A tandem fluid queue with gradual input

Citation for published version (APA):

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
SPOR-Report 2000-21

A tandem fluid queue with gradual input

W.R.W. Scheinhardt
B. Zwart

SPOR-Report
Reports in Statistics, Probability and Operations Research

Eindhoven, December 2000
The Netherlands

/department of mathematics and computing science
A tandem fluid queue with gradual input

Werner R.W. Scheinhardt*, Bert Zwart†

* Faculty of Mathematical Sciences
University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands
email: werner@math.utwente.nl

† CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Department of Mathematics & Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
email: zwart@win.tue.nl

December 22, 2000

Abstract

For a two-node tandem fluid model with gradual input, we compute the joint steady-state buffer-content distribution. Our proof exploits martingale methods developed by Kella & Whitt [16]. For the case of finite buffers, we use an insightful sample-path argument to extend the proportionality result of Zwart [27] to the network case.

Keywords and Phrases: finite buffers, fluid models, martingale, proportionality of probability measures, regenerative processes, semi-Markov input, tandem networks.
1 Introduction

In this paper we study a tandem fluid network which operates in a two-state random environment. Depending on the state of the environment, the content in the first buffer either increases according to some general stochastic process or it decreases linearly. The output of the first buffer is fed into a second buffer, after which it leaves the system. For this model, we compute the Laplace-Stieltjes transform of the joint steady-state buffer-content distribution.

The model in this paper can be put in the context of tandem queues where the service at the various queues is deterministic, and the probabilistic behavior is only due to the stochastic arrival process(es). These systems may typically be used to model a sequence of multiplexers in a communication network or a sequence of production lines that operate in a deterministic manner.

The first of these systems to be analysed were classical tandem queues with deterministic service times; see e.g. Rubin [22], Shalmon & Kaplan [24], Boxma & Resing [5] and references there. These may be viewed as slotted (discrete-time) versions of the model considered here. In the last decade another class of models, operating in continuous time, was studied successfully. Here, networks of fluid queues are driven by (instantaneous) Lévy input, see e.g. Kella & Whitt [16, 17], and Kella [18].

Several recent papers are concerned with a third class of models, in which fluid networks are fed by gradual input; this type of model is considered in the present paper. Kroese & Scheinhardt [20] (see also Scheinhardt [23]) analyse several systems of fluid queues that are driven by a two-state Markov process. Their framework includes a two-node tandem system for which the joint stationary distribution of the buffer contents was found. The transform version of this result was generalized to feedforward networks with Markov-modulated input by Kella [19]. A different extension can be found in Aalto & Scheinhardt [2], where a multi-node tandem fluid queue fed by homogeneous On-Off sources with general On-time distribution was analyzed.

The main results in this study are strongly related to those in [19] and [2], but there are some differences. The main difference with [2] is that we find the joint Laplace-Stieltjes Transform of the buffer contents, whereas [2] is mainly concerned with marginal results. Compared to [19], we study a simpler network topology. On the other hand, our input process is more general than the (Markov-additive) input process of [19]. In particular, our assumptions allow to consider non-Markovian input. For example, the Semi-Markov input process as considered recently by Boxma et al. [8] falls within the framework considered here, see Section 4.2. Non-Markovian input processes are currently particularly relevant in communication networks, where it is now quite common to assume that On-periods of On-Off sources are heavy-tailed, hence not of phase-type. We refer to Boxma & Dumas [6] for a survey on fluid queues with heavy-tailed input characteristics; see also the recent book Park & Willinger [21]. Besides its intrinsic interest, the tandem fluid queue considered here seems to play a key role in more complicated networks of fluid queues, see e.g. Van Uitert & Borst [26] which is concerned with networks of fluid queues under the generalized
processor sharing discipline.
The way in which we derive our results is as follows. First we show that the joint steady-
state buffer-content distribution satisfies a decomposition property; this distribution can
be written as the sum of two random vectors (see also [8] for a similar result for the single-
buffer case). The first term can be viewed as the steady-state buffer-content distribution
of a tandem network with instantaneous Lévy input at both nodes. The joint buffer-
content distribution of this particular tandem network is obtained by applying the powerful
martingale that was introduced by Kella & Whitt [16], which is also applied in [18, 19].
The second term in the decomposition is associated with the stationary distribution of a
clearing model.
We also treat the case in which the buffer sizes are finite. By means of an insightful
sample-path argument, it is shown that the steady-state distributions of the finite and
infinite buffer models are proportional. This extends the approach in Zwart [27], where
the corresponding result for the single-node case was obtained. The intuition behind the
proof is reminiscent of many papers dealing with traditional (i.e. non-fluid) finite-capacity
systems, such as those in Boots & Tijms [3, 4], Gouweleeuw & Tijms [11], Hooghiemstra
[12] and Keilson & Servi [13, 14]. Our approach can also be applied to the finite-buffer
equivalents of the networks considered in [17]-[19].
The paper is organized as follows. Section 2 provides a detailed model description and
states a number of preliminary results. Our main results are in Section 3, where we show
the decomposition property. Furthermore, we use this property to find an expression for
the transform of the joint distribution. In Section 4 we apply the results of Section 3
to some examples which allow for explicit computations, namely the two respective cases
where the input into the first buffer is regulated by an On-Off process, and by a semi-
Markov process. Section 5 finally treats the finite buffer case.

