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Abstract
Let P be a set of n points in the plane. We consider the problem of partitioning
P into two subsets P1 and P2 such that the sum of the perimeters of ch(P1) and
ch(P2) is minimized, where ch(Pi ) denotes the convex hull of Pi . The problem was
first studied by Mitchell and Wynters in 1991 who gave an O(n2) time algorithm.
Despite considerable progress on related problems, no subquadratic time algorithm
for this problem was found so far. We present an exact algorithm solving the problem
in O(n log2 n) time and a (1 + ε)-approximation algorithm running in O(n + 1/ε2 ·
log2(1/ε)) time.
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1 Introduction

The clustering problem is to partition a given data set into clusters (that is, subsets)
according to some measure of optimality. We are interested in clustering problems
where the data set is a set P of points in Euclidean space. Most of these clustering
problems fall into one of two categories: problemswhere themaximumcost of a cluster
is given and the goal is to find a clustering consisting of aminimum number of clusters,
and problemswhere the number of clusters is given and the goal is to find a clustering of
minimum total cost. In this paper we consider a basic problem of the latter type, where
we wish to find a bipartition (P1, P2) of a planar point set P . Bipartition problems
are not only interesting in their own right, but also because bipartition algorithms can
form the basis of hierarchical clustering methods.

There are many possible variants of the bipartition problem on planar point sets,
which differ in how the cost of a clustering is defined. A variant that received a lot of
attention is the 2-center problem [8,11,12,15,21], where the cost of a partition (P1, P2)
of the given point set P is defined as themaximumof the radii of the smallest enclosing
disks of P1 and P2. Other cost functions that have been studied include the maximum
diameter of the two point sets [5] and the sum of the diameters [14]; see also the survey
by Agarwal and Sharir [3] for some more variants.

A natural class of cost functions considers the size of the convex hulls ch(P1)
and ch(P2) of the two subsets, where the size of ch(Pi ) can either be defined as the
area of ch(Pi ) or as the perimeter per(Pi ) of ch(Pi ). (The perimeter of ch(Pi ) is the
length of the boundary ∂ ch(Pi ).) This class of cost functions was already studied
in 1991 by Mitchell and Wynters [17]. They studied four problem variants: minimize
the sum of the perimeters, the maximum of the perimeters, the sum of the areas, or
the maximum of the areas. In three of the four variants the convex hulls ch(P1) and
ch(P2) in an optimal solution may intersect [17, full version]—only in the minimum
perimeter-sum problem the optimal bipartition is guaranteed to be a so-called line
partition, that is, a solution with disjoint convex hulls. For each of the four variants
they gave an O(n3) algorithm that uses O(n) storage and that computes an optimal line
partition; for all except the minimum area-maximum problem they also gave an O(n2)
algorithm that uses O(n2) storage. Note that (only) for the minimum perimeter-sum
problem the computed solution is an optimal bipartition. Around the same time, the
minimum-perimeter sum problem was studied for partitions into k subsets for k > 2;
for this variant Capoyleas et al. [7] presented an algorithm with running time O(n6k).
Arkin et al. [4] studied the same problem and gave a similar algorithm. Very recently,
Abrahamsen et al. [1] gave an algorithm for that problem running in time O(n28),
even when k is part of the input. Unless P = NP, this result refutes a conjecture by
Arkin et al. [4] that the problem is NP-complete.

Mitchell and Wynters mentioned the improvement of the space requirement of the
quadratic-time algorithms for the bipartition problems as an open problem, and they
stated the existence of a subquadratic algorithm for any of the four variants as the most
prominent open problem.

Rokne et al. [19] made progress on the first question, by presenting an O(n2 log n)

algorithm that uses only O(n) space for the line-partition version of each of the four
problems. Devillers and Katz [10] gave algorithms for the min-max variant of the
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problem, both for area and perimeter, which run in O((n + k) log2 n) time. Here
k is a parameter that is only known to be in O(n2), although Devillers and Katz
suspected that k is subquadratic. They also gave linear-time algorithms for these prob-
lems when the point set P is in convex position and given in cyclic order. Segal
[20] proved an �(n log n) lower bound for the min-max problems. Very recently, and
apparently unaware of some of the earlier work on these problems, Bae et al. [6] pre-
sented an O(n2 log n) time algorithm for the minimum-perimeter-sum problem and
an O(n4 log n) time algorithm for the minimum-area-sum problem (considering all
partitions, not only line partitions). Despite these efforts, the main question is still
open: is it possible to obtain a subquadratic algorithm for any of the four bipartition
problems based on convex-hull size?

1.1 Our Contribution

We answer the question above affirmatively by presenting a subquadratic algorithm
for the minimum perimeter-sum bipartition problem in the plane.

As mentioned, an optimal solution (P1, P2) to the minimum perimeter-sum bipar-
tition problemmust be a line partition. A straightforward algorithmwould generate all
�(n2) line partitions and compute the value per(P1)+per(P2) for each of them. If the
latter is done fromscratch for each partition, the resulting algorithm runs inO(n3 log n)

time. The algorithms by Mitchell and Wynters [17] and Rokne et al. [19] improve on
this by using the fact that the different line bipartitions can be generated in an ordered
way, so that subsequent line partitions differ in atmost one point. Thus the convex hulls
do not have to be recomputed from scratch, but they can be obtained by updating the
convex hulls of the previous bipartition. To obtain a subquadratic algorithm a funda-
mentally new approach is necessary: we need a strategy that generates a subquadratic
number of candidate partitions, instead of considering all line partitions. We achieve
this as follows.

We start by proving that an optimal bipartition (P1, P2) has the following property:
either there is a set of O(1) canonical orientations such that P1 can be separated from
P2 by a line with a canonical orientation, or the distance between ch(P1) and ch(P2)
is�(min(per(P1), per(P2))). There are only O(n) bipartitions of the former type, and
finding the best among them is relatively easy. The bipartitions of the second type are
much more challenging. We show how to employ a compressed quadtree to generate
a collection of O(n) canonical 5-gons—intersections of axis-parallel rectangles and
canonical halfplanes—such that the smaller of ch(P1) and ch(P2) (in a bipartition of
the second type) is contained in one of the 5-gons.

Even though the number of such bipartitions is linear, we cannot afford to compute
their perimeters from scratch. We therefore use the data structure of Oh and Ahn [18]
to quickly compute per(P∩Q), where Q is a query canonical 5-gon. Given a setO of k
orientations, Oh and Ahn described how to create a data structure using O(nk3 log2 n)

time and space to answer queries of the following type in time O(k log2 n): Given a
convex polygon Q where each edge has an orientation in O, what is per(P ∩ Q)? In
our case, each query polygon Q is the intersection of an axis-parallel square and a
canonical halfplane bounded by a line with one of C = O(1) different orientations.
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We therefore makeC different instances of the data structure, where each instance has
as orientationsO the two axis-parallel directions and one of theC different orientations
of the canonical halfplanes (i.e., k = 3).1

To sum up, our main result is an exact algorithm for the minimum perimeter-sum
bipartition problem that runs in O(n log2 n) time. As our model of computation we
use the real RAM (with the capability of taking square roots) so that we can compute
the exact perimeter of a convex polygon—this is necessary to compare the costs of
two competing clusterings. We furthermore make the (standard) assumption that the
model of computation allows us to compute a compressed quadtree of n points in
O(n log n) time; see footnote 3 in Sect. 2.2.2.

