On the complexity of the robust stability problem for linear parameter varying systems

Citation for published version (APA):

DOI:
10.1016/S0005-1098(97)00129-5

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
https://www.tue.nl/index.php?id=71870

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
On the Complexity of the Robust Stability Problem for Linear Parameter Varying Systems*

ONUR Toker

Abstract—In this paper, it is shown that the problem of checking robust stability of linear parameter varying (LPV) systems is \(\mathcal{NP} \)-hard, and therefore, it is rather unlikely to find polynomial-time solution procedures for this problem. In the frequency-domain structured uncertainty case, it is well known that the robust stability problem is \(\mathcal{NP} \)-hard (Shamma, 1994; Poljak and Rohn, 1993; Nemirovski, 1993). Therefore, it is natural to consider the computational complexity of this problem when parameters are allowed to be time varying. The results of this paper show that, allowing the uncertain parameters to be time varying, does not give a computationally simpler problem, i.e. it remains \(\mathcal{NP} \)-hard, and hence it is rather unlikely to find computationally tractable solution procedures for this problem. On the other hand, as far as the existence of an algorithm is concerned, there is still no known (non-polynomial time) algorithm for the robust stability problem of linear parameter varying systems (Lagarias and Wang, 1995), and the well-known Tarski’s theorem (Tarski, 1951) does not provide a solution procedure (Kozyakin, 1990). Recently, there has been some developments in the direction of constructing non-polynomial-time algorithms for a related problem, called the joint spectral radius (JSR) computation problem (Lagarias and Wang, 1995). We also comment on the use of these results for developing a non polynomial time algorithm for testing robust stability of linear parameter varying systems. © 1997 Elsevier Science Ltd.

Key Words—Linear parameter varying systems; robust stability; computational complexity.

Notation

- \(Z \): The set of integers
- \(Q \): The set of rational numbers
- \(\mathbb{R} \): The set of real numbers
- \(\mathbb{C} \): The set of complex numbers
- \(\rho(A) \): Spectral radius of \(A \)
- \(||v||_\infty \): Infinity norm of \(v \)
- \(B(\mathbb{R}) \): The set of all bounded sequences over \(\mathbb{R} \)
- \(B(\mathbb{C}) \): The set of all bounded sequences over \(\mathbb{C} \)
- \(\text{Mat}(n, \mathbb{R}) \): The set of all \(n \times n \) matrices over \(\mathbb{R} \)

1. Introduction

In this paper, linear parameter varying systems are considered, and it is shown that the problem of checking robust stability is an \(\mathcal{NP} \)-hard problem. Based on this result, it is rather unlikely to find polynomial-time solution procedures for this problem. For the frequency domain structured uncertainty case, it is well known that the problem of checking robust stability is \(\mathcal{NP} \)-hard. However, recently it has been shown that allowing the uncertain blocks to be time varying gives a computationally simpler problem which can be solved by convex optimization techniques (Shamma, 1994; Poolla and Tikku, 1995). Furthermore, \(\mathcal{NP} \)-hardness of the robust stability problems for the parametric uncertainty case is also known (Poljak and Rohn, 1993; Nemirovski, 1993). Therefore, it is natural to consider the computational complexity of this problem when parameters are allowed to be time varying. The results of this paper show that, this does not give a computationally simpler problem, i.e. the problem remains \(\mathcal{NP} \)-hard. Based on this result, it is rather unlikely to find polynomial-time solution procedures for the robust stability problem of linear parameter varying systems, however, in the rest of this paper, we also comment on the recent results towards developing non-polynomial-time algorithms.

In this paper, we consider linear parameter varying systems of the form,

\[
x(k + 1) = \left(A_0 + \sum_{j=1}^n r(j)A_j \right)x(k),
\]

where \(r_1, \ldots, r_n \in B(\mathbb{R}^n) \). By Theorem 1a of (Berger and Wang, 1992), the following conditions are equivalent:

- (S1) \(\forall r_1, \ldots, r_n \in B(\mathbb{C}^n), \sup_p \left| \prod_{j=1}^n \left(A_0 + \sum_{i=1}^n r(j)A_i \right) \right| < \infty \).
- (S2) \(\sup_p \sup_{r_1, \ldots, r_n \in B(\mathbb{R}^n)} \left| \prod_{j=1}^n \left(A_0 + \sum_{i=1}^n r(j)A_i \right) \right| < \infty \).