2 Model description and preliminaries

We start with a detailed model description. The content process of the first buffer falls
within the framework of Kella & Whitt [15], since it operates in a two-state random
environment. In particular, the first buffer is fed by a general source which operates in
two modes, which we call On and Off. When the source is On, the buffer content has
the same increments (in distribution) as the generic stochastic process $X = \{X(t), t \geq 0\}$,
which has non-decreasing sample-paths. An On-period is terminated after some (generic)
time A, which may depend on X and has finite mean. For Re $u, v \geq 0$, we define

$$\gamma(u, v) = \mathbb{E}\{e^{-uX(A)}-uA\}$$

(2.1)
as the Laplace-Stieltjes transform (LST) of $(X(A), A)$. During Off-periods, which are
exponentially distributed with parameter λ, the buffer content decreases linearly with
slope $c_1 > 0$; c_1 can be viewed as the output capacity of the buffer. It is easy to see that
the steady-state probability that the source is On, which we denote by \(p \), is given by

\[
p = \frac{\lambda \mathbb{E}\{A\}}{1 + \lambda \mathbb{E}\{A\}}.
\]

(2.2)

As long as the first buffer is not empty, it processes fluid at rate \(c_1 \), which is fed into a second buffer with rate \(c_2 \). To avoid a trivial model we will assume that \(c_1 > c_2 \), so that the second buffer is the bottle-neck.

The content of buffer \(i \) (\(i = 1,2 \)) at time \(t \) is denoted by \(V_i(t) \). The process of interest is then given by \(V = \{V(t), t \geq 0\} \), where \(V(t) = (V_1(t), V_2(t)) \). A typical sample path is depicted in the first part of Figure 1.

It is clear that both buffer-content processes have negative drift if and only if the expected amount of fluid that flows into the first buffer per unit of time is less than \(c_2 \), i.e. iff

\[
\rho = p \frac{\mathbb{E}\{X(A)\} + c_1 \mathbb{E}\{A\}}{\mathbb{E}\{A\}} < c_2.
\]

(2.3)

This may be rewritten, using (2.2), as

\[
\lambda \mathbb{E}\{X(A)\} + \lambda(c_1 - c_2) \mathbb{E}\{A\} < c_2,
\]

(2.4)

which we assume to hold throughout the remainder of the paper. Clearly, the process \(V \) is regenerative; as regeneration epochs we take the instants when the On-Off source starts an On-period in an empty network. Using standard regenerative process theory (see e.g. Asmussen [1], Cohen [9]) it now follows that \(V(t) \) converges in distribution to a random vector \(V = (V_1,V_2) \). Choosing 0 to be a regeneration epoch and denoting a (generic) regeneration cycle by \(C \), the distribution of \(V \) can be written as

\[
P\{V_1 > x_1; V_2 > x_2\} = \frac{1}{\mathbb{E}\{C\}} \mathbb{E}\left\{ \int_0^C 1_{[V_1(t)>x_1, V_2(t)>x_2]} dt \right\}.
\]

(2.5)

For later reference, we note that the probability of an empty system can be found as \(1 - \rho/c_2 \), leading to

\[
P\{V_1 = 0, V_2 = 0\} = P\{V_2 = 0\} = \frac{c_2 - \lambda \mathbb{E}\{X(A)\} - \lambda(c_1 - c_2) \mathbb{E}\{A\}}{c_2 + c_2 \lambda \mathbb{E}\{A\}}.
\]

(2.6)

Similarly, we find for the first buffer that

\[
P\{V_1 = 0\} = 1 - \frac{\rho}{c_1} = \frac{c_1 - \lambda \mathbb{E}\{X(A)\}}{c_1 + c_1 \lambda \mathbb{E}\{A\}}.
\]

(2.7)

We define the joint LST of \(V \) as \(\omega(u,v) = \mathbb{E}\{e^{-uV_1 - vV_2}\} \). As mentioned in the introduction, the main goal of this paper is to compute \(\omega(u,v) \). In doing so, we need two additional random variables that are closely related to \(A \) and \(X(A) \). We define them as follows.

