Molecular activated recombination in detached recombining plasmas (comment)
Meulenbroeks, R.F.G.; van de Sanden, M.C.M.; Schram, D.C.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.82.2215

Published: 01/01/1999

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Dec. 2018
Molecular Activated Recombination in Detached Recombining Plasmas

In a recent Letter, Ohno, Ezumi, Takamura, Krasheninnikov, and Pigarov (OETKP) presented an interesting study on the recombination of a dc plasma discharge in helium that is quenched by puffing hydrogen gas in the downstream region [1]. Their analysis is based on differences in upstream and downstream electron density n_e, temperature T_e, and He I line emission. They conclude that the puffing of hydrogen gas in the downstream region of the He plasma results in molecular recombination mechanisms becoming dominant. In agreement with observations on other experiments (e.g., Ref. [2]), OETKP find a transition from three-particle electron-ion recombination (EIR) to molecular activated recombination (MAR) when going from a pure He plasma to a He plasma with hydrogen gas added in the downstream region. Molecular activated recombination is a collection of molecular processes, of which $H_2(\nu) + e \rightarrow H^+ + H$, followed by $H^+ + H \rightarrow He + e$, and the formation of HeH^+ molecular ions followed by their dissociative recombination are mentioned by OETKP.

Our main objection concerns the line of evidence as presented in [1], especially as related to the determination of the downstream values of T_e. In the distinction between EIR and MAR processes, an accurate determination of T_e is essential, as the rate of the EIR process has a $n_e^2T_e^{-9/2}$ dependence. The conclusions of OETKP regarding the dominance of MAR are based on a comparison of experimentally observed intensities of He I spectral lines with a collisional-radiative (CR) model [3]. The CR model is published as applied to a full hydrogen plasma but OETKP have apparently used it on He plasmas with hydrogen gas puffing. No reference or comments to this use of the model is supplied.

The used CR model is very sensitive to the assumed value of T_e. However, the authors give an estimate for the downstream value of T_e (about 0.4 eV) only in the case of a pure He plasma, based mainly on an analysis of highly excited He state populations. This spectroscopic method may give a reasonable estimate for n_e in the case of a purely noble gas plasma, but only if careful and absolute calibration of the spectroscopy setup and tomographic reconstruction of the line-averaged data are performed [4,5]. Estimation of T_e is then possible under specific equilibrium conditions. OETKP fail to give any information regarding calibration and tomographic reconstruction and the figures show unprocessed spectral data: These are not presented in the usual way, i.e., as the natural logarithm of the state density per statistical weight vs the excitation energy of the radiating level. This makes an evaluation of the spectral data—and, thus, a judgement of the validity of the T_e determination—by the reader impossible.

In the much more relevant situation of a He plasma with hydrogen gas puffing, however, no reasoning at all behind the adopted value of $T_e = 0.5$ eV is given. Actually, a T_e determination by spectroscopic means may become impossible in this case, because (as OETKP indicate) the He I emission apparently disappears almost completely. To complicate things, the proposed molecular recombination mechanisms can strongly influence the excited state population [1,5] either directly or through influence on n_e and T_e. However, OETKP apparently just assume that the T_e value does not change when going from the pure He plasma to the hydrogen puffing case and use the same value for this crucial parameter in the model simulations for the two cases.

Alternative ways of determining T_e are not mentioned in [1] and it remains obscure whether this is connected to the fact that, in another paper [6], anomalies with Langmuir probe T_e measurements in the same experiment are reported.

In summary, OETKP reach their conclusion regarding the dominance of molecular processes in He plasmas with hydrogen gas puffing on the basis of unspecified estimates of the downstream T_e (the crucial parameter in this case). The lack of absolute and local excited state population data (only a relative comparison to the model is made) adds to our doubts about the adopted method. In our view, an independent measurement of the electron temperature (e.g., by means of Thomson scattering) is essential to substantiate OETKP’s conclusions.

Ralph F.G. Meulenbroeks*
FOM Instituut voor Plasmafysica ‘Rijnhuizen’
Association EURATOM-FOM, Trilateral Euregio Cluster
P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands

Richard van de Sanden† and Daniel C. Schram
Department of Applied Physics
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Received 21 October 1998 [S0031-9007(99)08494-X]
PACS numbers: 52.40.Hf, 52.20.Hv, 52.25.Ya

*Electronic address: ralphm@rijnh.nl
†Electronic address: m.c.m.v.d.sanden@phys.tue.nl