Besides our exact algorithm, we present a linear-time (1+ ε)-approximation algo-
rithm. Its running time is O(n+T (1/ε2)) = O(n+1/ε2 · log2(1/ε)), where T (1/ε2)
is the running time of an exact algorithm on an instance of size 1/ε2.

2 The Exact Algorithm

In this section we present an exact algorithm for theminimum-perimeter-sum partition
problem. We first prove a separation property that an optimal solution must satisfy,
and then we show how to use this property to develop a fast algorithm.

Let P be the set of n points in the plane for which we want to solve the minimum-
perimeter-sum partition problem. An optimal partition (P1, P2) of P has the following
twobasic properties: P1 and P2 are non-empty, and the convexhullsch(P1) andch(P2)
are disjoint [17, full version]. In the remainder, whenever we talk about a partition of
P , we refer to a partition with these two properties.

2.1 Geometric Properties of an Optimal Partition

Consider a partition (P1, P2) of P . Define P1 := ch(P1) and P2 := ch(P2) to be the
convex hulls of P1 and P2, respectively, and let �1 and �2 be the two inner common
tangents of P1 and P2. The lines �1 and �2 define four wedges: one containing P1,
one containing P2, and two empty wedges. We call the opening angle of the empty
wedges the separation angle of P1 and P2. Furthermore, we call the distance between
P1 and P2 the separation distance of P1 and P2.

Theorem 2.1 Let P be a set of n points in the plane, and let (P1, P2) be a partition
of P that minimizes per(P1) + per(P2). Then the separation angle of P1 and P2 is
at least π/6 or the separation distance is at least csep ·min(per(P1), per(P2)), where
csep := 1/250.

The remainder of this section is devoted to proving Theorem 2.1. To this end let
(P1, P2) be a partition of P that minimizes per(P1) + per(P2). Let �3 and �4 be the

1 In a preliminary version of this paper [2], we described a less efficient data structure answering these
queries in time O(log4 n), resulting in the total running time O(n log4 n). After that Oh and Ahn [18]
developed a more efficient data structure that, as they already observed, can be used to speed up our
algorithm.
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Fig. 1 The setup in the proof of Theorem 2.1

outer common tangents of P1 and P2. We define α to be the angle between �3 and �4.
More precisely, if �3 and �4 are parallel we define α := 0, otherwise we define α as the
opening angle of the wedge defined by �3 and �4 containing P1 and P2. We denote
the separation angle of P1 and P2 by β; see Fig. 1.

The idea of the proof is as follows. Suppose that the separation distance and the
separation angle β are both relatively small. Then the region A in between P1 and
P2 and bounded from the bottom by �3 and from the top by �4 is relatively narrow.
But then the left and right parts of ∂ A (which are contained in ∂ P1 and ∂ P2) would
be longer than the bottom and top parts of ∂ A (which are contained in �3 and �4),
thus contradicting the assumption that (P1, P2) is an optimal partition. To make this
idea precise, we first prove that if the separation angle β is small, then the angle α

between �3 and �4 must be large. Second, we show that there is a value f (α) such that
the distance between P1 and P2 is at least f (α) · min(per(P1), per(P2)). Finally we
argue that this implies that if the separation angle is smaller than π/6, then (to avoid
the contradiction mentioned above) the separation distance must be relatively large.
Next we present our proof in detail.

Let ci j be the intersection point between �i and � j , where i < j . If �3 and �4 are
parallel, we choose c34 as a point at infinity on �3. Assume without loss of generality
that neither �1 nor �2 separate P1 from c34, and that �3 is the outer common tangent
such that P1 and P2 are to the left of �3 when traversing �3 from c34 to an intersection
point in �3 ∩ P1. Assume furthermore that c13 is closer to c34 than c23.

For two lines, rays, or segments r1, r2, let ∠(r1, r2) be the angle we need to rotate
r1 in a counterclockwise direction until r1 and r2 are parallel. For three points a, b, c,
let∠(a, b, c) :=∠(ba, bc). For i = 1, 2 and j = 1, 2, 3, 4, let si j be a point in Pi ∩� j .
Let ∂ Pi denote the boundary of Pi and per(Pi ) the perimeter of Pi . Furthermore, let
∂ Pi (x, y) denote the portion of ∂ Pi from x ∈ ∂ Pi counterclockwise to y ∈ ∂ Pi ,
and length(∂ Pi (x, y)) denote the length of ∂ Pi (x, y).
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Lemma 2.2 Let p0 and q be points and v be a unit vector. Let p(t) := p0 + t · v
and d(t) := |p(t)q| and assume that p(t) �= q for all t ∈ R. Then d ′(t) =
cos(∠(q, p(t), p(t) + v)) if the points q, p(t), p(t) + v make a left-turn and d ′(t) =
− cos(∠(q, p(t), p(t) + v)) otherwise.2

Proof We prove the lemma for an arbitrary value t = t0. By reparameterizing p, we
may assume that t0 = 0. Furthermore, by changing the coordinate system, we can
without loss of generality assume that p0 = (0, 0) and q = (x, 0) for some value
x > 0.

Let φ := ∠((x, 0), (0, 0), v). Assume that v has positive y-coordinate—the case
that v has negative y-coordinate can be handled analogously. We have proved the
lemma if we manage to show that d ′(0) = − cosφ. Note that since v has positive
y-coordinate, we have p(t) = (t cosφ, t sin φ) for every t ∈ R. Hence

d(t) =
√

(t cosφ − x)2 + t2 sin2 φ

and

d ′(t) = t − x cosφ√
t2 − 2t x cosφ + x2

.

Evaluating at t = 0, we get

d ′(0) = − x cosφ

|x | = − cosφ,

where the last equality follows since x > 0. ��
Lemma 2.3 We have α + 3β � π .

Proof Since per(P1) + per(P2) is minimum, we know that

length(∂ P1(s13, s14)) + length(∂ P2(s24, s23)) � �,

where � := |s13s23| + |s14s24|. Furthermore, we know that s11, s12 ∈ ∂ P1(s13, s14)
and s21, s22 ∈ ∂ P1(s24, s23). We thus have

length(∂ P1(s13, s14)) + length(∂ P2(s24, s23)) � �,

where � := |s13s11| + |s11s12| + |s12s14| + |s24s21| + |s21s22| + |s22s23|. Hence, we
must have

� � �. (1)

Now assume that α + 3β < π . We will show that this assumption, together with
inequality (1), leads to a contradiction, thus proving the lemma. To this end we will

2 Note that ∠(q, p(t), p(t) + v) = ∠(q, p(t), p(t) − v) by the definition of ∠(·, ·, ·) which is the reason
that there are two cases in the lemma.
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argue that if (1) holds, then there exist points s′
i j for i = 1, 2 and j = 1, 2, 3, 4, where

s′
i j is a point on � j , with the following proporties:

(i) �′ � � ′, where�′ and� ′ are defined as� and� when each point si j is replaced
by s′

i j ,
(ii) s′

21 or s
′
22 coincides with c12, and

(iii) s′
11 or s

′
12 coincides with c12.