Firstly \(A^* \) is distributed as the elapsed time that the source is On, if we observe the system in steady state during an On-period. At that time, one can also observe the increase of the
buffer content since the beginning of that On-period. This increase is denoted by $X(A^*)$. The marginal distributions of A^* and $X(A^*)$ are known, the second one being given in [15]. However, in the sequel we will need the joint distribution of $(X(A^*), A^*)$ as well. For completeness, we give expressions for this distribution and its transform, which we denote by $\gamma^*(u, v)$.

\[
P\{X(A^*) > x, A^* > y\} = \frac{1}{\mathbb{E}\{A\}} \mathbb{E}\left\{\int_0^A 1_{\{X(t) > x, t > y\}} dt\right\}.
\]

\[
\gamma^*(u, v) = \mathbb{E}\{e^{-uX(A^*)-vA^*}\} = \frac{1}{\mathbb{E}\{A\}} \mathbb{E}\left\{\int_0^A e^{-uX(t)-vt} dt\right\}.
\]

In the sequel we will assume that γ^* is known; Section 4 provides explicit expressions for γ^* in some special cases. As an aside we note that $X(A^*)$ can be interpreted as the stationary workload of a (fluid) queue fed by X where all the work is removed after a random time A. Such a model is called a clearing model, see e.g. Stidham [25]. The random variable A^* can then be interpreted as the time elapsed since the last clearing.

Finally, we need an expression for the transform $\pi(s) = \mathbb{E}\{e^{-sP}\}$, where the random variable P is a generic busy period of the first buffer. It can be shown as in [6, 7] that $\pi(s)$ is the unique solution in the unit circle of the equation

\[
\pi(s) = \gamma\left(\frac{s + \lambda(1 - \pi(s))}{c_1}\right), s).
\]

Note that it follows immediately from (2.10) that

\[
\mathbb{E}\{P\} = \frac{c_1\mathbb{E}\{A\} + \mathbb{E}\{X(A)\}}{c_1 - \lambda\mathbb{E}\{X(A)\}}.
\]

3 The joint steady state buffer-content distribution

In this section we give our main result, which is an explicit expression for the transform $\omega(u, v)$ of the steady-state buffer-content distribution. This expression is obtained in two steps: First, we give a decomposition property of V, which reduces the problem to the computation of the steady-state distribution of V, given that the source is Off. In the second step this problem is solved following the approach in [18] by applying the martingale that was introduced in [16].

For the first step we define $J(t)$ to be a 0 – 1 variable which equals 1 if the source is On at time t (i.e., if the content of the first buffer is increasing) and 0 otherwise. Clearly, in steady state $J(t)$ is distributed as a random variable J which is 1 with probability p and 0 with probability $1 - p$, where p is given in (2.2). Also we introduce the process $\tilde{V} = \{\tilde{V}(t), t \geq 0\}$, with $\tilde{V}(t) = (\tilde{V}_1(t), \tilde{V}_2(t))$, as the process obtained from V after deleting the On-periods. As an illustration of this ‘deleting procedure’, we refer to Figure 1, rather
Figure 1: Construction of the process $\tilde{\mathcal{V}}$ from \mathcal{V}.
than giving the precise details. We refer to [15] or [27] for a detailed description of this procedure in the single-node case.

It can be shown that this process \(\hat{V} \) also has a steady-state distribution. Let \(V = (V_1, V_2) \) denote a generic random vector with this distribution, and let \(\tilde{\omega}(u,v) \) denote the corresponding LST. We are now ready to state the decomposition result, where we will use \(\overset{d}{=} \) to indicate equality in distribution.

Theorem 3.1 The stationary buffer content \(V \) can be written as

\[
V \overset{d}{=} \hat{V} + J \times (X(A^*), (c_1 - c_2)A^*),
\]

where \(\hat{V}, J, \) and \((X(A^*), (c_1 - c_2)A^*) \) are independent. In terms of transforms:

\[
\omega(u,v) = \tilde{\omega}(u,v) \left(1 - p + p\gamma^*(u, (c_1 - c_2)v) \right).
\]

Proof

Note that \(J \) can be identified with the indicator of the event that the input source is On in steady state. Observe that \((V|J = 0) \overset{d}{=} \hat{V} \). Using PASTA, the steady-state buffer-content distribution observed at the end of Off-periods has the same distribution as \(\hat{V} \). This implies (using the definitions of \(A^* \) and \(X(A^*) \)) that

\[
(V | J = 1) \overset{d}{=} \hat{V} + (X(A^*), (c_1 - c_2)A^*),
\]

with \(\hat{V} \) and \((X(A^*), (c_1 - c_2)A^*) \) independent. Combining these results yields (3.1), from which Equation (3.2) follows easily.

In view of this, it suffices to compute \(\tilde{\omega}(u,v) \). Hence, in the remainder of this section we concentrate on the steady-state distribution of \(\hat{V} \).

The crucial observation is that \(\hat{V} \) can be identified with the joint buffer-content process of a tandem network with dependent Lévy input as studied in [18]. In order to apply the results of [18], we define \(Z_1(t) = \hat{V}_1(t), \ Z_2(t) = \hat{V}_1(t) + \hat{V}_2(t), \) and \(Z(t) = (Z_1(t), Z_2(t)) \). Observe that \(\{Z_2(t)\} \) can be identified with the buffer-content process of an \(M/G/1 \)-queue with Poisson(\(\lambda \))-arrivals, generic service time \(X(A) + (c_1 - c_2)A \), and service speed \(c_2 \).

