Gabor's expansion and the Zak transform for continuous-time and discrete-time signals

Citation for published version (APA):

Document status and date:
Published: 01/01/1998

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Apr. 2019
**Gabor’s Expansion and the Zak Transform for Continuous-Time and Discrete-Time Signals**

Martin J. Bastiaans

**Abstract.** Gabor’s expansion of a signal into a discrete set of shifted and modulated versions of an elementary signal is introduced and its relation to sampling of the sliding-window spectrum is shown. It is shown how Gabor’s expansion coefficients can be found as samples of the sliding-window spectrum, where — at least in the case of critical sampling — the window function is related to the elementary signal in such a way that the set of shifted and modulated elementary signals is bi-orthonormal to the corresponding set of window functions.

The Zak transform is introduced and its intimate relationship to Gabor’s signal expansion is demonstrated. It is shown how the Zak transform can be helpful in determining the window function that corresponds to a given elementary signal and how it can be used to find Gabor’s expansion coefficients.

The continuous-time as well as the discrete-time case are considered, and, by sampling the continuous frequency variable that still occurs in the discrete-time case, the discrete Zak transform and the discrete Gabor transform are introduced. It is shown how the discrete transforms enable us to determine Gabor’s expansion coefficients via a fast computer algorithm, analogous to the well-known fast Fourier transform algorithm.

Not only Gabor’s critical sampling is considered, but also — for continuous-time signals — the case of oversampling by an integer factor. It is shown again how in this case the Zak transform can be helpful in determining a (no longer unique) window function corresponding to a given elementary signal. An arrangement is described which is able to generate Gabor’s expansion coefficients of a rastered, one-dimensional signal by coherent-optical means.

### §1 Introduction

It is sometimes convenient to describe a time signal $\varphi(t)$, say, not in the time domain, but in the frequency domain by means of its frequency spectrum, i.e. the Fourier transform $\check{\varphi}(\omega)$ of the function $\varphi(t)$, which is defined by

$$\check{\varphi}(\omega) = \int \varphi(t) e^{-j\omega t} dt; \quad (1.1)$$

a bar on top of a symbol will mean throughout that we are dealing with a function in the frequency domain. (Unless otherwise stated, all integrations and summations in this paper extend from $-\infty$ to $+\infty$.) The inverse Fourier transformation takes the form

$$\varphi(t) = \frac{1}{2\pi} \int \check{\varphi}(\omega) e^{j\omega t} d\omega. \quad (1.2)$$
The frequency spectrum shows us the global distribution of the energy of the signal as a function of frequency. However, one is often more interested in the momentary or local distribution of the energy as a function of frequency.

The need for a local frequency spectrum arises in several disciplines. It arises in music, for instance, where a signal is usually described not by a time function nor by the Fourier transform of that function, but by its musical score; indeed, when a composer writes a score, he prescribes the frequencies of the tones that should be present at a certain moment. It arises in optics: geometrical optics is usually treated in terms of rays, and the signal is described by giving the directions (cf. frequencies) of the rays (cf. tones) that should be present at a certain position (cf. time moment). It arises also in mechanics, where the position and the momentum of a particle are given simultaneously, leading to a description of mechanical phenomena in a phase space.

A candidate for a local frequency spectrum is Gabor’s signal expansion. In 1946 Gabor [14] suggested the expansion of a signal into a discrete set of properly shifted and modulated Gaussian elementary signals [5, 6, 7, 14, 15, 16]. A quotation from Gabor’s original paper might be useful. Gabor writes in the summary:

Hitherto communication theory was based on two alternative methods of signal analysis. One is the description of the signal as a function of time; the other is Fourier analysis. ... But our everyday experiences ... insist on a description in terms of both time and frequency. ... Signals are represented in two dimensions, with time and frequency as co-ordinates. Such two-dimensional representations can be called ‘information diagrams,’ as areas in them are proportional to the number of independent data which they can convey. ... There are certain ‘elementary signals’ which occupy the smallest possible area in the information diagram. They are harmonic oscillations modulated by a probability pulse. Each elementary signal can be considered as conveying exactly one datum, or one ‘quantum of information.’ Any signal can be expanded in terms of these by a process which includes time analysis and Fourier analysis as extreme cases.

