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ABSTRACT

Process mining is an emerging data mining task of
gathering valuable knowledge out of the huge collec-
tions of business operation data. Despite its relatively
young age, it has successfully provided many new in-
sights into business work ows using established data
mining techniques. Recently, with the huge improve-
ments in the technologies of sensoring, collection and
storing of data, a big demand for both shorter mining
times and adaptive models of streaming process events
arose. This initiated the eld of stream process mining
very recently. Drifts in the underlying concepts of the
business processes are of a great interest for decision
makers. One important advantage of stream process
mining techniques over static ones is the ability to de-
tect such drifts and to adapt its models accordingly.
In this paper, we introduce an e cient approach that
uses the collected information of an event stream miner
to detect concept drifts. We use a dynamic window,
which grows in size for stationary process behavior and
shrinks for diverting data and thus indicating a concept
drift. This adaptive window is used to build a model
by focusing only on up-to-date information and dis-
carding outdated items. Extensive experimental eval-
uations over real and synthetic log les show the abil-
ity of our algorithm to detect sudden drifts. We addi-
tionally show the e ectiveness of our concept detection
method in setting the pruning period of a recent stream
mining algorithm.

INTRODUCTION

In mid to large-sized business enterprises, non-
conventional types of questions arose recently due to
the increasing advances of business information track-
ing technigues. One emerging research area is pro-
cess mining, which takes methods from elds like data
mining and analyzes logs of process information to de-
rive interesting correlations between departments or ac-
tions, for instance, within the company. The resources
for these mining steps are supplied in form of process
logs, which contain rich information about activities.
These activities are connected with at least timestamps
and form common cases with other activities. The tasks
for process mining include the extraction of enough
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knowledge from these logs to create a model, improve
existing models or monitor new cases by using confor-
mance checks (van der Aalst, 2011).

Although process mining is relatively a young re-
search eld, several approaches (Weijters et al., 2006),
(van der Aalst et al., 2004), (van Dongen and van der
Aalst, 2004) and (Gunther and Van Der Aalst, 2007)
are already existing in its literature. These works pre-
sented interesting methods by examining di erent fea-
tures of the event logs (cf. the Related Work Section).
All of them have however assumed the existence of the
complete event logs and the possibility to access it as
much as needed to generate, in most of them, a single

nal process model. This is infeasible when consider-
ing the huge increases in the size of event logs generated
from modern information systems supporting business
processes (Burattin et al., 2014). The proposed ap-
proaches will face serious e ciency issues with the in-
crease in both the size and the dimensionality of the
collected events (Hassani, 2015). Decision makers will
lose important insights over drifting process by having
merely a single nal model. An important additional
evolving requirement in this context is the necessity to
have instant knowledge about the process model in the
real time of observing the event logs (cf. Figure 1).

With these new requirements, one started to speak
about event streams, streams of process models and
streaming process discovery (Burattin et al.,, 2014).
An e cient approach for process discovery from event
streams was presented in (Hassani et al., 2015) by us-
ing a sequential pattern mining method. Despite its
fast and accurate performance, it had some hard coded
parameter settings that are not exible to changes of
observed processes. An important recent research ques-
tion in the eld of process mining is the concept drift
of the underlying business process (Bose et al., 2011).

In this paper, we present our novel event stream con-
cept drift detection algorithm, called StrProMCDD,
that uses intermediate results of the e cient event
stream miner StrProM to manage an adaptive window.
It allows to focus on fewer recent data in case of a con-
cept drift, but enlarges the window size for uniform
process (cf. Figure 2). After the detection, the con-
tained information of the window can be used to build
an HeuristicNet above the Heuristics Miner (Weijters
et al., 2006). More precisely, our contributions are:

1. Fast detection of concept drifts by observing event
streams instead of trace streams
2. Using intermediate results of an e cient and modern



R . i

Saff Loglstlc Accountlng

g'l'g'l'g_

= = T -
)II WO

Pro d uct | on Communication

Online
Process Discovery
Sream Process 00000
Mining Ac--.-

Dynamlc Management

)(‘ 1]