We now find the following useful martingale from the fact that \(\{Z(t)\} \) is a two-dimensional reflected Lévy process, cf. Lemma 2.1 of [18].

Lemma 3.1 The process \(M = \{M(t)\} \), given by

\[
M(t) = \phi(u,v) \left[e^{-uZ_1(s)-vZ_2(s)}ds + e^{-uZ_1(t)-vZ_2(t)-uc_1 \int_0^t e^{-vZ_2(s)}1[Z_1(s)=0]ds - uc_2 \int_0^t 1[Z_2(s)=0]ds} \right] + 1,
\]

(3.3)
with
\[\phi(u, v) = uc_1 + vc_2 - \lambda(1 - \gamma(u + v,(c_1 - c_2)v)), \]
is a martingale.

Proof
Let \(Y(t) = (Y_1(t), Y_2(t)) \) be a two-dimensional Lévy-process with exponent \(\phi(u, v) \), i.e.,
\[\mathbb{E}(e^{-uY_1(t)-vY_2(t)}) = e^{\phi(u,v)t}. \]
Furthermore, we define
\[I_i(t) = \max_{0 \leq s \leq t} -Y_i(s), \quad i = 1,2. \]
Then, \(Z(t) \) may be represented as follows (note that \(Z(0) \equiv 0 \)):
\[Z_i(t) = Y_i(t) + I_i(t), \quad i = 1,2. \]
Noting that \(dI_i(t) = c_i 1_{|Z_i(t)=0}dt \) for \(i = 1,2 \), the lemma follows from [16]. \(\Box \)

Using this martingale, it is possible to obtain an expression for the LST of the stationary distribution of \(\{Z(t)\} \), which is given in the following theorem.

Theorem 3.2 The joint LST of \(Z \) is given by
\[\mathbb{E}(e^{-uZ_1-vZ_2}) = \frac{u(\lambda\mathbb{E}(X(A)) - c_1)\mathbb{E}(e^{-vZ_2}|Z_1 = 0) + v(\lambda\mathbb{E}(X(A)) + \lambda(c_1 - c_2)\mathbb{E}(A) - c_2)}{uc_1 + vc_2 - \lambda(1 - \gamma(u + v,(c_1 - c_2)v))}. \]

Proof
We mimic the proof of Corollary 2.3 in [18]. As a stopping time we take some epoch \(T \) with \(Z_1(T) = Z_2(T) = 0 \). Applying Doob’s optional stopping theorem as in [18] and using regenerative process theory as in (2.5) one gets for \(\text{Re} \ u, v \geq 0, \)
\[\phi(u, v)\mathbb{E}(e^{-uZ_1-vZ_2}) = u\mathbb{P}(Z_1 = 0)\mathbb{E}(e^{-vZ_2}|Z_1 = 0) + v\mathbb{P}(Z_2 = 0)\mathbb{E}(e^{-uZ_1}|Z_2 = 0). \quad (3.4) \]
Keeping the definitions of \(Z_1 \) and \(Z_2 \) in mind, the two respective probabilities in (3.4) can be found by dividing the right-hand sides of (2.7) and (2.6) by \(1 - p \). The result now follows after noting that \(\mathbb{E}(e^{-uZ_1}|Z_2 = 0) = 1 \). \(\Box \)

The translation of Theorem 3.2 to the transform of \((\bar{V}_1, \bar{V}_2) \) is done by noting that \(\mathbb{E}(e^{-uZ_1-vZ_2}) = \tilde{\phi}(u + v,v) \) and \(\mathbb{E}(e^{-vZ_2}|Z_1 = 0) = \mathbb{E}(e^{-V_2}|V_1 = 0). \) Hence, the only unknown we have to find is \(\mathbb{E}(e^{-v\bar{V}_2}|\bar{V}_1 = 0). \) By Theorem 3.1, \((\bar{V}_1, \bar{V}_2) \overset{d}{=} ((V_1, V_2)|J = 0). \) Hence (noting that \(V_1 = 0 \) implies \(J = 0 \)),
\[\mathbb{E}(e^{-v\bar{V}_2}|\bar{V}_1 = 0) = \mathbb{E}(e^{-v\bar{V}_2}|V_1 = 0). \]
Note that the second buffer can be identified with a fluid queue fed by a single On-Off source having constant input rate \(c_1 \) during On-periods. These On-periods are busy
periods of the first buffer. Appropriately scaling time, such that the output rate becomes 1, this means that the distribution of \(V_2 | V_1 = 0 \) can be identified with the steady-state workload distribution of an M/G/1 queue with arrival rate \(\lambda/c_2 \) and service times \((c_1 - c_2)P \) (see also [2] and [17]). Hence we have
\[
\mathbb{E}\{e^{-V_2} | V_1 = 0 \} = \frac{(c_2 - \lambda)(c_1 - c_2)\mathbb{E}\{P\})u}{c_2v - \lambda(1 - \pi((c_1 - c_2)v))}.
\] (3.5)