To finish the proof it then suffices to observe that properties (i)–(iii) together contradict
the triangle inequality.

Note that the point s′
i j is not required to be contained in Pi . In particular, the points

s′
13 and s

′
14 will in some cases be on the other side of c34 than the points s13 and s14. In

that case there is no pair of convex polygons with outer common tangents defined by
(s′

13, s
′
23) and (s′

14, s
′
24). The contradiction applies to distances between a configuration

of points that need not be realizable as the supporting points of the common tangents
of two convex polygons.

To prove the existence of the points s′
i j with the claimed properties, we initially

define s′
i j := si j , so that property (i) is satisfied. Thenwewillmove the points s′

i j (where
each s′

i j moves on � j ) so that property (i) is preserved throughout the movements and
properties (ii) and (iii) are satisfied at the end of the movements.

We first show how to create a situation where (ii) holds, and (i) still holds as well.
Let γi j := ∠(�i , � j ). We consider two cases.

• Case (A): γ32 < π − β.
We observe that moving s′

23 along �3 away from s′
13 increases � ′ more than

it increases �′, so property (i) is preserved by such a movement. Note that
∠(xs′

23, �2) � γ32 for any x ∈ s′
22c12. However, by moving s′

23 sufficiently far
away we can make ∠(xs′

23, �2) arbitrarily close to γ32. We therefore move s′
23 so

far away that ∠(xs′
23, �2) < π − β for any point x ∈ s′

22c12. We now consider
what happens as we let a point x move at unit speed from s′

22 towards c12. To be
more precise, let T := |s′

22c12|, let v be the unit vector with direction from c23 to
c12, and for any t ∈ [0, T ] define x(t) := s′

22 + t · v. Note that x(0) = s′
22 and

x(T ) = c12.
Let a(t) := |x(t)s′

23| and b(t) := |x(t)s′
21|. Lemma 2.2 gives that

a′(t) = − cos(∠(x(t)s′
23, �2)) and b′(t) = cos(∠(�2, x(t)s

′
21)).

Since ∠(x(t)s′
23, �2) < π −β for any value t ∈ [0, T ], we get a′(t) < − cos(π −

β). Furthermore, we have ∠(�2, x(t)s′
21) � π −β and hence b′(t) � cos(π −β).

Therefore, a′(t) + b′(t) < 0 for any t and we conclude that a(T ) + b(T ) �
a(0) + b(0). This is the same as |s′

21c12| + |c12s′
23| � |s′

21s
′
22| + |s′

22s
′
23|, so we

now move s′
22 to c12 and are ensured that (i) still holds.

• Case (B): γ32 � π − β.
Using our assumption α + 3β < π we get γ32 > α + 2β. Note that γ14 =
π −γ32 +α +β. Hence, γ14 < π −β. By first moving s′

24 away from s′
14 and then

s′
21 towards c12, we can argue, similarly to Case (A), that we can reach a situation
where (i) still holds and s′

21 coincides with c12.
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x
b1 b2

t1

t2

r1

r2

m

r3p

δ

δ/2

Fig. 2 Illustration for Lemma 2.4. � is the total length of the four segments t1m, t2m, b1m, b2m, and � is
the total length of the two fat segments

We conclude that in both cases we can ensure (ii) without violating (i).
Since γ13 � γ14 and γ42 � γ32, we likewise have γ13 < π − β or γ42 < π − β.

Hence, by firstmoving s′
13 or s

′
14 and since then s

′
11 or s

′
12, we can in a similar way reach

a situation where s′
11 or s

′
12 coincides with c12 without violating (i), thus ensuring (iii)

and finishing the proof. ��
The following technical lemma is illustrated in Fig. 2. The lemma will be used in

the proof of the subsequent Lemma 2.5. The overall idea in the two lemmata is that
we consider pushing P2 towards P1 until they touch. In the configuration where they
touch, m in Lemma 2.4 corresponds to a common point, r1, r2 correspond to the outer
common tangents, and b1, t1, resp. b2, t2, correspond to the points whereP1, resp.P2,
supports r1, r2. The lemma then gives a lower bound on how much cheaper it would
be to unite P1 and P2. This in turn implies a lower bound on how far we pushed P2
(using that (P1, P2)was assumed to be an optimal bipartition), which is a lower bound
on the original distance between P1 and P2, as stated in Theorem 2.1.

Lemma 2.4 Let x beapoint andr1 andr2 be two rays startingat x such that∠(r1, r2) =
δ, and assume that δ � π . Let b1, b2 ∈ r1 and t1, t2 ∈ r2 be such that b1 ∈ xb2 and
t1 ∈ xt2, and let m be a point in the wedge bounded by r1 and r2. Then

� − � � (1 − cos(δ/2)) · sin(δ/2)
1 + sin(δ/2)

· (|b1m| + |t1m|),

where � := |b1m| + |t1m| + |b2m| + |t2m| and � := |b1b2| + |t1t2|.
Proof First note that

|b1m| + |b2m| � |b1b2| (2)

and |t1m| + |t2m| � |t1t2|. (3)

Let r3 be the angular bisector of r1 and r2. Assume without loss of generality that
m lies in the wedge defined by r1 and r3. Then ∠(m, t1, t2) � δ/2.
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We now consider two cases.

• Case (A): |t1m| � sin(δ/2)
1+sin(δ/2) · (|b1m| + |t1m|).

Our first step is to prove that

|t1m| + |t2m| − |t1t2| � (1 − cos(δ/2)) · |t1m|. (4)

Let p be the orthogonal projection of m on r2. Note that |t2m| � |t2 p|. Consider
first the case that p is on the same side of t1 as x . In this case |t2 p| � |t1t2| and
therefore

|t1m| + |t2m| − |t1t2| � |t1m| � (1 − cos(δ/2)) · |t1m|,

which proves (4).
Assume now that p is on the same side of t1 as t2. In this case, we have
∠(m, t1, t2) � π/2 and thus |t1 p| = cos(∠(m, t1, t2)) · |t1m| � cos(δ/2) · |t1m|.
Hence we have

|t1m| + |t2m| − |t1t2| � |t1m| + |t2 p| − (|t1 p| + |t2 p|) � (1 − cos(δ/2)) · |t1m|,

and we have proved (4).
We now have

� − � = |b1m| + |t1m| + |b2m| + |t2m| − |b1b2| − |t1t2|
� |b1m| + |b2m| − |b1b2| + (1 − cos(δ/2)) · |t1m| by (4)
� (1 − cos(δ/2)) · sin(δ/2)

1+sin(δ/2) · (|b1m| + |t1m|) by (2)

where the last step uses that we are in Case (A). Thus the lemma holds in Case (A).
• Case (B): |t1m| <

sin(δ/2)
1+sin(δ/2) · (|b1m| + |t1m|).

