i, let V j,i be the set of all vertices on �i that lie in V j . By Lemma 4.2, V j,i is a cyclic interval.
To determine its endpoints, it suffices to identify one vertex on hole i that is not in V j,i (if it exists). After that, a simple
scan over V j,i gives the desired interval endpoints in O (|V j,i |) additional time. To find this vertex in O (|V j,i |) time, we
use prune and search: let L = {pi,k ∈ V j,i | k < �ni/2
} and R = V j,i \ L. We determine |L| and |R| by scanning V j,i , and we
distinguish three cases. First, if |L| = �ni/2
 and |R| = �ni/2�, all vertices of hole i lie in the V j , and we are done. Second, if
|L| < �ni/2
 and |R| < �ni/2�, then at least one of pi,0, pi,�ni/2
−1, pi,�ni/2
 , and pi,ni−1 is not in V j,i . Another scan over V j,i

reveals which one it is. In the third case, exactly one of the two sets L, R contains all possible vertices, whereas the other
one does not. We recurse on the latter set. This set contains at most |V j,i |/2 elements, so the overall running time for the
recursion is O (|V j,i |).

It follows that we can handle a single cone C j in time O (|V j|), so the total time for processing p is O (n log n + 1/ε) in
polygonal domains and O (n + 1/ε) in simple polygons. Since we repeat for each vertex of P , the claim follows. �

Combining the last two lemmas with Section 4, we get our main theorem.

Theorem 2.1. Let P be a polygonal domain with n vertices and h holes. For any ε > 0 we can construct a routing scheme for VG(P)

with labels of O (logn) bits and routing tables of O ((1/ε + h) log n) bits per vertex. For any two sites p, q ∈ P , the scheme produces a
routing path with stretch factor at most 1 + ε. The preprocessing time is O (n2 log n). If P is a simple polygon, the preprocessing time
reduces to O (n2).

Proof. First, note that we may assume that ε = �(1/n), otherwise, the theorem follows trivially from storing a complete
shortest path tree in each routing table. Thus, 1/ε = O (n), and by Lemma 5.5, the preprocessing time is O (n2 log n) for
polygonal domains, and O (n2) for simple polygons. The claim on the label size follows from the discussion at the beginning
of Section 4, the size of the routing tables is given in Section 5.1, and the stretch factor is proved in Lemma 5.4. �
6. Conclusion

We gave an efficient routing scheme for the visibility graph of a polygonal domain. Our scheme produces routing paths
whose length can be made arbitrarily close to the optimum.

Several open questions remain. First of all, we would like to obtain an efficient routing scheme for the hop-distance in
polygonal domains P , where each edge of VG(P) has unit weight. This scenario occurs for routing in a wireless network:
here, the main overhead is caused by forwarding a packet at a base station, whereas the distance that the packet has to
cross is negligible for the travel time. For our routing scheme, we can construct examples where the stretch factor is �(n);
see Fig. 7. Moreover, it would be interesting to improve the preprocessing time or the size of the routing tables, perhaps
using a recursive strategy.

A final open question concerns routing schemes in general: how do we model the time needed by a data packet to travel
through the graph, including the processing times at the vertices? In particular, it would be interesting to consider a model
in which each vertex has a fixed processing time until it knows the next vertex for the current packet. This would lead to a
sightly different, but important, measure for routing schemes.

B. Banyassady et al. / Computational Geometry 87 (2020) 101593 9
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] I. Abraham, C. Gavoille, On approximate distance labels and routing schemes with affine stretch, in: Proc. 25th Int. Symp. Dist. Comp. (DISC), 2011,
pp. 404–415.

[2] T. Asano, T. Asano, L. Guibas, J. Hershberger, H. Imai, Visibility of disjoint polygons, Algorithmica 1 (1–4) (1986) 49–63.
[3] B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg, Improved routing strategies with succinct tables, J. Algorithms 11 (3) (1990) 307–341.
[4] R. Bar-Yehuda, B. Chazelle, Triangulating disjoint Jordan chains, Int. J. Comput. Geom. Appl. 4 (04) (1994) 475–481.
[5] L. Barba, P. Bose, M. Damian, R. Fagerberg, W.L. Keng, J. O’Rourke, A. van Renssen, P. Taslakian, S. Verdonschot, G. Xia, New and improved spanning

ratios for Yao graphs, J. Comput. Geom. 6 (2) (2015) 19–53.
[6] L. Barba, P. Bose, J.-L. De Carufel, A. van Renssen, S. Verdonschot, On the stretch factor of the theta-4 graph, in: Proc. 13th Int. Sympos. Algorithms and

Data Structures (WADS), 2013, pp. 109–120.
[7] P. Bose, J.-L.D. Carufel, P. Morin, A. van Renssen, S. Verdonschot, Towards tight bounds on theta-graphs: more is not always better, Theor. Comput. Sci.