If we combine our findings we arrive at the main conclusion of this section:

Theorem 3.3 The LST of \((V_1, V_2)\) is given by
\[
\omega(u, v) = \tilde{\omega}(u, v) \left(1 - p + pr^*(u, (c_1 - c_2)v)\right),
\]
with
\[
\tilde{\omega}(u, v) = \frac{(u - v)(\lambda\mathbb{E}\{X(A)\} - c_1)\mathbb{E}\{e^{-V_2} | V_1 = 0 \} + v (\lambda\mathbb{E}\{X(A)\} + \lambda(c_1 - c_2)\mathbb{E}\{A\} - c_2)}{(u - v)c_1 + vc_2 - \lambda(1 - \gamma(u, (c_1 - c_2)v))},
\]
and \(\mathbb{E}\{e^{-V_2} | V_1 = 0 \}\) given in (3.5).

From Theorem 3.3 it is straightforward to derive expressions for the moments, marginal distributions and correlations. To compute the original steady-state probabilities from Theorem 3.3 one may use the multi-dimensional transform-inversion technique described in Abate & Whitt [10].

We end this section with a brief outline of how to extend Theorem 3.3 to the multi-node tandem case. Consider \(n\) nodes with capacities \(c_1 > c_2 > \ldots > c_n\) and assume that the stability condition (2.4) holds with \(c_2\) replaced by \(c_n\). If we let \(V_i\) denote the steady-state buffer content of buffer \(i, i = 1, \ldots, n\), we find a decomposition result as in Theorem 3.1, which leads to
\[
\omega(u_1, \ldots, u_n) = \mathbb{E}\{e^{-u_1V_1-\ldots-u_nV_n}\}
\]
\[
= \tilde{\omega}(u_1, \ldots, u_n) \left(1 - p + pr^*(u_1, (c_1 - c_2)u_2 + \ldots + (c_{n-1} - c_n)u_n)\right),
\]
where \(\tilde{\omega}\) is defined in the obvious way. To find \(\tilde{\omega}\) one can study the multidimensional martingale \(\mathcal{M} = \{M(t)\}\), given by
\[
M(t) = \phi(u_1, \ldots, u_n) \int_0^t e^{-u_1Z_1(s)-\ldots-u_nZ_n(s)}ds + 1 - e^{-u_1Z_1(t)-\ldots-u_nZ_n(t)} -
\]
\[
u_1c_1 \int_0^t e^{-u_2Z_2(s)-\ldots-u_nZ_n(s)}1_{[Z_1(s)=0]}ds -
\]
\[
u_2c_2 \int_0^t e^{-u_3Z_3(s)-\ldots-u_nZ_n(s)}1_{[Z_2(s)=0]}ds - \ldots - u_nc_n \int_0^t 1_{[Z_n(s)=0]}ds,
\] (3.6)
where the $Z_i(t), i = 1, \ldots, n$, are defined similarly as before, and ϕ is given by

$$
\phi(u_1, \ldots, u_n) = u_1 c_1 + \ldots + u_n c_n - \\
\lambda (1 - \gamma (u_1 + \ldots + u_n, (c_1 - c_2) u_2 + \ldots + (c_{n-1} - c_n) u_n)).
$$

This martingale leads to a generalized version of Equation (3.4) (one can also directly apply Corollary 2.3 of [18]). This equation can be solved in a similar way as in the proof of Theorem 3.2.

4 Examples

In the previous section we derived an expression for $\omega(u, v)$ in terms of $\gamma(\cdot, \cdot), \gamma^*(\cdot, \cdot)$ and $\pi(\cdot)$. The main goal of this section is to give some examples of the input process X for which it is possible to get tractable expressions for these transforms. Together with Theorem 3.3, this provides an explicit expression for $\omega(u, v)$ in these cases. In the next two subsections we treat (i) input from an On-Off source, and (ii) Semi-Markov input.

4.1 Input from a simple On-Off source

Our first example, which was the original motivation for this work, is the case where the first buffer is fed by a single On-Off source. If this source is On, it feeds fluid into the first buffer with constant rate $r > c_1$. For this special case, we take $X(t) = (r - c_1)t, t \geq 0$. If we denote the LST of A by $\alpha(s) = E\{e^{-sA}\}$, we get

$$
E\{X(A)\} = (r - c_1)E\{A\},
$$

$$
\gamma(u, (c_1 - c_2)v) = \alpha((r - c_1)u + (c_1 - c_2)v),
$$

$$
\gamma^*(u, (c_1 - c_2)v) = \frac{1 - \alpha((r - c_1)u + (c_1 - c_2)v)}{E\{A\}((r - c_1)u + (c_1 - c_2)v)}.
$$

The latter equation follows immediately from the obvious identity $(X(A^*), A^*) \equiv ((r - c_1)A^*, A^*)$. An explicit expression for the LST of V_1 and V_2 follows by combining Equations (4.2) and (4.3) with Theorem 3.3. Finally, $\pi(\cdot)$ follows from

$$
\pi(s) = \alpha((r - c_1)(s + \lambda(1 - \pi(s))) + s).
$$

Several other studies contain results for this canonical model which are strongly related to the problem addressed here: The marginal distributions of V_1 and V_2, and the correlation between V_1 and V_2 have been computed in [2]. The joint distribution of (V_1, V_2) in case A has a phase-type distribution has been found in [19]. When A is exponentially distributed it is possible to invert ω to find an expression for the distribution of V, see [20, 23].