Although Gabor restricted himself to an elementary signal that had a Gaussian shape, his signal expansion holds for rather arbitrarily shaped elementary signals [5, 6, 7].

We will restrict ourselves to one-dimensional time signals; the extension to two or more dimensions, however, is rather straightforward. Most of the results can be applied to continuous-time as well as discrete-time signals. We will treat continuous-time signals in Sections 2, 3, and 4 (and also in Sections 7 and 8), and we will transfer the concepts to the discrete-time case in Sections 5 and 6. To distinguish continuous-time from discrete-time signals, we will denote the former with curved brackets and the latter with square brackets; thus \( \varphi(t) \) is a continuous-time and \( \varphi[n] \) a discrete-time signal. We will use the variables in a consistent manner: in the continuous-time case, the variables \( t, m \) and \( T \) have something to do with time, the variables \( \omega, k \) and \( \Omega \) have something to do with frequency, and the relation \( \omega T = 2\pi \) holds throughout; in the discrete-time case, the variables \( n, m \) and \( N \) have something to do with time, the variables \( \theta, k \) and \( \Theta \) have something to do with frequency, and the relation \( \theta N = 2\pi \) holds throughout.
In his original paper, Gabor restricted himself to a critical sampling of the time-frequency domain; this is the case that we consider in Sections 2-6. In Section 2 we introduce Gabor’s signal expansion, we introduce a window function with the help of which the expansion coefficients can be found, and we show a way how — at least in principle — this window function can be determined. In Section 3 we introduce the Zak transform and we use this transform to determine the window function that corresponds to a given elementary signal in a mathematically more attractive way. A more general application of the Zak transform to Gabor’s signal expansion is described in Section 4. We translate the concepts of Gabor’s signal expansion and the Zak transform to discrete-time signals in Section 5. Finally, in Section 6, we introduce — on the analogy of the well-known discrete Fourier transform — a discrete version of the Zak transform; the discrete versions of the Fourier and the Zak transform enable us to determine Gabor’s expansion coefficients by computer via a fast computer algorithm.

In Section 7 we extend Gabor’s concepts to the case of oversampling, in particular to oversampling by an integer factor. We use the Fourier transform and the Zak transform again to transform Gabor’s signal expansion into a mathematically more attractive form and we show how a (no longer unique) window function can be determined in this case of integer oversampling. Finally, in Section 8, we will introduce an optical arrangement which is able to generate Gabor’s expansion coefficients of a rastered, one-dimensional signal by coherent-optical means.

§2 Gabor’s signal expansion

Let us consider an elementary signal \(g(t)\), which may or may not have a Gaussian shape. Gabor’s original choice was a Gaussian [14],

\[
g(t) = 2^\frac{1}{4} e^{-\pi (t/T)^2},
\]

where we have added the factor \(2^\frac{1}{4}\) to normalize \((1/T) \int |g(t)|^2 dt\) to unity, but in this paper the elementary signal may have a rather arbitrary shape; we will use Gabor’s choice of a Gaussian-shaped elementary signal as an example only. From the elementary signal \(g(t)\), we construct a discrete set of shifted and modulated versions \(g_{mk}(t)\) defined by

\[
g_{mk}(t) = g(t - mT)e^{jk \Omega t},
\]

where the time shift \(T\) and the frequency shift \(\Omega\) satisfy the relationship \(\Omega T = 2\pi\), and where \(m\) and \(k\) may take all integer values. Gabor stated in 1946 that any reasonably well-behaved signal \(\varphi(t)\) can be expressed in the form

\[
\varphi(t) = \sum_m \sum_k a_{mk} g_{mk}(t),
\]

with properly chosen coefficients \(a_{mk}\). Thus Gabor’s signal expansion represents a signal \(\varphi(t)\) as a superposition of properly shifted (over discrete distances \(mT\)) and modulated (with discrete frequencies \(k\Omega\)) versions of an elementary signal \(g(t)\). We note
that there exists a completely dual expression in the frequency domain; in this paper, however, we will concentrate on the time-domain description.