Runtime Eror Detection/ QA

Fig. 1. An example of the knowledge ow from business information tracking sources to end online service, connected by an event

stream mining application.

event stream miner (Hassani et al., 2015) to improve
results considering concept drifts

3. Using well-established ADWIN (Bifet and Gavalda,
2007) framework and modular ensemble of reasonable
distance measures, and

4. Analysis of di erently performing distance functions
of frequency maps for detection.

The remainder of this paper is organized as follows:
the following section lists some related work. In Pre-
liminaries section we give a formulation of the problem
of stream process mining and concept drift detection.
The main section describes our novel method called
StrProMCDD. In the following section we show our
extensive experimental evaluation of StrProMCDD us-
ing synthetic datasets with known ground truth and
compound of real-world datasets. The last section con-
cludes this paper with some future directions.

RELATED WORK
Stream Process Mining

Dealing with data streams in any eld of data mining
is challenging and it is still studied extensively (Ag-
garwal, 2007). Adopting stream data mining meth-
ods to stream process mining is usually not trivial or
straightforward. The static nite process log les are
substituted with potentially unbounded event streams
in streaming process discovery. Each event itself can be
of very complex nature and is correlated to other events
in cases. Few algorithms have been developed that are
able to perform process discovery in a single pass over
the data. Namely, Burattin et al. developed an online
adaption of the Heuristics Miner to streaming event
logs (Burattin et al., 2012)(Burattin et al., 2014) by
using Lossy Counting to keep track of the frequencies
of activities and direct-follows relations. (Hassani et al.,
2015) used an indexed pre Xx-tree to collect frequencies
of activities and relations to achieve a small process
time per event. Another streaming process discovery
algorithm was developed in (Redlich et al., 2014b), and
is based on the process discovery algorithm Constructs
Competition Miner (Redlich et al., 2014a). In (Hassani
et al., 2019), a framework and lists of the challenges

and opportunities on using sequential pattern mining
for online process discovery, are presented.

Concept Drift Detection

Concept Drift is a very well established phenomenon
in the eld of typical data mining. It was rst men-
tioned that way in (Schlimmer and Granger, 1986).
Concept Drift refers to changes in the resulting out-
put, which is caused by a change in the input data.
Over the years, many di erent approaches have been
developed to deal with concept drift. These can be
categorized into the parts of detecting a drift, identify-
ing the sort of drift and applying to the new conditions
given by the changed input. Most process mining ap-
proaches deal with stationary logs and assume that at
each point in time the underlying process model will
be the same. In (Bose et al., 2014, 2011), the authors
transferred the concept drift phenomenon to the pro-
cess mining eld. They performed statistical hypothe-
sis testing over feature vectors to deal with change point
detection and localization. In (Accorsi and Stocker,
2012) a method which clusters traces in a certain time
window was developed. An abstract representation as
polyhedrons is used in (Carmona and Gavalda, 2012),
so for a batch of new traces, their a liation to the
polyhedron is checked. A drift is detected if a sig-
ni cant number of traces miss that membership test.
(Burattin et al., 2012, 2014) also deal with concept
drift. Using the Lossy Counting approach, the model
evolves by forgetting rare relations and activities. This
is the rst approach to handle concept drift not for a
static event log, but in an incremental way. (Maaradji
et al., 2015) compresses traces into fewer runs to im-
prove the process time before performing a statistical
testing over sliding temporal windows. Although it im-
plements the adaptive window concept similar to our
approach, the method is aims by doing doing that at
balancing the classi cation accuracy with the speed of
detecting the drifts. Another shift of representation is
used in (Manoj et al., 2015), by using a correlation func-
tion to divide events into event classes. The approach
performs hypothesis testing with the compressed data
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Fig. 2. The applied adaptive window concept: the window keeps increasing as long as the underlying distribution does not change.
Once it reaches its maximum allowed size, it starts sliding to catch new items by forgetting older ones. When StrProMCDD detects a

concept drift, it shrinks its size to focus on the new trend.

but, di erent to our approach, does not handle stream-
ing data or applies any adaptive window concept. In
(Hassani et al., 2015), a decaying mechanism is applied
to keep the mined result evolving. In (Spenrath and
Hassani, 2019), an ensemble-based prediction method
was presented to detect bottlenecks with recurrent con-
cept drifts.