4.2 Semi-Markov input

In this subsection we assume that the content of the first buffer is regulated by a semi-Markov process. This is motivated by the recent study [8], in which a single fluid buffer is
analyzed that is fed by the same type of input. Hence we will follow [8] and consider the
Markov renewal process \(\{ (Y_n, \tau_{n+1}) \mid n \geq 0 \} \) with state space \(\{0, \ldots, K\} \times [0, \infty) \). We let
\(T_0 = 0 \) and \(T_n = \sum_{k=1}^{n} \tau_k, \ n \geq 1 \), and introduce the corresponding counting process by
\(N(t) = \sup \{ n : T_n \leq t \} \). Then the semi-Markov process (SMP) \(\{ Y(t), t \geq 0 \} \) is defined by
\(Y(t) = Y_{N(t)} \). The behavior of this process is given by the stochastic matrix \(P \) consisting of the transition probabilities
\(p_{ij} = P\{ Y_1 = j \mid Y_0 = i \}, 0 \leq i, j \leq K \) (we assume that
\(p_{ii} = 0 \)), and the functions \(F_{ij}(t) \), defined by
\[
F_{ij}(t) = P\{ \tau_1 \leq t \mid Y_0 = i, Y_1 = j \}. \tag{4.4}
\]
It is convenient to also define:
\[
F_i(t) = P\{ \tau_1 \leq t \mid Y_0 = i \} = \sum_{j=0}^{K} p_{ij} F_{ij}(t),
\]
\[
E_{ij}\{\cdot \} = E\{ \cdot \mid Y_0 = i, Y_1 = j \},
\]
\[
E_i\{\cdot \} = E\{ \cdot \mid Y_0 = i \},
\]
\[
\tau_{ij}(u) = E_{ij}\{ e^{-u \tau_1} \},
\]
\[
\tau_i(u) = E_i\{ e^{-u \tau_1} \},
\]
\[
\tau_i^e(u) = \frac{1 - \tau_i(u)}{uE_i\{ \tau_1 \}},
\]
\[
m_{ij} = E_{ij}\{ \tau_1 \},
\]
\[
m_i = E_i\{ \tau_1 \}.
\]
An important assumption is that the sojourn time in state 0 (say) is exponentially dis­
tributed and independent of the next jump, i.e.: \(F_{0j}(t) = F_0(t) = 1 - e^{-\lambda t} \).
The SMP regulates the content of the first buffer in our tandem queue in the following
way. If \(Y(t) = i, i \geq 1 \), then the buffer content increases at rate \(q_i = r_i - c_1 \), where \(r_i \geq c_1 \).
When the SMP is in the special state 0, the buffer content decreases at rate \(c_1 \). Hence,
we can construct our process \(\mathcal{X} \) as follows. Suppose that the SMP jumps from state 0 at
time 0. Then
\[
X(t) = \int_{0}^{t} q_Y(u) du, \quad t \geq 0,
\]
\[
A = \inf\{ t > 0 : Y(t) = 0 \}.
\]
We now compute the LST's of \((X(A), A) \) and \((X(A^*), A^*) \), extending the approach of [8]
by which the marginal LST's of \(X(A) \) and \(X(A^*) \) were found. Keeping Equation (2.9) in
mind, we define for \(1 \leq i \leq K \),
\[
\beta_i^*(u, v) = E_i\{ \int_{0}^{A} e^{-u \int_{0}^{s} q_Y(s) ds} v dt \}. \tag{4.5}
\]
By conditioning upon \(Y_1 \) and \(\tau_1 \) we obtain,

\[
\beta_i^*(u, v) = m_i \tau_i^*(q_i u + v) + \sum_{j=1}^{K} p_{ij} \tau_{ij}(q_i u + v) \beta_j^*(u, v), \quad 1 \leq i \leq K. \tag{4.6}
\]

This system of equations has a unique solution. To obtain an expression for \(\gamma^*(u, v) \), note that \(E\{A\} \) can be computed as

\[
E\{A\} = \sum_{i=1}^{K} p_{ij} a_i, \tag{4.7}
\]

where the \(a_i = E_i\{A\}, i = 1, \ldots, K, \) form the unique solution of

\[
a_i = m_i + \sum_{j=1}^{K} p_{ij} a_j. \tag{4.8}
\]

Combining Equations (2.9), (4.6), and (4.7) we obtain

\[
\gamma^*(u, v) = \frac{\sum_{j=1}^{K} p_{0j} \beta_j^*(u, v)}{\sum_{j=1}^{K} p_{0j} a_j}. \tag{4.9}
\]