Gabor’s signal expansion is related to the degrees of freedom of a signal: each expansion coefficient $a_{mk}$ represents one complex degree of freedom \cite{8, 14}. If a signal is, roughly, limited to the space interval $|t| < \frac{1}{2}a$ and to the frequency interval $|\omega| < \frac{1}{2}b$, the number of complex degrees of freedom equals the number of Gabor coefficients in the time-frequency rectangle with area $ab$, this number being about equal to the time-bandwidth product $ab/2\pi$. The reason for Gabor to choose a Gaussian-shaped elementary signal was that for such a signal each shifted and modulated version, which conveys exactly one degree of freedom, occupies the smallest possible area in the time-frequency domain. Indeed, if we choose the elementary signal according to (2.1), the ‘duration’ of such a signal and the ‘duration’ of its Fourier transform — defined as the square roots of their normalized second-order moments (see \cite[ Sect. 8-2]{23}) — read $T/2\sqrt{\pi}$ and $\Omega/2\sqrt{\pi}$, respectively, and their product takes the minimum value $\frac{1}{2}$.

Two special choices of the elementary signal might be instructive. If we choose a rectangular-shaped elementary signal such that $g(t) = 1$ for $-\frac{1}{2}T < t \leq \frac{1}{2}T$ and $g(t) = 0$ outside that time interval, then Gabor’s signal expansion has an easy interpretation: we simply consider the signal $\varphi(t)$ in successive time intervals of length $T$ and describe the signal in each time interval by means of a Fourier series. In the case of a sinc-shaped elementary signal $g(t) = \sin(\pi t/T)/(\pi t/T)$ — and hence $g(\omega) = T$ for $-\frac{1}{2}\Omega < \omega \leq \frac{1}{2}\Omega$ and $g(\omega) = 0$ outside that frequency interval — Gabor’s signal expansion has again an easy interpretation: we simply consider the signal in successive frequency intervals of length $\Omega$ and describe the signal in each frequency interval by means of the well-known sampling theorem for band-limited signals.

For the rectangular- or sinc-shaped elementary signals considered in the previous paragraph, the discrete set of shifted and modulated versions of the elementary signal $g_{mk}(t)$ is orthonormal; in general, however, this need not be the case, which implies that Gabor’s expansion coefficients $a_{mk}$ cannot be determined in the usual way. Let us consider two elements $g_{mk}(t)$ and $g_{nl}(t)$ from the (possibly non-orthonormal) set of shifted and modulated versions of the elementary signal, and let their inner product be denoted by $d_{m,n,k,l}$; hence

$$
\int g_{nl}(t)g_{mk}(t)dt = d_{m,n,k,l} = d_{m,n,k,l}^* \text{.} \tag{2.4}
$$

It is easy to see that for Gabor’s choice of a Gaussian elementary signal the array $d_{mk}$ takes the form

$$
da_{mk} = T(-1)^{m+k}e^{-\frac{1}{2}T^2(m^2 + k^2)} \text{,} \tag{2.5}
$$

which does not have the form of a product of two Kronecker deltas $T\delta_m\delta_k$; therefore, the set of shifted and modulated versions of a Gaussian elementary signal is not orthonormal.

Gabor’s expansion coefficients can easily be found, even in the case of a non-
orthonormal set \( g_{mk}(t) \), if we could find a window function \( w(t) \) such that

\[
a_{mk} = \int \varphi(t) w_{mk}^*(t) dt,
\]

where we have used, again, the short-hand notation [cf. (2.2)]

\[
w_{mk}(t) = w(t - mT)e^{jk\Omega t}.
\]

Such a window function should satisfy the two bi-orthonormality conditions [5, 6, 7]

\[
\int w_{mk}^*(t) g_{mk}(t) dt = \delta_{m-m'}\delta_{k-k'}
\]

and

\[
\sum_m \sum_k w_{mk}^*(t_1) g_{mk}(t_2) = \delta(t_1 - t_2);
\]

we will show later that the first bi-orthonormality condition implies the second one, so we can concentrate on the first one. The first bi-orthonormality condition guarantees that if we start with an array of coefficients \( a_{mk} \), construct a signal \( \varphi(t) \) via (2.3) and subsequently substitute this signal into (2.6), we end up with the original coefficients array; the second bi-orthonormality condition guarantees that if we start with a certain signal \( \varphi(t) \), construct its Gabor coefficients \( a_{mk} \) via (2.6) and subsequently substitute these coefficients into (2.3), we end up with the original signal. We thus conclude that the two equations (2.3) and (2.6) form a transform pair.