The linear parameter varying system of equation (1) is said to be stable, iff one of the above equivalent conditions hold. Note that, this stability definition corresponds to the boundedness of the state for all possible initial conditions. Similarly, by Theorem 1b of (Berger and Wang, 1992) the following conditions are equivalent:

- (AS1) \(\forall r_1, \ldots, r_n \in B(\mathbb{R}^n), \lim_{p \to \infty} \left| \prod_{j=1}^n \left(A_0 + \sum_{i=1}^n r(j)A_i \right) \right| = 0 \).
- (AS2) \(\lim_{p \to \infty} \sup_{r_1, \ldots, r_n \in B(\mathbb{R}^n)} \left| \prod_{j=1}^n \left(A_0 + \sum_{i=1}^n r(j)A_i \right) \right| = 0 \).
- (AS3) \(\exists M > 0, \rho < 1, \) such that

\[
\forall r_1, \ldots, r_n \in B(\mathbb{R}^n), \left| \prod_{j=1}^n \left(A_0 + \sum_{i=1}^n r(j)A_i \right) \right| < M\rho^p.
\]

The linear parameter varying system of equation (1) is said to be asymptotically stable, iff one of the above equivalent conditions hold. Note that, this stability definition corresponds to the convergence of the state to 0 (as time goes to infinity), for all possible initial conditions.

The main result of this paper is the \(\mathcal{NP} \)-hardness of the stability, and asymptotic stability problems for linear parameter varying systems. Therefore, it is rather unlikely to find...
polynomial-time solution procedures for these problems. The well known Tarski's theorem (Tarski, 1951) does not provide a (non-polynomial time) solution procedure for these problems. Recently, Lagarias and Wang proposed an algorithm based on the so-called Finiteness Conjecture (Lagarias and Wang, 1995; Gurvits, 1995), and computational experiments support their conjecture (Dogruel, 1995). If the Finiteness Conjecture is proved, this will provide a non-polynomial-time solution procedure for the joint spectral radius computation problem, which also can be used to test robust asymptotic stability of linear parameter varying systems. Furthermore, the proposed algorithm will be a non-algebraic decision test, and this is consistent with the recent results of Kozyakin (Kozyakin, 1990) which basically says that, if there is an algorithm, it should be non-algebraic. But to the best of the author's knowledge, the Finiteness Conjecture is still open, and there is still no known non-polynomial time solution procedure for the above stability problems.

2. \mathcal{A}^p-hardness of robust stability and robust asymptotic stability problems for LPV systems

In this section, \mathcal{A}^p-hardness of stability and asymptotic stability problems for linear parameter varying systems, are proved. Our results are based on some observations from Nemirovski (1993) and Heil and Collea (1993).

Lemma 1 (Karp, 1972). For a given $a \in \mathbb{R}^n$, the problem of checking the existence of $t_1, \ldots, t_n \in \{-1, +1\}$ such that $\sum_{t} a_t \neq 0$, is \mathcal{A}^p-hard.

Lemma 2 (Heil and Collea, 1993). For a Hermitian matrix $A \in \text{Mat}(n, \mathbb{C})$, $p(A) = 1$. Theorem 1 implies that, both robust stability, and robust asymptotic stability problems, are \mathcal{A}^p-hard for LPV systems. In fact, it shows that, even if we restrict our attention to only Hermitian matrices, these robust stability problems still remain \mathcal{A}^p-hard. Hence, it is rather unlikely to find polynomial-time solution procedures for these problems. In the case of structured frequency-domain uncertainty, it is known that the robust stability problem (μ-analysis) is \mathcal{A}^p-hard (Toker and Özbay, 1995; Toker, 1995). (See also Braatz et al., 1994; Poljak and Rohn, 1993, Nemirovski, 1993.) However, if one allows the uncertainty blocks to be time varying, the problem becomes significantly easier to solve (Shamma, 1994; Poolla and Tikku, 1995). The \mathcal{A}^p-hardness of the robust stability problem for the structured parametric uncertainty case is also well known (Poljak and Rohn, 1993, Nemirovski, 1993), but the results of this paper show that, allowing the uncertain parameters to be time varying does not give a computationally simpler problem (i.e. the problem remains \mathcal{A}^p-hard).

In the next section, some recent results in the direction of developing non-polynomial-time algorithms are discussed. But to the best of the author's knowledge, there is no known non-polynomial-time algorithm for these problems.