The computation of \(\gamma \) is similar but easier (see also [8]) so we only state the final result: \(\gamma \) can be written as

\[
\gamma(u, v) = \sum_{j=1}^{K} p_{0j} \beta_j(u, v), \tag{4.10}
\]

with \(\beta_j(u, v), j = 1, \ldots, K, \) the unique solution of

\[
\beta_i(u, v) = p_{0i} \tau_{0i}(q_i u + v) + \sum_{j=1}^{K} p_{ij} \tau_{ij}(q_i u + v) \beta_j(u, v), \quad 1 \leq i \leq K. \tag{4.11}
\]

Recursive expressions for the moments of \(A, X(A), \) and \(X(A^*) \) can be found in [8].

5 Finite Buffers

In this section we look at the case where the buffers have respective sizes \(K_1 \) and \(K_2 \). Using obvious notation, we will denote the transient process that describes both buffer contents by \(V^{K_1,K_2} \). It can be shown that this process has a stationary distribution and we let \(V^{K_1,K_2} = (V_1^{K_1,K_2}, V_2^{K_1,K_2}) \) be distributed accordingly.

The main result of this section is Theorem 5.1 below. In this theorem, we relate the steady-state distribution of \(V^{K_1,K_2} \) to that of \(V \). Hence, it is still assumed that (2.4) holds, even though this is no longer required for stability. Furthermore, we need to make the following additional assumption:
Assumption 5.1 K_1, K_2 and X are such that the second buffer fills before the first one does, i.e. for all t,
\[\mathbb{P}\{V_2^{K_1,K_2}(t) = K_2 \mid V_1^{K_1,K_2}(t) = K_1\} = 1. \]

If $X(t) \equiv (r - c_1)t$ (the scenario considered in Section 4.1), and if the system is empty at time $t = 0$, this assumption is satisfied iff
\[\frac{K_1}{r - c_1} \geq \frac{K_2}{c_1 - c_2}. \] (5.1)

A similar characterization holds for the model considered in Section 4.2.

The main result of this section now states that the distributions of V and V^{K_1,K_2} are proportional:

Theorem 5.1 If Assumption 5.1 holds, then for $0 \leq x < K_1, 0 \leq y < K_2$,
\[\mathbb{P}\{V_1^{K_1,K_2} \leq x; V_2^{K_1,K_2} \leq y\} = \frac{\mathbb{P}\{V_1 \leq x; V_2 \leq y\}}{\mathbb{P}\{W_1 \leq K_1\}\mathbb{P}\{W_2 \leq K_2\}}, \] (5.2)

with $W_1 \overset{d}{=} (V_1 \mid J = 0)$ and $W_2 \overset{d}{=} (V_2 \mid V_1 = 0)$.

Both this theorem and its proof below are an extension of the single node case which is treated in [27].

Proof
The proof consists of two steps:

- First we consider the fluid tandem queue with buffer sizes $K_1 = \infty$ and $K_2 < \infty$. Denote this process by V^{∞,K_2}, and let $V^{\infty,K_2} = (V_1^{\infty,K_2}, V_2^{\infty,K_2})$ be distributed according to its stationary distribution. We show that, for $y < K_2$,
\[\mathbb{P}\{V_1^{\infty,K_2} \leq x; V_2^{\infty,K_2} \leq y\} = \frac{\mathbb{P}\{V_1 \leq x; V_2 \leq y\}}{\mathbb{P}\{W_2 \leq K_2\}}. \] (5.3)

- In our second step, we show that, if Assumption 5.1 holds, for $x < K_1$ and $y < K_2$,
\[\mathbb{P}\{V_1^{K_1,K_2} \leq x; V_2^{K_1,K_2} \leq y\} = \frac{\mathbb{P}\{V_1^{\infty,K_2} \leq x; V_2^{\infty,K_2} \leq y\}}{\mathbb{P}\{W_1 \leq K_1\}}. \] (5.4)

The proof is then completed by combining (5.3) and (5.4).

Step I
From each sample path of V we construct a sample path of V^{∞,K_2}. This construction is done as follows (see also Figure 2): Given a sample path of V, consider the excursions of $\{V_2(t)\}$ above level K_2. These excursions consist of two parts (a) and (b), corresponding to (a) and (b) in the Figure:
(a) The time it takes until the first buffer becomes empty, i.e., the remaining busy period of the first buffer;

(b) The remaining part of the excursion.

Now construct a sample path of a process \hat{V} from a sample path of V as follows:

- Time epochs where $V_2(t) \leq K_2$ remain unchanged;
- Part (a) of the excursions as described above is modified as follows: $\hat{V}_2(t) = K_2$ and $\hat{V}_1(t) = V_1(t)$;
- Delete the remaining parts of the excursions of $V_2(t)$.