We remark that (2.6), with the help of which we can determine Gabor’s expansion coefficients, is, in fact, a sampled version of the sliding-window spectrum [7, 10] (or complex spectrogram, or windowed Fourier transform, or short-time Fourier transform), where the sampling appears on the time-frequency lattice \((mT, k\Omega)\) with \( \Omega T = 2\pi \). In quantum mechanics this lattice is known as the Von Neumann lattice [4, 20], but for obvious reasons we prefer to call it the Gabor lattice in the context of this paper. Hence, whereas sampling the sliding-window spectrum yields the Gabor coefficients, Gabor’s signal expansion itself can be considered as a way to reconstruct a signal from its sampled sliding-window spectrum. The name window function for the function \( w(t) \) that corresponds to a given elementary signal \( g(t) \) will thus be clear.

It is easy to see that the window function \( w(t) \) is proportional to the elementary signal \( g(t) \) if the set \( g_{mk}(t) \) is orthonormal. In the remainder of this section we show a first way in which a window function can be found if the set \( g_{mk}(t) \) is non-orthonormal. We therefore express the window function by means of its Gabor expansion (2.3) with expansion coefficients \( c_{mk} \), say [5],

\[
w(t) = \sum_m \sum_k c_{mk} g_{mk}(t)
\]

and try to find the array of coefficients \( c_{mk} \). We therefore consider the first bi-orthonormality condition (2.7)

\[
\delta_m \delta_k = \int w^*(t) g_{mk}(t) dt
\]
and substitute from the Gabor expansion (2.9) for the window function, yielding

$$\delta_m \delta_k = \int \left[ \sum_n \sum_l c_{nl}^* g_{nl}^*(t) \right] g_{mk}(t) \, dt.$$  

We rearrange factors

$$\delta_m \delta_k = \sum_n \sum_l c_{nl}^* \int g_{nl}^*(t) g_{mk}(t) \, dt$$

and substitute from (2.4)

$$\delta_m \delta_k = \sum_n \sum_l c_{nl}^* d_{n-m,l-k} = \sum_n \sum_l c_{nl}^* d_{m-n,k-l}^*.$$  

The first bi-orthonormality relation thus leads to the condition

$$\sum_n \sum_l c_{nl} d_{m-n,k-l} = \delta_m \delta_k,$$  

in which the left-hand side has the form of a convolution of the given array $d_{mk}$ with the array $c_{mk}$ that we have to determine. Equation (2.10) can be solved, in principle, when we introduce the Fourier transform of the arrays according to

$$d_{mk} = \frac{1}{2\pi} \int_T \int_{2\pi} \tilde{d}(t, \omega; T) e^{-j(m\omega T - k\Omega t)} \, dt \, d\omega,$$  

and a similar expression for $\tilde{c}(t, \omega; T)$. Note that these Fourier transforms are periodic in the time variable $t$ and the frequency variable $\omega$ with periods $T$ and $\Omega$, respectively:

$$\tilde{d}(t + mT, \omega + k\Omega; T) = \tilde{d}(t, \omega; T).$$  

Hence, in considering such Fourier transforms we can restrict ourselves to the fundamental Fourier interval $(-\frac{1}{2} T < t \leq \frac{1}{2} T, -\frac{1}{2} \Omega < \omega \leq \frac{1}{2} \Omega)$. The inverse Fourier transformation reads

$$d_{mk} = \frac{1}{2\pi} \int_T \int_{2\pi} \tilde{d}(t, \omega; T) e^{j(m\omega T - k\Omega t)} \, dt \, d\omega.$$  

and a similar expression for $c_{mk}$; $\int_T \cdot dt$ and $\int_\Omega \cdot d\omega$ denote integrations over one period $T$ and $\Omega$, respectively. After Fourier transforming both sides of (2.10), the convolution transforms into a product, and (2.10) takes the form