PRELIMINARIES AND PROBLEM
DEFINITION

First we will give an overview about stream process
mining by introducing the main concepts in this sec-
tion.

Process Mining tries to augment the understanding
of business processes and o ers tools to analyze var-
ious aspects of underlying knowledge. In this work
we concentrate on the mining of process log les to
produce interpretable models of running processes. A
business process in this context consists of di erent ac-
tions, which are related to each other in a certain way.
These elements comprise for example decisions, single
production steps and communication sequences. We
call these process actions activities and their textual
representation a label. When we talk about a partic-
ular instance of an activity, we speak about an event.
To model certain work ow instances in a process, se-
quences of events are aggregated into cases. Each case
consists of exactly one temporal ordered sequence of
events. We store an event e = (c; a; t) as a tuple of the
case identi er c, the activity label a and the time-stamp
t. The complete space of all events is denoted by E. It
is possible to add further attributes to the event data
to increase the payload of information, but we will not
go into this direction here. The complete process can
be stored as a multiset of events. We call this collection
a process log.

For convenience, we de ne projection functions for all
of the three event attributes c; a;t, so for e = (c; a; t)
we de ne c(e) =c, a(e) = a and t(e) = t. Sometimes
we are only interested in sequences of activities cor-
responding to the same case. A trace of a certain
case ¢ is the temporal ordered sequence of all events in
a process log sharing the same case identi er c, only
projected on its activities.

We move now from static log les to streams of
events. As each event has a corresponding time-stamp,

we can order the whole process log by time. Formally,
we introduce a mapping S : N ¥ E to describe an
event stream. For any pair of events e; and e, with
S(m) = e; and S(n) = ey, the mapping is a valid
stream if t(e;) > t(ez) for m > n. To simplify the
notation we refer to the following string representation
for event streams:

S =hey;ep;ez; i

We already mentioned that activities can be related
to each other. For further de nitions we need to intro-
duce the directly-follows relation <. An activity a is
directly-followed by another activity b, if there are two
events e; = (c;a;ty) and e; = (c;b;ty) corresponding
to the same case ¢, correctly ordered according to their
timestamps t; < t, and there is no further event e; with
c(e3) = ¢ and t(e1) < t(e3) < t(ez). We denote with
ja < bj the number of occurrences of a directly-followed
by b.

Collecting most of the frequency information of these
relations is su cient to infer a process model. This is
shown in (Weijters et al., 2006). The presented Heuris-
tics Miner uses data from a static log, but the heuristics
used provide the baseline procedure for some other ap-
proaches. The Heuristics Miner mines a control- ow
model, which establishes connections between pairs of
activities if they show a high dependency. In this
context, dependency for a particular pair of activities
a ) b is increased by the number of occurrences of
a > b and decreased by the occurrences of b > a.
The ratio of the di erence of both values and the total
amount of both sorts of occurrences de nes the depen-
dency value then.

ja>bj jb>a
ja>bj+jb>aj+1

a)b=

2[ 1;1]: D)

The Heuristics Miner uses some constraints to keep the
model of good quality regarding the ability to replay
most traces in the log, while not allowing too much ad-
ditional behavior and remaining human-interpretable.
First of all, only pairs of activities are connected which
show a minimum absolute number of occurrences. Any
relations of activities with a support below a user-given
threshold po will be discarded.

ja=>bj po (2



In addition, and using the dependency de nition above,
Heuristics Miner only establishes connections if both
activities exceed the also user-de ned dependency
threshold gep.

a ) b dep (3)

To keep the model simple and comprehensible, a
third constraint is used to discard connections between
a and b if there is a big di erence to the top successor
considering dependencies. We de ne

postpest (@) = argmaxa ) b’
bO

as the best successor of a. Heuristics Miner keeps, be-
sides this edge, only connections from a to b, such that
the dependency of a and b di ers at most by the user-
de ned pest from the best dependency value. Analo-
gously, by de ning

prepest(b) = argmaxa’ D b
a0

This holds for the predecessors as well. The Heuristics
Miner deals with mining a static log, but provides the
baseline heuristics to deal with the mined information
of an event stream.