The condition for this case can be rewritten as

|b1m| >
1

1 + sin δ/2
· (|b1m| + |t1m|). (5)

To prove the lemma in this case we first argue that ∠(b2, b1,m) > π/2. To this
end, assume for a contradiction that ∠(b2, b1,m) � π/2. It is easy to verify
that for a given length of t1m (and assuming ∠(b2, b1,m) � π/2), the fraction
|b1m|/(|b1m|+|t1m|) is maximized when segment t1m is perpendicular to r2, and
m ∈ r3, and b1 = x . But then

|b1m|
|b1m| + |t1m| � 1

1 + sin δ/2
,
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which would contradict (5). Thus we indeed have ∠(b2, b1,m) > π/2. Hence,
|b2m| � |b1b2|, and so |b1m| + |b2m| − |b1b2| � |b1m|. We can now derive

� − � = |b1m| + |t1m| + |b2m| + |t2m| − |b1b2| − |t1t2|
� |b1m| + |t1m| + |t2m| − |t1t2| by the above
� 1

1+sin δ/2 · (|b1m| + |t1m|) by (3) and (5)

�
(
sin(δ/2) · (1 − cos(δ/2))

) · 1
1+sin δ/2 · (|b1m| + |t1m|).

Thus the lemma also holds in Case (B). ��
Let dist(P1,P2) :=min(p,q)∈P1×P2 |pq| denote the separation distance betweenP1

andP2. Recall that α denotes the angle between the two common outer tangents ofP1
and P2; see Fig. 1. We are now ready to give a lower bound on the separation distance
increasing in the angle α between the outer common tangents �3 and �4. The lemma
will be used when there is a positive lower bound on α, which in turn implies a lower
bound on dist(P1,P2).

Lemma 2.5 We have

dist(P1,P2) � f (α) · per(P1), (6)

where f : [0, π ] −→ R is the increasing function

f (ϕ) := sin(ϕ/4)

1 + sin(ϕ/4)
· sin(ϕ/2)

1 + sin(ϕ/2)
· 1 − cos(ϕ/4)

2
.

Proof The statement is trivial if α = 0 so assume α > 0. Let p ∈ P1 and q ∈ P2 be
points so that |pq| = dist(P1,P2) and assume without loss of generality that pq is a
horizontal segment with p being its left endpoint. Let �vert1 and �vert2 be vertical lines
containing p and q, respectively. Note that P1 is in the closed halfplane to the left of
�vert1 and P2 is in the closed halfplane to the right of �vert2 . Recall that si j denotes a
point on ∂ Pi ∩ � j . ��
Claim: There exist two convex polygons P ′

1 and P ′
2 satisfying the following condi-

tions:

1. P ′
1 and P ′

2 have the same outer common tangents as P1 and P2, namely
�3 and �4.

2. P ′
1 is to the left of �vert1 and p ∈ ∂ P ′

1; and P ′
2 is to right of �vert2 and q ∈ ∂ P ′

2.
3. per(P ′

1) = per(P1).
4. per(P ′

1) + per(P ′
2) � per(ch(P ′

1 ∪ P ′
2)).

5. There are points s′
i j ∈ P ′

i∩� j for all i ∈ {1, 2} and j ∈ {3, 4} such that ∂ P ′
1(s

′
13, p),

∂ P ′
1(p, s

′
14), ∂ P ′

2(s
′
24, q), and ∂ P ′

2(q, s′
23) each consist of a single line segment.

6. Let s′
2 j (λ) := s′

2 j − (λ, 0) and let �′
j (λ) be the line through s′

1 j and s′
2 j (λ) for

j ∈ {3, 4}. Then ∠(�′
3(|pq|), �′

4(|pq|)) � α/2. (Looking at Fig. 3, one might
believe that this inequality even holds for α instead of α/2. The reason for using
α/2 will be explained later.)
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Fig. 3 Illustration for the proof of Lemma 2.5

Proof of the claim Let P ′
1 :=P1 and P ′

2 :=P2, and let s′
i j be a point in P ′

i ∩ � j for
all i ∈ {1, 2} and j ∈ {3, 4}. We show how to modify P ′

1 and P ′
2 until they have all

the required conditions. Of course, they already satisfy conditions 1–4. We first show
how to obtain condition 5, namely that ∂ P ′

1(s
′
13, p) and ∂ P ′

1(p, s
′
14)—and similarly

∂ P ′
2(s

′
24, q) and ∂ P ′

1(q, s′
23)—each consist of a single line segment, as depicted in

Fig. 3. To this end, let vi j be the intersection point �verti ∩� j for i ∈ {1, 2} and j ∈ {3, 4}.
Let s′ ∈ s′

14v14 be the point such that length(∂ P ′
1(p, s

′
14)) = |ps′| + |s′s′

14|. Such a
point exists since

|ps′
14| � length(∂ P ′

1(p, s
′
14)) � |pv14| + |v14s′

14|.

WemodifyP ′
1 by replacing ∂ P ′

1(p, s
′
14)with the segments ps′ and s′s′

14. We can now
redefine s′

14 := s′ so that ∂ P ′
1(p, s

′
14) = ps′

14 is a line segment. We can modify P ′
1

in a similar way to ensure that ∂ P ′
1(s

′
13, p) = s′

13 p, and we can modify P ′
2 to ensure

∂ P ′
2(s

′
24, q) = s′

24q and ∂ P ′
2(q, s′

23) = qs′
23. Note that these modifications preserve

conditions 1–4 and that condition 5 is now satisfied.
The only condition that (P ′

1,P ′
2)might not satisfy is condition 6. Let s′

2 j (λ) := s′
2 j−

(λ, 0) and let � j (λ) be the line through s′
2 j (λ) and s′

1 j for j ∈ {3, 4}. Clearly, if the
slopes of �3 and �4 have different signs (as in Fig. 3), the angle ∠(�3(λ), �4(λ)) is
increasing for λ ∈ [0, |pq|], and condition 6 is satisfied. However, if the slopes of �3
and �4 have the same sign, the angle might decrease.

Consider the case where both slopes are positive—the other case is analogous.
Changing P ′

2 by replacing ∂ P ′
2(s

′
23, s

′
24) by the line segment s′

23s
′
24 makes the sum

per(P ′
1)+per(P ′

2) and per(ch(P ′
1 ∪P ′

2)) decrease equally much and hence condition
4 is preserved. This clearly has no influence on the other conditions. We thus assume
that P ′

2 is the triangle qs
′
23s

′
24. Consider what happens if we move s′

23 along the line
�3 away from c34 with unit speed. Then |s′

13s
′
23| grows with speed exactly 1 whereas

|qs′
23| grows with speed at most 1. We therefore preserve condition 4, and the other

conditions are likewise not affected.
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Wenowmove s′
23 sufficiently far away so that∠(�3, �3(|pq|)) � α/4. Similarly, we

move s′
24 sufficiently far away from c34 along �4 to ensure that∠(�4, �4(|pq|)) � α/4.