$$\tilde{c}(t, \omega; T) \tilde{d}(t, \omega; T) = 1.$$  

The function $\tilde{c}(t, \omega; T)$ can easily be found from the latter relationship, provided that the inverse of $\tilde{d}(t, \omega; T)$ exists, and inverse Fourier transforming $\tilde{c}(t, \omega; T)$ [cf. (2.13)] then results in the array $c_{mk}$ that we are looking for.
Let us consider how things work out for Gabor’s choice of a Gaussian elementary signal. After Fourier transforming the array (2.5) we get
\[
\frac{1}{T} \tilde{d}(t, \omega; T) = \theta_3(\Omega t)\theta_3(\omega T) + \theta_3(\Omega t)\theta_2(\omega T) + \theta_2(\Omega t)\theta_3(\omega T) - \theta_2(\Omega t)\theta_2(\omega T),
\]
with
\[
\theta_3(x) = \theta_3(x; e^{-2\pi}) = \sum_m e^{-2\pi m^2} e^{j2mx}
\]
and
\[
\theta_2(x) = \theta_2(x; e^{-2\pi}) = \sum_m e^{-2\pi (m + \frac{1}{2})^2} e^{j(2m + 1)x}.
\]
The functions \(\theta(x; e^{-2\pi})\) are known as theta functions [1, 30] with nome \(e^{-2\pi}\). The Fourier transform \((1/T)\tilde{d}(t, \omega; T)\) has been depicted in Figure 1, where we have restricted ourselves to the fundamental Fourier interval.

Figure 1. The Fourier transform \((1/T)\tilde{d}(t, \omega; T)\) in the case of a Gaussian elementary signal.

Note that the values of \((1/T)\tilde{d}(t, \omega; T)\) for \(t = \frac{1}{2}T + mT, \omega = \frac{1}{2}\Omega + k\Omega\) read
\[
\frac{1}{T} \tilde{d}(\frac{1}{2}T + mT, \frac{1}{2}\Omega + k\Omega; T) = \theta_3^2(0) \left[ 1 - \frac{\theta_3(0)}{\theta_3(0)} \right] \]
\[
\frac{\theta_3(0)}{\theta_3(0)} = 1 - \tan(\pi/8).
\]
Since the nome equals \(e^{-2\pi}\), we have the relation \(\theta_2(0)/\theta_3(0) = \sqrt{2} - 1 = \tan(\pi/8)\) (see [30, p. 525]), and we conclude that \(\tilde{d}(t, \omega; T)\) has (double) zeros for \(t = \frac{1}{2}T + mT, \omega = \frac{1}{2}\Omega + k\Omega\). Inversion of \(\tilde{d}(t, \omega; T)\) in order to find \(\tilde{c}(t, \omega; T)\) may thus be difficult.

Zeros of \(\tilde{d}(t, \omega; T)\) not only prohibit an easy determination of the window function \(w(t)\), but they lead to another unwanted property: they enable us to construct a
(not identically zero) function $\tilde{\xi}(t, \omega; T)$ such that the product $\tilde{\xi}(t, \omega; T)\tilde{\alpha}(t, \omega; T)$ [cf. (2.14)] vanishes. For a Gaussian elementary signal, with zeros for $t = \frac{1}{2}T + mT, \omega = \frac{1}{2}\Omega + k\Omega$, we might choose

$$\tilde{\xi}(t, \omega; T) = \sum_m \sum_k \delta(t - \frac{1}{2}T - mT)2\pi\delta(\omega - \frac{1}{2}\Omega - k\Omega)z. \quad (2.18)$$

Inverse Fourier transforming this function yields the array

$$z_{mk} = (-1)^{m+k}z, \quad (2.19)$$

which is a homogeneous solution of (2.10). Hence, Gabor coefficients might not be unique: if $c_{mk}$ are Gabor coefficients that determine the window function $w(t)$, then $c_{mk} + z_{mk}$ are valid Gabor coefficients, as well!

In the next section we will present a different and mathematically more attractive way to find the window function $w(t)$ that corresponds to a given elementary signal $g(t)$.