In (Burattin et al., 2014) the introduced approaches
collect frequency information from a stream and ap-
ply the heuristics of Heuristics Miner to build a model
then. A very well performing algorithm in this work is
the Heuristics Miner with Lossy Counting with Budget
algorithm (LCB). It utilizes three data structures to
collect information about the activities, relations and
currently active cases. Lossy Counting is a method
dealing with frequent item mining in data stream min-
ing. This approach performed really well on streams.

A second approach dealing with the same task is the
StrProM algorithm in (Hassani et al., 2015). Also us-
ing the above-mentioned heuristics, instead of using
three structures as the Lossy Counting with Budget
algorithm, it collects the observed information in an
indexed pre x-tree. This method is inspired by the SS-
BE method in (Mendes et al., 2008), which is also based
on the Lossy Counting algorithm. After a certain pe-
riod of time, the pre x-tree will be used to extract the
frequency information and pruned to height 1. This ap-
proach works also very e cient considering the process
time per event.

Both approaches deal with mining streams of event
data, but only use some sort of decaying to evolve the
model in case of changing behavior in the input stream
data. To enhance the results and to consider concept
drifts, we want to use the data collected by StrProM’s
pre x-tree to transform the stream of event data to a
stream of frequency maps.

Handling concept drift is a very well developed area
in data stream mining. A good approach to deal with
changing behavior is known as ADWIN (Bifet and
Gavalda, 2007). It uses a window to observe the re-
cent part of a stream. But instead of a sliding window,
which is xed in its size, the window in ADWIN is

adaptive in size. It will increase the length for new in-
coming objects. Then, it checks for each possible cut
of this window W into two subwindows W = WoW,, if
both parts di er signi cantly by their means. If so and
i wo wi) > cut for a suitable threshold ¢, the
oldest elements are discarded as long as there is still a
signi cant diversity in any two-partitioning.

Using this mechanic leads to larger observation win-
dows in periods of static stream behavior without any
remarkable or negligible concept drift. When concept
drift occurs, the window will decrease in size and fo-
cus on the recent observations after the concept drift
to quickly forget the data before the drift.

StrProMCDD: A CONCEPT DRIFT
DETECTION METHOD FOR StrProM

StrProM in its initial version uses static pruning pe-
riods to update the counts on relations and activities.
Furthermore, it utilizes a decaying mechanism to down-
weight older frequency information. This value was
also set at the beginning and never changed during the
stream observation. Using this forgetting strategy of
evolving the data to improve the model works quite well
for static or slowly changing processes. But we usually
do not know in advance how fast and comprehensive
a change in the underlying model will be. Therefore,
we are interested in an adaptive way of choosing ap-
propriate parameter values. To derive good and useful
information about the consistency of the stream, we
need a mechanism to detect changes quickly. In addi-
tion we do not want to spend much e ort in observing
stable data, but we want to concentrate our percep-
tion on interesting periods with higher uctuation of
the observed values.

The StrProM approach produces frequency maps at
regular intervals. These intervals are called pruning pe-
riods (see Algorithm 1, Line 6), as they have their origin
in a pre x-tree pruning step of the SS-BE algorithm.
This algorithm deals with frequent item mining in data
streams. We want to use these frequency maps to de-
tect changes, which are collected in this tree pruning
step. This information can be used by a change detec-
tor mechanism from the eld of concept drift detection
in stream data. The change detection mechanism we
use in the following is based on ADWIN. It uses an
adaptive window W, which focuses on short intervals
for highly deviating periods or increase its width in
case of uniform observations. As long as elements of
same behavior are observed, the window size will be
increased. If the algorithm detects a deviation within
the observation window, the oldest elements will be dis-
carded until the window is again consistent.