It then follows that ∠(�3(|pq|), �4(|pq|)) � ∠(�3, �4) − α/2 = α/2, and condition 6
is satisfied. ��

Note that condition 2 in the claim implies that dist(P ′
1,P ′

2) = dist(P1,P2) =
|pq|, and hence inequality (6) follows from condition 3 if we manage to prove
dist(P ′

1,P ′
2) � f (α) · per(P ′

1). Therefore, with a slight abuse of notation, we assume
from now on that P1 and P2 satisfy the conditions in the claim, where the points si j
play the role as s′

i j in conditions 5 and 6.
We now consider a copy of P2 that is translated horizontally to the left over a

distance λ; see Fig. 3. Let s24(λ), s23(λ), and q(λ) be the translated copies of s24, s23,
and q, respectively, and let � j (λ) be the line through s1 j and s2 j (λ) for j ∈ {3, 4}.
Furthermore, define

�(λ) := |s13 p| + |s14 p| + |s23(λ)q(λ)| + |s24(λ)q(λ)|

and

�(λ) := |s13s23(λ)| + |s14s24(λ)|.

Note that �(λ) = � is constant. By conditions 4 and 5, we know that

� � �(0). (7)

Note that q(|pq|) = p. We now apply Lemma 2.4 to get

� − �(|pq|) � sin(δ/2) · 1 − cos(δ/2)

1 + sin(δ/2)
· (|s13 p| + |s14 p|), (8)

where δ := ∠(�3(|pq|), �4(|pq|)). By condition6,weknow that δ � α/2.The function
ϕ 
−→ sin(ϕ/2) · 1−cos(ϕ/2)

1+sin(ϕ/2) is increasing for ϕ ∈ [0, π ] and hence inequality (8) also
holds when δ is replaced by α/2.

When λ increases from 0 to |pq| with unit speed, the value �(λ) decreases with
speed at most 2, i.e., �(λ) � �(0) − 2λ. Using this and inequalities (7) and (8), we
get

2|pq| � �(0) − �(|pq|) � � − � + sin(α/4) · 1 − cos(α/4)

1 + sin(α/4)
· (|s13 p| + |s14 p|),

and we conclude that

|pq| � 1

2
· sin(α/4) · 1 − cos(α/4)

1 + sin(α/4)
· (|s13 p| + |s14 p|). (9)

By the triangle inequality, |s13 p| + |s14 p| � |s13s14|. Furthermore, for a given
length of s13s14, the fraction |s13s14|/(|s14c34|+ |c34s13|) is minimized when s13s14 is
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perpendicular to the angular bisector of �3 and �4. (Recall that c34 is the intersection
point of the outer common tangents �3 and �4; see Fig. 3.) Hence

|s13s14| � sin(α/2) · (|s14c34| + |c34s13|) . (10)

We now conclude

|s13 p| + |s14 p| = sin(α/2)
1+sin(α/2) ·

( |s13 p|+|s14 p|
sin(α/2) + |s13 p| + |s14 p|

)

� sin(α/2)
1+sin(α/2) ·

( |s13s14|
sin(α/2) + |s13 p| + |s14 p|

)
triangle inequality

� sin(α/2)
1+sin(α/2) · (|s14c34| + |c34s13| + |s13 p| + |s14 p|) by (10)

� sin(α/2)
1+sin(α/2) · per(P1),

where the last inequality follows because P1 is fully contained in the quadrilat-
eral s14, c34, x13, p. The statement (6) in the lemma now follows from (9). ��

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 If the separation angle of P1 and P2 is at least π/6, we are done.
Otherwise, Lemma 2.3 gives that α > π/2, and Lemma 2.5 gives that dist(P1,P2) �
f (π/2) · per(P1) � (1/250) · min(per(P1), per(P2)). ��

2.2 The Algorithm

Theorem 2.1 suggests to distinguish two cases when computing an optimal partition:
the case when the separation angle is large (namely at least π/6) and the case when the
separation distance is large (namely at least csep ·min(per(P1), per(P2))). As we will
see, the first case can be handled in O(n log n) time and the second case in O(n log2 n)

time, leading to the following theorem.

Theorem 2.6 Let P be a set of n points in the plane. Then we can compute a partition
(P1, P2) of P that minimizes per(P1)+per(P2) in O(n log2 n) time using O(n log2 n)

space.

2.2.1 The Best Partition with Large Separation Angle

Define the orientation of a line �, denoted by φ(�), to be the counterclockwise angle
that � makes with the positive y-axis. If the separation angle of P1 and P2 is at least
π/6, then there must be a line � separating P1 from P2 that does not contain any point
from P and such that φ(�) = j · π/7 for some j ∈ {0, 1, . . . , 6}. For each of these
seven orientations we can compute the best partition in O(n log n) time, as explained
next.

Without loss of generality, consider separating lines � with φ(�) = 0, that is,
vertical separating lines. Let X be the set of all x-coordinates of the points in P .
For any x-value x ∈ X define P1(x) := {p ∈ P | px � x}, where px denotes the
x-coordinate of a point p, and define P2(x) := P\P1(x). Our task is to find the best
partition of the form (P1(x), P2(x)) over all x ∈ X . To this end we first compute the

123



496 Discrete & Computational Geometry (2020) 63:483–505

values per(P1(x)) for all x ∈ X in O(n log n) time in total, as follows. We compute
the lengths of the upper hulls of the point sets P1(x), for all x ∈ X , using Graham’s
scan [9], and we compute the lengths of the lower hulls in a second scan. (Graham’s
scan goes over the points from left to right and maintains the upper (or lower) hull of
the encountered points; it is trivial to extend the algorithm so that it also maintains the
length of the hull.) By combining the lengths of the upper and lower hulls, we get the
values per(P1(x)).

Computing the values per(P2(x)) can be done similarly, after which we can easily
find the best partition of the form (P1(x), P2(x)) in O(n) time. Thus the best partition
with large separation angle can be found in O(n log n) time.

2.2.2 The Best Partition with Large Separation Distance

Next we show how to compute the best partition with large separation distance. We
assume without loss of generality that per(P2) � per(P1). It will be convenient to
treat the case where P2 is a singleton separately.

Lemma 2.7 The point p ∈ P minimizing per(P\{p}) can be computed using
O(n log n) time.

Proof The point p we are looking for must be a vertex of ch(P). First we compute
ch(P) in O(n log n) time [9]. Let v0, v1, . . . , vm−1 denote the vertices of ch(P) in
counterclockwise order. Let �i be the triangle with vertices vi−1vivi+1 (with indices
taken modulo m) and let Pi denote the set of points lying inside �i , excluding vi but
including vi−1 and vi+1. Note that any point p ∈ P is present in at most two sets Pi .
Hence,

∑m
i=0 |Pi | = O(n). It is not hard to compute the sets Pi in O(n log n) time in

total. After doing so, we compute all convex hulls ch(Pi ) in O(n log n) time in total.
Since

per(P\{vi }) = per(P) − |vi−1vi | − |vivi+1| + per(Pi ) − |vi−1vi+1|,

we can now find the point p minimizing per(P\{p}) in O(n) time. ��

It remains to compute the best partition (P1, P2) with per(P2) � per(P1) whose
separation distance is at least csep · per(P2) and where P2 is not a singleton. Let
(P∗

1 , P∗
2 ) denote this partition. Define the size of a square3 σ to be its edge length.