§3 Zak transform

In this section we introduce the Zak transform [31, 32, 33] and we show its intimate relationship to Gabor’s signal expansion. The Zak transform $\hat{\phi}(t, \omega; \tau)$ [31, 32, 33] of a signal $\phi(t)$ is defined as a one-dimensional Fourier transformation of the sequence $\phi(t + m\tau)$ (with $m$ taking on all integer values and $\tau$ being a mere parameter), hence

$$\hat{\phi}(t, \omega; \tau) = \sum_m \phi(t + m\tau)e^{-j\omega m\tau}; \quad (3.1)$$

we will throughout denote the Zak transform of a signal by the same symbol as the signal itself, but marked by a tilde on top of it. We remark that the Zak transform $\hat{\phi}(t, \omega; \tau)$ is periodic in the frequency variable $\omega$ with period $2\pi/\tau$ and quasi-periodic in the time variable $t$ with quasi-period $\tau$:

$$\hat{\phi} \left( t + m\tau, \omega + \frac{2\pi}{\tau} \right) = \hat{\phi}(t, \omega; \tau)e^{j\omega m\tau}. \quad (3.2)$$

Hence, in considering the Zak transform we can restrict ourselves to the fundamental Zak interval $(-\frac{1}{2}\tau < t \leq \frac{1}{2}\tau, -\pi/\tau < \omega \leq \pi/\tau)$. The inverse relationship of the Zak transform has the form

$$\phi(t + m\tau) = \frac{\tau}{2\pi} \int_{2\pi/\tau} \hat{\phi}(t, \omega; \tau)e^{j\omega m\tau}d\omega. \quad (3.3)$$

it will be clear that the variable $t$ in the latter equation can be restricted to an interval of length $\tau$, with $m$ taking on all integer values. From the properties of the Zak transform we mention Parseval’s energy theorem, which leads to the relationship

$$\frac{1}{2\pi} \int_{t} \int_{2\pi/\tau} |\hat{\phi}(t, \omega; \tau)|^2 dtd\omega = \tau \int |\phi(t)|^2 dt. \quad (3.4)$$
The Zak transform \( \hat{\Phi}(t, \omega; \tau) \) provides a means to represent an arbitrarily long one-dimensional time function (or one-dimensional frequency function) by a two-dimensional time-frequency function on a rectangle with finite area \( 2\pi \). This two-dimensional function \( \hat{\Phi}(t, \omega; \tau) \) is known as the Zak transform, because Zak was the first who systematically studied this transformation in connection with solid state physics [31, 32, 33]. Some of its properties were known long before Zak’s work, however. The same transform is called Weil-Brezin map and it is claimed that the transform was already known to Gauss [28]. It was also used by Gel’fand (see, for instance, [27, Chap. XIII]); Zak seems, however, to have been the first to recognize it as the versatile tool it is. The Zak transform has many interesting properties and also interesting applications to signal analysis, for which we refer to [17, 18]. In this section we will show how the Zak transform can be applied to Gabor’s signal expansion.

We want to make an observation to which we will return later on in this paper. Suppose that, for small \( \tau \) for instance, we can approximate a function \( g(t) \) by the piecewise constant function

\[
g(t) = \sum_n g_n \text{rect} \left( \frac{t - n\tau}{\tau} \right),
\]

where \( \text{rect}(x) = 1 \) for \( -\frac{1}{2} < x \leq \frac{1}{2} \) and \( \text{rect}(x) = 0 \) outside that interval. In the time interval \( -\frac{1}{2} \tau < t \leq \frac{1}{2} \tau \), the Zak transform \( \tilde{g}(t, \omega; \tau) \) then takes the form

\[
\tilde{g}(t, \omega; \tau) = \sum_n g_n e^{-jmt\omega} = \tilde{g}(\omega t);
\]

note that this Zak transform does not depend on the time variable \( t \), and that the one-dimensional Fourier transform \( \tilde{g}(\omega t) \) of the sequence \( g_n \) arises. We remark that Parseval’s energy theorem (3.4) now leads to the relation

\[
\frac{1}{2\pi} \int \int |\tilde{g}(t, \omega; \tau)|^2 dt d\omega = \frac{\tau}{2\pi} \int \int |\tilde{g}(\omega t)|^2 d\omega = \sum_n |g_n|^2.
\]