After a pruning period has nished, we want to use
the information of the newly collected frequency lists
for our detection method. This does not add much
computational e ort to the procedure, because the fre-
guencies are already collected by the baseline algorithm
to mine a process model. We store all frequency lists in
a temporal ordered list. The oldest ones will be found
at the beginning, while the most recent ones are located
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at the end of this list. Following ADWIN’s procedure,
we iterate progressively through all cuts of this window
into two partitions W = WoW;. ADWIN in its native _
variant builds its observation window based on a stream Algorithm 1 StrProM CD Detector
of real numbers. It would compare averaged values of Require: S: event stream;

these subwindows to nd a split. If ADWIN nds a par- 1. W: adaptive window

titioning with  (Wo; W1) > cu for aprede ned thresh- 22 cut: cutting threshold

old cut, it shrinks the main window. Due to the nature 3: Initialize StrProM[T:indexed pre X-tree]
of our frequency lists, we are dealing with multidimen- 4: loop

sional data here. We could easily use the average of 5: T observeStream()

frequencies to construct a stream of real numbers, but 6: if pruning step Fhen

due to the number of possible relations, this would blur T FrequencyList  collectT reeData(T)
a potential concept drift quite likely. Instead, we need 8: pruneT ree() _
alternatives for the mean value and use other distance o W W +FrequencyList
functions. To make things easy, we only consider dis- 10: if Wisize > maxWindowSize then
tances with a normalized range of [0;1]. (Wq;W3) =0 11 w=W Wfirst

means that there is no di erence, (Wo;W;) = 1 im- 12: end if _

ply the highest costs to transform one element into the 13: while W shrinks do

other. This allows an easy exchange of distance mea- 14: for all Wow; W do

sures to focus on di erent aspects, which could indicate 15: if (Wo;Wi1) > cue then

a drift. According to ADWIN, our method will discard 16: W =W W:rfirst

items from the left of the observation window in case of i end if

exceeding the cutting threshold (Wo;W1)  cut for a 18: end for

appropriate binary list-distance function (Algorithm 19: end while o

1, Line 15). Figure 3 gives an illustration of StrProM 20: if size of W decreased signi cantly then
with ADWIN. For a pseudo-code implementation, take 2L triggerCDAlarm()

a look on Algorithm 1. Algorithm 2 shows the appli- 2z end if

cation of the presented concept drift detector to the 23 end if

Online Heuristics Miner. 24: end loop

To use this approach we have to nd a suitable
threshold value and distance functions . The rst



na ve approach to determine a distance between two
frequency lists takes both the activity and relation fre-
quency directly into account. The distances between
corresponding pairs of activities and relations are de-
termined and the average di erences yield our rst two
distance values .t and . Related to the original
StrProM approach, which uses the metrics of Heuris-
tics Miner to derive a model, we utilize the depen-
dency for the next distances. A change in the data
behavior should be represented as changes in these
metrics. To derive a distance function, we determine
for every relation the two di erent dependency values
based on both subwindows Wy and W;. We collect
the di erences between the same pairs of relations as
in the previous distance function. The mean value of
these di jgrences is then noted as gep. dep(Wo; W1) =
Wolwil  (aby2worw, 1depYo(a;ib) - dep™i(a;b)j. In
fact, gep Is very data oriented, but in the case that
we need a more model-aware distance, we use the edge
distance. To achieve this goal, we build HeuristicNets
by using the dependency values and calculate the costs
for transforming edges by counting edge deletions and
insertions to transform the rst Heuristic Net into the
second one. By normalizing it with the total number of
potential edge manipulations, this leads to our fourth
distance eqge. FoOr a better performance, we recom-
mend using a simpli ed construction method by only
using the dependency threshold and ignoring the other
constraints.
Egain(Wo; W1) = f(a;b) j dep*Vo(a;b) < gep < dep*V2(a;b)g