A square σ is a good square if (i) P∗
2 ⊂ σ , and (ii) size(σ ) � c∗ · per(P∗

2 ), where
c∗ := 18. Our algorithm globally works as follows.

1. Compute a set S of O(n) squares such that S contains a good square.
2. For each square σ ∈ S, construct a set Hσ of O(1) halfplanes such that the

following holds: if σ ∈ S is a good square then there is a halfplane h ∈ Hσ such
that P∗

2 = P(σ ∩ h), where P(σ ∩ h) := P ∩ (σ ∩ h).

3 Whenever we speak of squares, we always mean axis-parallel squares.
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3. For each pair (σ, h) with σ ∈ S and h ∈ Hσ , compute per(P\P(σ ∩ h)) +
per(P(σ ∩ h)), and report the partition (P\P(σ ∩ h), P(σ ∩ h)) that gives the
smallest sum.

Step 1: Finding a good square. To find a set S that contains a good square, we first
construct a set Sbase of so-called base squares. The set S will then be obtained by
expanding the base squares appropriately.

We define a base square σ to be good if (i) σ contains at least one point from
P∗
2 , and (ii) c1 · diam(P∗

2 ) � size(σ ) � c2 · diam(P∗
2 ), where c1 := 1/4 and c2 := 4

and diam(P∗
2 ) denotes the diameter of P∗

2 . Note that 2 · diam(P∗
2 ) � per(P∗

2 ) �
4 · diam(P∗

2 ). For a square σ , define σ to be the square with the same center as σ and
whose size is (1 + 2/c1) · size(σ ).

Lemma 2.8 If σ is a good base square then σ is a good square.

Proof The distance from any point in σ to the boundary of σ is at least

size(σ ) − size(σ )

2
� diam(P∗

2 ).

Since σ contains a point from P∗
2 , it follows that P∗

2 ⊂ σ . Since size(σ ) � c2 ·
diam(P∗

2 ), we have

size(σ ) � (2/c1 + 1) · c2 · diam(P∗
2 ) = 36 · diam(P∗

2 ) � c∗ · per(P∗
2 ). ��

To obtain S it thus suffices to construct a set Sbase that contains a good base square.
To this end we first build a compressed quadtree for P . For completeness we briefly
review the definition of compressed quadtrees; see also Fig. 4 (left).

Assume without loss of generality that P lies in the interior of the unit square
U := [0, 1]2. Define a canonical square to be any square that can be obtained by
subdividing U recursively into quadrants. A compressed quadtree [13] for P is a
hierarchical subdivision of U , defined as follows. In a generic step of the recursive
process we are given a canonical square σ and the set P(σ ) := P∩σ of points inside σ .
(Initially σ = U and P(σ ) = P .)

• If |P(σ )| � 1 then the recursive process stops and σ is a square in the final
subdivision.

• Otherwise there are two cases. Consider the four quadrants of σ . The first case is
that at least two of these quadrants contain points from P(σ ). (We consider the
quadrants to be closed on the left and bottom side, and open on the right and top
side, so a point is contained in a unique quadrant.) In this case we partition σ into
its four quadrants—we call this a quadtree split—and recurse on each quadrant.
The second case is that all points from P(σ ) lie inside the same quadrant. In this
case we compute the smallest canonical square, σ ′, that contains P(σ ) and we
partition σ into two regions: the square σ ′ and the so-called donut region σ\σ ′.
We call this a shrinking step. After a shrinking step we only recurse on the square
σ ′, not on the donut region.
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A compressed quadtree for a set of n points can be computed in O(n log n) time in the
appropriate model of computation4 [13]. The idea is now as follows. Let p, p′ ∈ P∗

2
be a pair of points defining diam(P∗

2 ). The compressed quadtree hopefully allows us
to zoom in until we have a square in the compressed quadtree that contains p or p′ and
whose size is roughly equal to |pp′|. Such a square will be then a good base square.
Unfortunately this does not always work since p and p′ can be separated too early. We
therefore have to proceed more carefully: we need to add five types of base squares to
Sbase, as explained next and illustrated in Fig. 4 (right).

(B1) Any square σ that is generated during the recursive construction—note that this
not only refers to squares in the final subdivision—is put into Sbase.

(B2) For each point p ∈ P we add a square σp to Sbase, as follows. Let σ be the
square of the final subdivision that contains p. Then σp is a smallest square that
contains p and that shares a corner with σ .

(B3) For each square σ that results from a shrinking step we add an extra square σ ′
to Sbase, where σ ′ is the smallest square that contains σ and that shares a corner
with the parent square of σ .

(B4) For any two regions in the final subdivision that touch each other—we also
consider two regions to touch if they only share a vertex—we add at most one
square to Sbase, as follows. If one of the regions is an empty square, we do not
add anything for this pair. Otherwise we have three cases.

(B4.1) If both regions are non-empty squares containing single points p and
p′, respectively, then we add a smallest enclosing square for the pair of
points p, p′ to Sbase.

(B4.2) If both regions are donut regions, say σ1\σ ′
1 and σ2\σ ′

2, then we add a
smallest enclosing square for the pair σ ′

1, σ
′
2 to Sbase.

(B4.3) If one region is a non-empty square containing a single point p and the
other is a donut region σ\σ ′, then we add a smallest enclosing square for
the pair p, σ ′ to Sbase.

Lemma 2.9 The set Sbase has size O(n) and contains a good base square. Furthermore,
Sbase can be computed in O(n log n) time.

Proof Acompressed quadtree has sizeO(n) sowehaveO(n) base squares of type (B1)
and (B3). Obviously there are O(n) base squares of type (B2). Finally, the number
of pairs of final regions that touch is O(n)—this follows because we have a planar
rectilinear subdivision of total complexity O(n)—and so the number of base squares of
type (B4) isO(n) aswell. The fact thatwe can compute Sbase inO(n log n) time follows
directly from the fact that we can compute the compressed quadtree in O(n log n) time
[13].

It remains to prove that Sbase contains a good base square. We call a square σ too
small when size(σ ) < c1 · diam(P∗

2 ) and too large when size(σ ) > c2 · diam(P∗
2 );

otherwise we say that σ has the correct size. Let p, p′ ∈ P∗
2 be two points with

|pp′| = diam(P∗
2 ), and consider a smallest square σp,p′ , in the compressed quadtree

4 In particular we need to be able to compute the smallest canonical square containing two given points
in O(1) time. See the book by Har-Peled [13] for a discussion.
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B1

B2

B3

B4.1

B4.2

B4.3

Fig. 4 A compressed quadtree and some of the base squares generated from it. In the right figure, only the
points are shown that are relevant for the shown base squares

that contains both p and p′. Note that σp,p′ cannot be too small, since c1 = 1/4 <

1/
√
2. If σp,p′ has the correct size, then we are done since it is a good base square of

type (B1). So now suppose σp,p′ is too large.
Let σ0, σ1, . . . , σk be the sequence of squares in the recursive subdivision of σp,p′

that contain p; thus σ0 = σp,p′ and σk is a square in the final subdivision. Define
σ ′
0, σ

′
1, . . . , σ

′
k′ similarly, but now for p′ instead of p. Suppose that none of these

squares has the correct size—otherwise we have a good base square of type (B1).
There are three cases.