616 (2016) 70–93.
[8] P. Bose, M. Damian, K. Douïeb, J. O’Rourke, B. Seamone, M. Smid, S. Wuhrer, π/2-angle Yao graphs are spanners, Int. J. Comput. Geom. Appl. 22 (1)

(2012) 61–82.
[9] P. Bose, R. Fagerberg, A. van Renssen, S. Verdonschot, Optimal local routing on Delaunay triangulations defined by empty equilateral triangles, SIAM J.

Comput. 44 (6) (2015) 1626–1649.
[10] P. Bose, R. Fagerberg, A. van Renssen, S. Verdonschot, Competitive local routing with constraints, J. Comput. Geom. 8 (1) (2017) 125–152.
[11] P. Bose, M. Korman, A. van Renssen, S. Verdonschot, Constrained routing between non-visible vertices, in: Proc. 23rd Annu. Int. Computing and Com-

binatorics Conf., 2017, pp. 62–74.
[12] P. Bose, M. Korman, A. van Renssen, S. Verdonschot, Routing on the visibility graph, in: Proc. 28th Annu. Internat. Sympos. Algorithms Comput. (ISAAC),

2017, pp. 18:1–18:12.
[13] P. Bose, P. Morin, Competitive online routing in geometric graphs, Theor. Comput. Sci. 324 (2) (2004) 273–288.
[14] P. Bose, P. Morin, A. van Renssen, S. Verdonschot, The θ5-graph is a spanner, Comput. Geom. Theory Appl. 48 (2) (2015) 108–119.
[15] P. Bose, M. Smid, On plane geometric spanners: a survey and open problems, Comput. Geom. Theory Appl. 46 (7) (2013) 818–830.
[16] S. Chechik, Compact routing schemes with improved stretch, in: Proc. ACM Symp. Princ. Dist. Comp. (PODC), 2013, pp. 33–41.
[17] K.L. Clarkson, Approximation algorithms for shortest path motion planning, in: Proc. 19th Annu. ACM Sympos. Theory Comput. (STOC), 1987, pp. 56–65.
[18] L.J. Cowen, Compact routing with minimum stretch, J. Algorithms 38 (1) (2001) 170–183.
[19] M. Damian, N. Nelavalli, Improved bounds on the stretch factor of y4, Comput. Geom. Theory Appl. 62 (2017) 14–24.
[20] M. Damian, K. Raudonis, Yao graphs span Theta graphs, Discrete Math. Algorithms Appl. 4 (02) (2012) 1250024.
[21] T. Eilam, C. Gavoille, D. Peleg, Compact routing schemes with low stretch factor, J. Algorithms 46 (2) (2003) 97–114.
[22] P. Fraigniaud, C. Gavoille, Routing in trees, in: Proc. 28th Internat. Colloq. Automata Lang. Program. (ICALP), 2001, pp. 757–772.
[23] S. Giordano, I. Stojmenovic, Position based routing algorithms for ad hoc networks: a taxonomy, in: Ad Hoc Wireless Networking, Springer-Verlag,

2004, pp. 103–136.
[24] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple

polygons, Algorithmica 2 (1987) 209–233.
[25] J. Hershberger, S. Suri, An optimal algorithm for Euclidean shortest paths in the plane, SIAM J. Comput. 28 (6) (1999) 2215–2256.
[26] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, Routing in unit disk graphs, Algorithmica 80 (3) (2018) 830–848.
[27] S. Kapoor, S. Maheshwari, Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles, in: Proc. 4th Annu. Sympos.

Comput. Geom. (SoCG), 1988, pp. 172–182.
[28] S. Kapoor, S. Maheshwari, J.S. Mitchell, An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane, Discrete Comput.