gain
E oer (Wo; W1) = f(a;b) j depV(a;b) < gep < dep™o(a;b)g

cdge (Wo; W1) =

The last two distances are inspired by the Fuzzy
Miner (Gunther and Van Der Aalst, 2007). The idea
to determine a routing signi cance for every activity
is a suitable addition, as this aspect is not covered by
the previous distance functions. To calculate the sig-
ni cance of a node resp. activity, the sum of incoming
and outgoing edges is identi ed. This number is then
normalized by the number of occurrences of this activ-

ity.

m (J-Egg?.?, (Wo; W1)j + jE|::sp (Wo; W1)j)

. wn _ Jf(a) 2Wgj+jf(a; ) 2 Wgj
S'grouting(a- W) = jfa 2 ng

We de ne the routing distance as the maximum of all
di erences of routing signi cances activity-wise.

di routing(Wo; W1) =

azvm/(?%(wl 1si9routing (@ Wo)  Sigrouting (& W1)j
The last distance function to be presented here is the
relative importance distance. Also inspired by the
Fuzzy Miner, this measure is a derivation of a exist-
ing signi cance measure.

1 sig(a;h) 1, sig(a;b)

rellmportance(a; b) = 57 Sio(@ %) + >
X2A ’

<2 SIg(X; b)

Algorithm 2 LCB CD Detector
Require: S: event stream;

1:  W: adaptive window

2. cut. cutting threshold

3: Initialize activity, relation and case lists A, R, C

4. loop

5: /* need to collect multiple events to derive fre-
quency lists */

6: for collection phase do

7 event  observeStream()

8: update(A) event(a)

9: update(R)  event(r)

10: update(C) event(c)

11: cleanup()

12: end for

13: FrequencyList A[LR
14: W W + FrequencyList

15: if W:size > maxW indowSize then
16: w=W W:First

17: end if

18: while W shrinks do

19: for all WogW; W do

20: if (Wo;W1) > ot then

21: W =W W:first

22: end if

23: end for

24: end while

25: if size of W decreased signi cantly then
26: triggerCDAlarm()

27: end if

28: end loop

The relative importance distance is, analogously to the
routing distance, the maximum of di erences of relative
importance values for a certain signi cance value. As
signi cance, we use the relation frequency here.

The usage of distance functions is rather modular, so
one can think of other distance measures to focus on
speci c aspects. For example instead of considering the
average dependency di erence, it is possible to reduce it
to the mean of the k most diverging activity pairs. But
we have to keep in mind that more complex distance
functions greatly increase the processing time at every
pruning step.

After one or a whole ensemble of distance functions
and a suitable weighting is chosen, we need a reason-
able cutting threshold. Typically, when the task is to
detect concept drifts, we are dealing with streams show-
ing mainly static behavior and only minor amounts of
concept drifts. If the number of drifts is such high that
we have a certain expectation of a drift in a small inter-
val, we should preferably use a passive evolving method
to decay the collected data. The computational e ort
of detecting drifts in a stream crowded by drifts is not
meaningful. Considering this, we do not expect to nd
a concept drift at the beginning of a stream. We can
use this assumption to use few pruning periods to de-
termine the distances in the possible window cuts. Un-
til the adaptive window reaches its capacity, we should



have enough distances to estimate a good threshold by
using the maximum of all these values.

The adaptive window will grow and shrink during the
stream observation. To build the HeuristicsNet model,
we only use the contained items. All discarded informa-
tion is ignored for the model construction. This leads
to a model based on the most recent data and evolving
over time while the window is following the stream.