• Case (i): σk and σ ′
k′ are too large.

We claim that σk touches σ ′
k′ . To see this, assume without loss of generality that

size(σk) � size(σ ′
k′). If σk does not touch σ ′

k′ then |pp′| � size(σk), which
contradicts the assumption that σk is too large.
Hence, σk indeed touches σ ′

k′ . But then we have a base square of type (B4.1) for
the pair p, p′ and since |pp′| = diam(P∗

2 ) this is a good base square.
• Case (ii): σk and σ ′

k′ are too small.
In this case there are indices 0 < j � k and 0 < j ′ � k′ such that σ j−1 and σ ′

j ′−1
are too large and σ j and σ ′

j ′ are too small. Note that this implies that both σ j and σ ′
j ′

result from a shrinking step, because c1 < c2/2 and so the quadrants of a too-large
square cannot be too small. We claim that σ j−1 touches σ ′

j ′−1. Indeed, similarly to
Case (i), ifσ j−1 andσ ′

j ′−1 do not touch then |pp′| > min(size(σ j−1), size(σ ′
j ′−1)),

contradicting the assumption that both σ j−1 and σ ′
j ′−1 are too large. We now have

two subcases.

– The first subcase is that the donut region σ j−1\σ j touches the donut
region σ ′

j ′−1\σ j ′ . Thus a smallest enclosing square for σ j and σ ′
j ′ has been

put into Sbase as a base square of type (B4.2). Let σ ∗ denote this square. Since
the segment pp′ is contained in σ ∗ we have

c1 · diam(P∗
2 ) < diam(P∗

2 )/
√
2 = |pp′|/√2 � size(σ ∗).
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Furthermore, since σ j and σ ′
j ′ are too small we have

size(σ ∗) � size(σ j ) + size(σ ′
j ′) + |pp′| � 3 · diam(P∗

2 ) (11)

< c2 · diam(P∗
2 ),

and so σ ∗ is a good base square.
– The second subcase is that σ j−1\σ j does not touch σ ′

j ′−1\σ j ′ . This can only
happen if σ j−1 and σ ′

j ′−1 just share a single corner, v. Observe that σ j must lie
in the quadrant of σ j−1 that has v as a corner, otherwise |pp′| � size(σ j−1)/2
and σ j−1 would not be too large. Similarly, σ ′

j ′ must lie in the quadrant of
σ ′
j ′−1 that has v as a corner. Thus the base squares of type (B3) for σ j and σ ′

j ′
both have v as a corner. Take the largest of these two base squares, say σ j . For
this square σ ∗ we have

c1 · diam(P∗
2 ) < diam(P∗

2 )/2
√
2 = |pp′|/2√2 � size(σ ∗),

since |pp′| is contained in a square of twice the size of σ ∗. Furthermore, since
σ j is too small and |pv| < |pp′| we have

size(σ ∗) � size(σ j ) + |pv| � (c1 + 1) · diam(P∗
2 ) < c2 · diam(P∗

2 ).

(12)

Hence, σ ∗ is a good base square.

• Case (iii): neither (i) nor (ii) applies.
In this case σk is too small and σ ′

k′ is too large (or vice versa). Thus there must
be an index 0 < j � k such that σ j−1 is too large and σ j is too small. We can
now follow a similar reasoning as in Case (ii): First we argue that σ j must have
resulted from a shrinking step and that σ j−1 touches σ ′

k′ . Then we distinguish two
subcases, namely where the donut region σ j\σ j−1 touches σ ′

k′ and where it does
not touch σ ′

k′ . The arguments for the two subcases are similar to the subcases in
Case (ii), with the followingmodifications. In the first subcase we use base squares
of type (B4.3) and in (11) the term size(σ ′

j ′) disappears; in the second subcase we
use a type (B3) base square for σ j and a type (B2) base square for p′, and when
the base square for p′ is larger than the base square for σ j then (12) becomes
size(σ ∗) � 2 |p′v| < c2 · diam(P∗

2 ). ��
Step 2: Generating halfplanes. Consider a good square σ ∈ S. Let Qσ be a set of
4 · c∗/csep + 1 = 18001 points placed equidistantly around the boundary of σ . Note
that the distance between two neighbouring points in Qσ is less than csep/c∗ · size(σ ).
For each pair q1, q2 of points in Qσ , add to Hσ the two halfplanes defined by the line
through q1 and q2.

Lemma 2.10 For any good square σ ∈ S, there is a halfplane h ∈ Hσ such that
P∗
2 = P(σ ∩ h).
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First a remark: We do not claim that the line � bounding the halfplane h separates
P∗
1 and P∗

2 globally, but only in σ—indeed, � might intersect ch(P∗
1 ).

Proof In the case where σ ∩ P∗
1 = ∅, two points in Qσ from the same edge of σ define

a halfplane h such that P∗
2 = P(σ ∩ h), so assume that σ contains one or more points

from P∗
1 .

We know that the separation distance between P∗
1 and P∗

2 is at least csep · per(P∗
2 ).

Moreover, size(σ ) � c∗ · per(P∗
2 ). Hence, there is an empty open strip O with a

width of at least csep/c∗ · size(σ ) separating P∗
2 from P∗

1 . Since σ contains a point
from P∗

1 , we know that σ\O consists of two pieces and that the part of the boundary
of σ inside O consists of two disjoint portions B1 and B2 each of length at least
csep/c∗ · size(σ ). Hence the sets B1 ∩ Qσ and B2 ∩ Qσ contain points q1 and q2,
respectively, that define a halfplane h as desired. ��

Step 3: Evaluating candidate solutions. In this step we need to compute for each pair
(σ, h) with σ ∈ S and h ∈ Hσ , the value per(P\P(σ ∩ h)) + per(P(σ ∩ h)). Given
a set O of k orientations, Oh and Ahn [18] described how to create a data structure
using O(nk3 log2 n) time and space to answer queries of the following type in time
O(k log2 n): Given a convex polygon Q where each edge has an orientation in O,
what is per(P ∩ Q)? In our case, we need to compute the perimeter of the points in
canonical 5-gons and their complements, i.e., per(P(σ ∩h)) and per(P\P(σ ∩h)) for
a given pair (σ, h). Recall that the bounding lines of the halfplanes h we must process
have O(1) different orientations. For each such orientation o, we make an instance of
the data structure of Oh and Ahn which has as orientations O the two axis-parallel
directions and o. We can then clearly compute per(P(σ ∩ h)) in time O(log2 n). Note
that the complement P\P(σ ∩h) is the disjoint union of the points in four axis-parallel
rectangles and the complementary canonical 5-gon σ\(σ ∩ h). For each of these four
rectangles and the 5-gon, we can compute the convex hull of the points inside it in
O(log2 n) time, using the data structure of Oh and Ahn [18]. This gives us five convex
hulls, represented as balanced trees. We can then compute, for each pair of convex
hulls, the outer common tangents in O(log n) time [18, Lemma 3], from which we
can compute the overall convex hull and its perimeter. The total time to compute
per(P\(P(σ ∩ h)) is thus likewise O(log2 n).