We still have to solve the problem of finding the window function \( w(t) \) that corresponds to a given elementary signal \( g(t) \) such that the bi-orthonormality conditions (2.7) and (2.8) are satisfied. We consider again the first bi-orthonormality condition (2.7)

\[
\delta_{mk} = \int g(\tau) w_\mu^{*}(\tau) d\tau
\]

and apply a Fourier transformation [cf. (2.11)] to both sides of this condition, yielding

\[
1 = \sum_m \sum_k \left[ \int g(\tau) w_\mu^{*}(\tau - mT) e^{-jk\Omega \tau} d\tau \right] e^{-j(m\omega T - k\Omega t)}.
\]

We rearrange factors

\[
1 = \sum_m \left[ \int g(\tau) w_\mu^{*}(\tau - mT) \left( \sum_k e^{-jk\Omega (\tau - t)} \right) d\tau \right] e^{-j(m\omega T - k\Omega t)}.
\]
and replace the sum of exponentials by a sum of Dirac functions

\[ 1 = \sum_m \left[ \int g(\tau)w^* (\tau - mT) \left( T \sum_n \delta(\tau - t - nT) \right) d\tau \right] e^{-jm\omega T}. \]

We rearrange factors again

\[ 1 = T \sum_m \sum_n \left[ \int g(\tau)w^* (\tau - mT)\delta(\tau - t - nT) d\tau \right] e^{-jm\omega T} \]

and evaluate the integral

\[ 1 = T \sum_m \sum_n g(t + nT)w^* (t + [n - m]T)e^{-jm\omega T}. \]

After a final rearranging of factors we find

\[ 1 = T \sum_m \sum_n g(t + nT)e^{-jm\omega T} \left[ \sum_n w^* (t + [n - m]T)e^{j(n - m)\omega T} \right] \]

in which expression we recognize [cf. (3.1)] the definitions for the Zak transforms \( \hat{g}(t, \omega; T) \) and \( \hat{w}(t, \omega; T) \) of the two functions \( g(t) \) and \( w(t) \), respectively; hence

\[ T \hat{g}(t, \omega; T)\hat{w}^*(t, \omega; T) = 1. \] (3.8)

The first bi-orthonormality condition (2.7) thus transforms into a product, enabling us to find the window function \( w(t) \) that corresponds to a given elementary signal \( g(t) \) in an easy way:

- from the elementary signal \( g(t) \) we derive its Zak transform \( \hat{g}(t, \omega; T) \) via definition (3.1);
- under the assumption that division by \( \hat{g}(t, \omega; T) \) is allowed, the function \( \hat{w}(t, \omega; T) \) can be found with the help of relation (3.8);
- finally, the window function \( w(t) \) follows from its Zak transform \( \hat{w}(t, \omega; T) \) by means of the inversion formula (3.3).

It is shown in Appendix A that the window function \( w(t) \) found in this way also satisfies the second bi-orthonormality condition (2.8).

Let us consider Gabor’s original choice of a Gaussian elementary signal again. The Zak transform \( \hat{g}(t, \omega; \alpha T) \) of the Gaussian signal (2.1) reads

\[ \hat{g}(t, \omega; \alpha T) = 2^\frac{1}{4}e^{-\pi(t/T)^2} \Theta_3 \left( \alpha\omega \left[ \frac{\omega}{\Omega} - \frac{1}{T} \right]; e^{-\pi\alpha^2} \right). \] (3.9)
where
\[
\theta_3 \left( z; e^{-\pi \alpha^2} \right) = \sum_m e^{-\pi \alpha^2 m^2} e^{j2\pi m z} \tag{3.10}
\]
is a theta function again, in this case with nome \(e^{-\pi \alpha^2}\). This Zak transform has been depicted in Figure 2 for several values of the parameter \(\tau = \alpha T\), where we have restricted ourselves to the fundamental Zak interval; note that for \(\alpha \leq \frac{1}{4}\), the Zak transform becomes almost independent of \(t\), as we have mentioned before. We remark that the Zak transform of a Gaussian signal has zeros for \(t = \frac{1}{a} \alpha T + maT, \omega = \frac{1}{a} \Omega/a + k\Omega/a\).