The computational e ort to nd a cut in the window
and deletion of elements until no other cut can be found
is rather high by using this approach. For increasing
window sizes, the number of possible cuts, which have
to be checked, grows alike. In periods with no con-
cept drift or at least very little variation in the relation
counts, the adaptive window grows tremendously large,
if no cut has to be done. So as a rst step to decrease
computational costs, we introduce an upper bound for
the window size (Algorithm 1, Line 10). In our ex-
periments, a maximum size of 10 pruning periods as a
window size achieved good results by balancing compu-
tational e ort with the amount of information to yield
a sound model.

In the introduced algorithm, the frequency maps
from the pruning steps are stored in the adaptive win-
dow. Then the algorithm looks for possible cuts. As
a second step we recommend to compute the depen-
dency values for each frequency map and storing this
dependency list in the adaptive window. This reduces
the number of dependency computations of the lists.
For a window size of n lists, we have to apply n de-
pendency computations instead of n?, if we compute
the two-partitions for every possible cut. For agglom-
erating sublists, we just use the mean of all contained
dependency lists. This yields obviously not the same
distances, but it can still be used to determine cuts in
the adaptive window with another slightly modi ed cut
threshold.

Complexity

The presented detection method for sudden drifts in
event streams needs only constant computational time.
To show this, let us consider a worst-case for the prun-
ing step. In the worst case, we have to check every
potential cut for a derivation. For a prede ned obser-
vation window size n, this yields n 1 iterations. In
each step, a distance function has to be computed. We
do not want to discuss every function here, because
their e ort is quite similar. Instead, let us assume to
only use the dependency distance. In this case, we have
to determine all dependency values. For jAj activities,
there are at most jAj? relations. Calculating the dif-
ferences takes 2 jAj? steps of basic calculations, plus
dividing by the size of the whole relation set. As the
number of activities can be determined in advance, the
complexity of the dependency distance calculation is in
O(1), irrelevant of its parameters. Then, the e ort is
also constant for the whole window adjustment step.

EXPERIMENTAL EVALUATION

We evaluated our drift-sensitive StrProM approach on

both synthetic and real-world datasets to measure its
ability of detecting concept drifts. Only sudden drifts
are considered here. To recognize more complex drifts,
namely gradual, recurring and incremental drifts, a
suitable way to store su cient information about the
drifts is needed. There has to be a comparison with
previous drift detections to evaluate the character of
a drift. This will be addressed in future works. To
the best of our knowledge, there is no available similar
approach, which also mines a stream of events in a sin-
gle pass and detects drifts by analyzing single events
instead of traces.

First we want to discuss the synthetic dataset ex-
periments. We started with four arti cially generated
di erent processes. With the Process Log Generator
(Burattin and Sperduti, 2010), we produced logs for all
processes and generated logs. We merged them in a
pseudo-chaotic order, yielding a log with over 100,000
events. We streamed the complete log and monitored
the size of the adaptive window as shown in Figure 4.
The thresholds were set by evaluating the rst process
and nding the maximum value, such that no drift was
detected. The pruning period was 800 events with a
case list size of 2000 cases.

The most obvious conclusion is the poor performance
of the relation frequency distance. It does not detect
anything here. The dependency and edge distances per-
form almost identical, recognizing all 15 arti cial drifts.
They also detect some drifts within process 3, which are
false positives. The activity frequency distance misses
two times a drift for process 2 and also detects the false
drift within process 3. The routing distance works best
on this dataset. It has a perfect detection rate and
detects no false positives. The relative importance dis-
tance misses 7 drifts, but has no false alarms. On the
contrary, some alarms are triggered with a delay. We
compare the delay in Figure 5, as well as the detection
accuracy.

As the relative importance distance had some prob-
lems to detect the drifts for this dataset accurately, it is
di cult to compare the detection times with the other
distance functions. The relation frequency distance is
out of discussion as well. The routing distance per-
formed really well on this dataset, regarding detection
rate and delay time. Dependency distance and edge dis-
tance are closely related by de nition, so their results
are quite similar as well. Their performance is also
capable of handling concept drifts in a larger stream
scenario. The activity distance is mediocre, but can be
used in an ensemble of distances with a lower weight
probably.