We thus obtain the following result, which finishes the proof of Theorem 2.6.

Lemma 2.11 Step 3 can be performed in O(n log2 n) time and space.

3 The Approximation Algorithm

Theorem 3.1 Let P be a set of n points in the plane and let (P∗
1 , P∗

2 ) be a partition of P
minimizing per(P∗

1 )+per(P∗
2 ). Suppose we have an exact algorithm for the minimum

perimeter-sum problem running in T (k) time for instances with k points. Then for any
given ε > 0 we can compute a partition (P1, P2) of P such that per(P1) + per(P2) �
(1 + ε) · (

per(P∗
1 ) + per(P∗

2 )
)
in O(n + T (1/ε2)) time.
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Proof Consider the axis-parallel bounding box B of P . Let w be the width of B and
let h be its height. Assume without loss of generality thatw � h. Our algorithmworks
in two steps.

• Step 1: Check if per(P∗
1 ) + per(P∗

2 ) � w/16. If so, compute the exact solution.
We partition B vertically into four strips with width w/4, denoted B1, B2, B3, and
B4 from left to right. If B2 or B3 contains a point from P , we have per(P∗

1 ) +
per(P∗

2 ) � w/2 > w/16 and we go to Step 2. If B2 and B3 are both empty, we
consider two cases.

– Case (i): h � w/8.
In this case we simply return the partition (P ∩ B1, P ∩ B4). To see that this
is optimal, we first note that any subset P ′ ⊂ P that contains a point from B1
as well as a point from B4 has per(P ′) � 2 · (3w/4) = 3w/2. On the other
hand, per(P ∩ B1) + per(P ∩ B4) � 2 · (w/2 + 2h) � 3w/2.

– Case (ii): h > w/8.
We partition B horizontally into four rows with height h/4, numbered R1, R2,
R3, and R4 from bottom to top. If R2 or R3 contains a point from P , we have
per(P∗

1 ) + per(P∗
2 ) � h/2 > w/16, and we go to Step 2. If R2 and R3 are

both empty, we overlay the vertical and the horizontal partitioning of B to get
a 4×4 grid of cellsCi j := Bi ∩R j for i, j ∈ {1, . . . , 4}. We know that only the
corner cells C11,C14,C41,C44 contain points from P . If three or four corner
cells are non-empty, per(P∗

1 )+per(P∗
2 ) � 6h/4 > w/16, and we go to Step 2.

Hence, we may without loss of generality assume that any point of P is in C11
or C44. We now return the partition (P ∩ C11, P ∩ C44), which is easily seen
to be optimal.

• Step 2: Handle the case where per(P∗
1 ) + per(P∗

2 ) > w/16.
The idea is to compute a subset P̂ ⊂ P of size O(1/ε2) such that an exact solution
to the minimum perimeter-sum problem on P̂ can be used to obtain a (1 + ε)-
approximation for the problem on P .
We subdivide B into O(1/ε2) rectangular cells of width and height at most
c := εw/(64π

√
2). For each cellC where P∩C is non-empty we pick an arbitrary

point in P ∩ C , and we let P̂ be the set of selected points. For a point p ∈ P̂ ,
let C(p) be the cell containing p. Intuitively, each point p ∈ P̂ represents all the
points P∩C(p). Let (P̂1, P̂2) be a partition of P̂ thatminimizes per(P̂1)+per(P̂2).
We assume we have an algorithm that can compute such an optimal partition in
T (|P̂|) time. For i = 1, 2, define

Pi :=
⋃

p∈P̂i

P ∩ C(p).

Our approximation algorithm returns the partition (P1, P2). (Note that the convex
hulls of P1 and P2 are not necessarily disjoint.) It remains to prove the approxi-
mation ratio.
First, note that per(P̂1)+per(P̂2) � per(P∗

1 )+per(P∗
2 ) since P̂ ⊆ P . For i = 1, 2,

let P̃i consist of all points in the plane (not only points in P) within a distance of at
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Fig. 5 The crossed points are the points of P̂ . The left gray region is P̃1 and the right gray region is P̃2.
The left dashed polygon is the convex hull of P1 and the right dashed polygon is the convex hull of P2

most c
√
2 from ch(P̂i ). In other words, P̃i is the Minkowksi sum of ch(P̂i ) with

a disk D of radius c
√
2 centered at the origin; see Fig. 5. Note that if p ∈ P̂i , then

q ∈ P̃i for any q ∈ P ∩C(p), since any two points in C(p) are at most c
√
2 apart

from each other. Therefore Pi ⊂ P̃i and hence per(Pi ) � per(P̃i ). Note also that
per(P̃i ) = per(P̂i ) + 2cπ

√
2. These observations yield

per(P1) + per(P2) � per(P̃1) + per(P̃2)
= per(P̂1) + per(P̂2) + 4cπ

√
2

� per(P∗
1 ) + per(P∗

2 ) + 4cπ
√
2

= per(P∗
1 ) + per(P∗

2 ) + 4π
√
2 · (

εw/(64π
√
2)

)
� per(P∗

1 ) + per(P∗
2 ) + εw/16

� (1 + ε) · (per(P∗
1 ) + per(P∗

2 )).

As all the steps can be done in linear time, the time complexity of the algorithm is
O(n + T (nε)) for some nε = O(1/ε2). ��

4 Concluding Remarks

We note that in the exact algorithm, for each of the O(n) base squares σ ∈ S, the
number of values per(P(σ∩h)) thatwequery is approximately 2·(42

)·45002 ≈ 2.4·108.
Although it is surely possible tomodify the algorithm to get smaller constants (towhich
we made no attempt), we expect that the algorithm will remain impractical.

Consider the degenerate casewhere all the input points P are on the x-axis. Then the
minimum-perimeter sum problem reduces to the well-known maximum-gap problem,
where the goal is to find the largest difference between two consecutive numbers in
sorted order. Lee and Wu [16] gave a lower bound of �(n log n) for that problem in
the algebraic computation tree model, which therefore also holds for the minimum-
perimeter sum problem in that model.

The question by Mitchell and Wynters [17] about the existence of sub-quadratic
algorithms for theminimum-perimetermaximum,minimum-area sum, andminimum-
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area maximum problems remain interesting open problems. To our knowledge, the
only published algorithm for any of these problems is the O(n4 log n)-time algorithm
by Bae et al. [6] for the minimum-area sum problem, since the algorithms by Mitchell
and Wynters consider line partitions only.
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