Geom. 18 (4) (1997) 377–383.
[29] G. Konjevod, A.W. Richa, D. Xia, Scale-free compact routing schemes in networks of low doubling dimension, ACM Trans. Algorithms 12 (3) (2016) 27.
[30] J.S. Mitchell, A new algorithm for shortest paths among obstacles in the plane, Ann. Math. Artif. Intell. 3 (1) (1991) 83–105.
[31] J.S. Mitchell, Shortest paths among obstacles in the plane, Int. J. Comput. Geom. Appl. 6 (03) (1996) 309–332.
[32] G. Narasimhan, M. Smid, Geometric Spanner Networks, Cambridge University Press, 2007.
[33] M.H. Overmars, E. Welzl, New methods for computing visibility graphs, in: Proc. 4th Annu. Sympos. Comput. Geom. (SoCG), 1988, pp. 164–171.
[34] D. Peleg, E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM 36 (3) (1989) 510–530.
[35] L. Roditty, R. Tov, New routing techniques and their applications, in: Proc. ACM Symp. Princ. Dist. Comp. (PODC), 2015, pp. 23–32.
[36] L. Roditty, R. Tov, Close to linear space routing schemes, Distrib. Comput. 29 (1) (2016) 65–74.
[37] N. Santoro, R. Khatib, Labelling and implicit routing in networks, Comput. J. 28 (1) (1985) 5–8.
[38] M. Sharir, A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput. 15 (1) (1986) 193–215.
[39] J.A. Storer, J.H. Reif, Shortest paths in the plane with polygonal obstacles, J. ACM 41 (5) (1994) 982–1012.
[40] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs, J. ACM 51 (6) (2004) 993–1024.
[41] M. Thorup, U. Zwick, Compact routing schemes, in: Proc. 13th ACM Symp. Par. Algo. Arch. (SPAA), 2001, pp. 1–10.
[42] M. Thorup, U. Zwick, Approximate distance oracles, J. ACM 52 (1) (2005) 1–24.
[43] E. Welzl, Constructing the visibility graph for n-line segments in O(n2) time, Inf. Process. Lett. 20 (4) (1985) 167–171.
[44] C. Yan, Y. Xiang, F.F. Dragan, Compact and low delay routing labeling scheme for unit disk graphs, Comput. Geom. Theory Appl. 45 (7) (2012) 305–325.
[45] A.C.-C. Yao, On constructing minimum spanning trees in k-dimensional spaces and related problems, SIAM J. Comput. 11 (4) (1982) 721–736.

http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4162726168616D47613131s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4162726168616D47613131s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4173616E6F417347754865496D3836s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4177657262756368424E4C6950653930s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib425943683934s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4261726261426F446146614B654F526F5461566569583135s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4261726261426F446146614B654F526F5461566569583135s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4261726261426F4361526556653133s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4261726261426F4361526556653133s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F736543614D6F526553653136s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F736543614D6F526553653136s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654461446F4F525365536D57753132s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654461446F4F525365536D57753132s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F7365466176526556653135s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F7365466176526556653135s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F7365466176526556653137s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654B6F7652655665313762s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654B6F7652655665313762s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654B6F76526556653137s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654B6F76526556653137s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654D6F3034s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F73654D6F526556653135s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib426F7365536D3133s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4368656368696B3133s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib436C61726B736F6E3837s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib436F77656E3031s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib44616D69616E4E653137s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib44616D69616E52613132s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib45696C616D476150653033s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib46726169676E6961756447613031s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib47696F7264616E6F53743034s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib47696F7264616E6F53743034s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib47756962617348654C65536854613837s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib47756962617348654C65536854613837s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib486572736862657267657253753939s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4B61706C616E4D75526F53653138s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4B61706F6F724D613838s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4B61706F6F724D613838s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4B61706F6F724D614D693937s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4B61706F6F724D614D693937s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4B6F6E6A65766F64526958693136s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4D69746368656C6C3931s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4D69746368656C6C3936s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4E61726173696D68616E536D3037s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib4F7665726D61727357653838s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib50656C656755703839s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib526F6469747479546F3135s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib526F6469747479546F3136s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib53616E746F726F4B683835s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib53686172697253633836s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib53746F72657252653934s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib54686F7275703034s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib54686F7275705A773031s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib54686F7275705A773035s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib57656C7A6C3835s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib79616E32303132636F6D70616374s1
http://refhub.elsevier.com/S0925-7721(19)30134-8/bib59616F3832s1

	Routing in polygonal domains
	1 Introduction
	2 Preliminaries
	3 Cones in polygonal domains
	4 The routing scheme
	5 Analysis
	5.1 The routing table
	5.2 The stretch factor
	5.3 The preprocessing time

	6 Conclusion
	References