The constructed process \hat{V} has the same law as V_{∞,K_2}. Every time $\hat{V}_2(t)$ leaves state K_2 the environment process is Off (in fact, the first buffer is empty), and the remaining Off-time is exponentially distributed with rate λ - as it should be. Henceforth, take $V_{K_1,K_2} = \hat{V}$. Denote a regeneration cycle of this process by C_{∞,K_2}. An immediate consequence of the construction of V_{K_1,K_2} is that, sample-path wise, for $y < K_2$,

$$\int_0^{C_{\infty,K_2}} 1_{[V_1(t),K_2(t)] \leq x, V_2(t) \leq y} \, dt = \int_0^{C} 1_{[V_1(t),K_2(t)] \leq x, V_2(t) \leq y} \, dt. \quad (5.5)$$

Combining this with regenerative process theory (like in Equation (2.5)), we get, for all x and $y < K_2$,

$$P\{V_1,_{\infty,K_2} \leq x; V_2,_{\infty,K_2} \leq y\} = \frac{E\{C\}}{E\{C_{\infty,K_2}\}} P\{V_1 \leq x; V_2 \leq y\}. \quad (5.6)$$

In particular, for $x \to \infty$, we get

$$P\{V_2,_{\infty,K_2} \leq y\} = \frac{E\{C\}}{E\{C_{\infty,K_2}\}} P\{V_2 \leq y\}. \quad (5.7)$$

From Theorem 5.2 of [27] we obtain

$$\frac{E\{C\}}{E\{C_{\infty,K_2}\}} = \frac{1}{P\{W_2 \leq K_2\}},$$

which proves (5.3).

Step II

This step is similar to Step I, and gives a sample-path construction of the process V_{K_1,K_2} from V_{∞,K_2}. For each sample path of the latter process, consider the excursions of $\{V_1,_{\infty,K_2}(t)\}$ above level K_1. Note that Assumption 5.1 ensures that the second buffer is full during these excursions (our method would break down if this would not be the case). As before, divide the excursions into two parts; the first part ends when an Off-period is finished. Truncate the first part of the excursion of $V_1,_{\infty,K_2}(t)$ to K_1 (while
Figure 2: Construction of the process \mathcal{V}^{∞,K_2} from \mathcal{V}.
Due to exactly the same argument as in Step I, the constructed process can be identified with \(V_{K_1,K_2} \). This construction of \(V_{K_1,K_2} \) implies that, sample-path wise,

\[
\int_0^\infty 1_{\{V_{1,K_1,K_2}(t) \leq x, V_{2,K_1,K_2}(t) \leq y\}} \, dt = \int_0^\infty 1_{\{V_{\infty,K_1,K_2}(t) \leq x, V_{2,\infty,K_2}(t) \leq y\}} \, dt.
\]

(5.8)

Using regenerative process theory, this implies

\[
P\{V_{1,K_1,K_2} \leq x; V_{2,K_1,K_2} \leq y\} = \frac{E\{C_{K_1,K_2}^{\infty}\}}{E\{C_{K_1,K_2}\}} P\{V_{1,\infty,K_2} \leq x; V_{2,\infty,K_2} \leq y\}.
\]

(5.9)

What remains is to identify the pre-factor on the right-hand side of (5.9). From Theorem 5.2 of [27] it follows, for \(x < K_2 \),

\[
P\{V_{1,K_1,K_2} \leq x\} = \frac{P\{V_{1,K_1} \leq x\}}{P\{W_{1,K_1} \leq K_1\}} = \frac{P\{V_{1,\infty,K_2} \leq x\}}{P\{W_{1,K_1} \leq K_1\}}.
\]

(5.10)

Also, note that

\[
P\{V_{1,K_1,K_2} = 0, V_{2,K_1,K_2} = K_2\} = P\{V_{1,\infty,K_2} = 0, V_{2,\infty,K_2} = K_2\} = 0.
\]

(5.11)

Combining Equations (5.10) and (5.11) we obtain

\[
P\{V_{1,K_1,K_2} = 0; V_{2,K_1,K_2} < K_2\} = P\{V_{1,K_1,K_2} = 0\} = \frac{P\{V_{1,\infty,K_2} = 0\}}{P\{W_{1,K_1} \leq K_1\}} = \frac{P\{V_{1,\infty,K_2} = 0; V_{2,\infty,K_2} < K_2\}}{P\{W_{1,K_1} \leq K_1\}}.
\]

Invoking (5.9) for \(x = 0 \) and \(y = K_2 \) yields that the unknown pre-factor in (5.9) equals \(P\{W_{1,K_1} \leq K_1\} \). This completes Step II, and the proof of the theorem.

It can be shown that analogues of Theorem 5.1 also hold for the networks considered in [17]-[19], after obvious modifications of Assumption 5.1. These result may be derived in a similar way as Theorem 5.1.

Acknowledgments

This research was partly carried out when the first author had a postdoc position at Eindhoven University of Technology, supported by the Netherlands Organization for Scientific Research (NWO). The research of the second author is supported by an NWO grant. Both authors would like to thank Onno Boxma for helpful comments.
References