3. The finiteness conjecture

In this section, we summarize some recent results in the direction of developing non-polynomial-time algorithms for checking robust stability and robust asymptotic stability of LPV systems.

First of all, for a given set of matrices $\Sigma = \{A_1, \ldots, A_s\}$, define $\rho(X) = \sup_{A_j \in \Sigma} \rho(A_j X)$. It has been shown that $\rho(X)$ is an \mathcal{A}^p-function. (see Lagarias and Wang, 1995). In Berger and Wang (1992), it is shown that $\rho(X)$ is \mathcal{A}^p-hard.
Remark. Kozyakin's results (Kozyakin, 1990) show that, the above Finiteness Conjecture is false if k_2 is not allowed to be dependent on Σ. Similarly, in Lagarias and Wang (1995), an example is provided to show that k_2 can be arbitrarily large, and hence for the Finiteness Conjecture to be true, k_2 must depend on Σ.

In Lagarias and Wang (1995), it is shown that the Finiteness Conjecture is equivalent to the so-called normed Finiteness Conjecture, and the normed Finiteness Conjecture is proved for piecewise analytic norms. Furthermore, computational experiments support this conjecture (Dogruel, 1995). But to the best of the author's knowledge, the Finiteness Conjecture is still an open problem. If the Finiteness Conjecture is proved, this will also prove that the following "program" is an algorithm for checking whether $\beta(\Sigma) < 1$ or not (Lagarias and Wang, 1995).

Step 1. Let $k = 1$.
Step 2. Compute $\rho_1(\Sigma)$, and $\beta(\Sigma)$.
Step 3. If $\rho_1(\Sigma) \geq 1$, then the condition $\beta(\Sigma) < 1$ does not hold. STOP.
Step 4. If $\rho_1(\Sigma) < 1$, then the condition $\beta(\Sigma) < 1$ holds. STOP.

Step 5. Increase k by 1. Go to Step 1.

It is not known whether the following "program" stops for all possible inputs Σ, or there exists an input Σ for which the "program" runs forever. But, if the Finiteness Conjecture is proved, this will also imply that the above "program" stops for all possible inputs Σ, and is an algorithm for checking whether $\beta(\Sigma) < 1$ or not. At this point, we would like to mention that the well-known results of Brayton and Tong (1979, 1980) do not provide an algorithm for this problem. They suggest an iterative approach together with some conservative decision tests, but do not provide any non-conservative decision test that can be used as a stopping criterion for their iterative approach.

The Finiteness Conjecture based algorithm proposed by Lagarias and Wang, can be used to check the robust asymptotic stability of LPV systems of the form

$$x(k + 1) = \left(A_0 + \sum_{i=1}^{n} r_i(k)A_i\right)x(k), \quad r_1, \ldots, r_n \in \mathbb{R}^{m}.$$

Because, robust asymptotic stability is equivalent to

$$\beta(\Sigma) < 1$$

for

$$\Sigma = \left\{A_0 + \sum_{i=1}^{n} r_iA_i: r_1, \ldots, r_n \in \mathbb{R}^{m} \right\}.$$

(Dogruel, 1995). Hence, if the Finiteness Conjecture is proved, then this will provide a non-polynomial-time algorithm for checking robust asymptotic stability of LPV systems. But to the best of the author's knowledge the Finiteness Conjecture is still open, and there is no known non-polynomial-time algorithm for checking robust stability and robust asymptotic stability of LPV systems.

4. Concluding remarks

In this paper, it has been shown that, stability and asymptotic stability problems for linear parameter varying systems, are $\textit{$\Sigma$-hard}$ hard. Therefore, it is rather unlikely to find polynomial-time solution procedures for these problems. Some recent results in the direction of constructing non-polynomial-time algorithms, has also been discussed. After the submission of this paper, Tsitsiklis and Blondel proved a stronger result about the products of finite sets of matrices (Blondel and Tsitsiklis, 1996), which implies that the robust stability problem of linear parameter varying systems is $\textit{$\Sigma$-hard}$ even if there is only one uncertain but time varying parameter.

Acknowledgements—This work is supported by The Ohio State University, and The Dutch Institute of Systems and Control.

References

Tsitsiklis, J. and V. Blondel (1996). Spectral quantities associated to pairs of matrices are hard-then impossible- to compute and to approximate. Submitted for publication.