For real-world datasets, it is very di cultto nd a
suitable publicly available dataset with a known ground
truth. To overcome this issue we used the datasets
from the BPI Challenge 2015. It is a collection of ve
datasets!, provided by ve Dutch municipalities. It
contains building permit applications about four years

1Dataset can be downloaded here:
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-
305d167a0ecl



Fig. 4. Window size of the adaptive window during the stream of 4 merged synthetic logs. The whole stream consists of 100000
events. First row: dependency and edge distance; second row: activity and relation frequency distance; third row: routing and relative

importance distance.

Fig. 5. Accuracy and mean delay for StrProMCDD on the arti cial dataset. For accuracy, we determined the ratio of correctly detected
drifts (precision) as well as the ratio of detected drifts, that are positive observations (recall). Both values are used to determine the
F-score. The mean delay of the detection is counted in pruning periods. As every pruning period consists of 800 events, it can be easily

transformed into event counts.

and is publicly available. We merged all ve datasets,
yielding a complete dataset with four reliable concept
drifts. It contains about 260000 events. The observa-
tion window size is shown in Figure 6.

While the activity frequency distance performed
mediocre, the relation frequency is even worse. In this
case, it detected nothing for thresholds greater than 0:1.
This is caused by the high number of activities and po-
tential relations between them. The observed items in
the stream pruning periods vary a lot. This leads to
very low counts for each di erent element. Therefore,

the di erences between two windows is expectedly also
small. The relative importance is very sensitive and re-
acts to small changes with a big impact on the resulting
data. So it is uctuating a lot here.

The dependency distance detected the rst three
transitions between the municipalities, but missed the
last one. Instead it reacted to a deviation in the data
of the third municipality. The edge distance detects all
four shifts, but the rst and last one only slightly. In-
stead it reveals some other drifts with higher peak. The
routing distance also worked quite well by detecting ev-



ery process shift. The rst drift is again very weak, but
it showed similar observations as both distances before.

It is not meaningful to rank the given distance func-
tions in general. All of them are focusing on di erent
aspects of the data. Therefore, they have a certain
importance for a particular dataset, but this can be
di erent for another set of business data. Although the
weights have to be rede ned for other datasets, one can
construct a derived weighted distance function based on
these basic functions. For the given dataset, we esti-
mated a weight vector w = (0:3; 0:2; 0:15; 0:0; 0:3; 0:05).
The resulting window size can be seen in the last mea-
surement in Figure 6. Using this method yields a very
good detection of the known drifts and probably un-
known drifts. Of course, this hard-coded, non intuitive
setting of these weights is not assumed to hold for other
datasets. It serves merely as a hint for the potential of
such method after observing the outputs of di erent
functions. The e ect of the evolving drifts on these
weights must also be investigated. Due to the absence
of a ground truth about the individual municipality
datasets, we can not give any evaluation about false
positives here.

CONCLUSION

In this paper, we introduce StrPtoMCDD, an e -
cient approach that uses the collected information of
an event stream miner to detect concept drifts. We
used a dynamic window, which grows in size for station-
ary process behavior and shrinks for diverting data and
thus indicating a concept drift. This adaptive window
is used to build a model by focusing only on up-to-date
information and discarding outdated items. Extensive
experimental evaluations over real and synthetic log

les highlighted the ability of our algorithm to detect
di erent kinds of drifts.

In the future, we would like to further bene t from
the detection of drifts in the more complicated and re-
alistic scenario where interval-based events are consid-
ered (Lu et al., 2017). In the case of overlapping, more
relations are considered between these temporal events
appear. This makes the task of concept drift even more
challenging and interesting. Additionally, we would like
to investigate the implementation of online detection of
drifts using StrPtoMCDD for observing deviations in
streaming conformance checking applications (van Zelst
et al., 2017) and anytime stream classi cation (Kranen
et al., 2012). Additionally, we would like to get the
most suitable threshold automatically that also adapts
over time to the underlying process distribution.
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