**Figure 2.** The Zak transform \(\hat{g}(t, \omega; \alpha T)\) in the case of a Gaussian elementary signal for different values of \(\alpha\): (a) \(\alpha = 2\), (b) \(\alpha = 1\), (c) \(\alpha = \frac{3}{4}\), and (d) \(\alpha = \frac{1}{4}\).

In the case of a Gaussian elementary signal and choosing \(\tau = T\) (Gabor’s original...
choice), the Zak transform of the window function takes the form

\[ T \hat{w}(t, \omega; T) = \frac{1}{g^*(t, \omega; T)} = 2^{-1/4} e^{\pi (t/T)^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{w}(t; \omega) e^{i\omega \Omega} d\omega, \]  

(3.11)

in which expression we have set, for convenience, \( \zeta = \omega/\Omega + jT. \) In the fundamental Zak interval the function \( 1/\theta_3(\pi \xi; e^{-\pi}) \) can be expressed as

\[ \frac{1}{\theta_3(\pi \xi; e^{-\pi})} = \left( \frac{K_{\omega}}{\pi} \right)^{-3/2} \left[ c_0 + 2 \sum_{m=1}^{\infty} (-1)^m e^{2\pi m(\xi)} \right], \]  

(3.12)

where the coefficients \( c_m \) are defined by

\[ c_m = \sum_{n=0}^{\infty} (-1)^n e^{-\pi(n + \frac{1}{2})(2m + n + \frac{1}{2})} \]  

(3.13)

(see, for instance, [30, p. 489, Example 14]); the constant \( K_{\omega} \) is the complete elliptic integral for the modulus \( \frac{1}{2} \sqrt{2}: K_{\omega} = 1.85407468 \) (see, for instance, [30, p. 524]). It is now easy to determine the window function \( w(t) \) via the inversion formula (3.3), yielding

\[ T w(t + mT) = 2^{-1/4} e^{\pi (t/T)^2} \left( \frac{K_{\omega}}{\pi} \right)^{-3/2} \sum_{p+\frac{1}{2} \leq |t/T|} (-1)^p e^{-\pi(p + \frac{1}{2})^2}, \]  

(3.14)

with \(-\frac{1}{2}T < t \leq \frac{1}{2}T\), and hence

\[ T w(t) = 2^{-1/4} e^{\pi (t/T)^2} \left( \frac{K_{\omega}}{\pi} \right)^{-3/2} \sum_{p+\frac{1}{2} \leq |t/T|} (-1)^p e^{-\pi(p + \frac{1}{2})^2}. \]  

(3.15)

The Gaussian elementary signal \( g(t) \) and its corresponding window function \( T w(t) \) have been depicted in Figure 3.

A practical way to represent this particular window function is in the form [19]

\[ T w(t) = 2^{-1/4} \left( \frac{K_{\omega}}{\pi} \right)^{-3/2} \left( -1 \right)^m e^{\pi (t/T)^2 - (m + \frac{1}{2})^2} \sum_{p=m}^{\infty} (-1)^{p-m} e^{-\pi[(p + \frac{1}{2})^2 - (m + \frac{1}{2})^2]}, \]  

(3.16)

where \( m \) is the nonnegative integer defined by \( (m - \frac{1}{2})T < |t| \leq (m + \frac{1}{2})T. \) Since the summation in the latter expression yields a result which is close to unity for any value of \( m \) \((0.998133 \text{ for } m = 0, 0.999997 \text{ for } m = 1, \ldots, 1 \text{ for } m = \infty), \) this representation leads to the approximation

\[ T w(t) \approx 2^{-1/4} \left( \frac{K_{\omega}}{\pi} \right)^{-3/2} \left( -1 \right)^m e^{\pi (t/T)^2 - (m + \frac{1}{2})^2}. \]  

(3.17)
with \( m \) defined by \((m - \frac{1}{2})T < |t| \leq (m + \frac{1}{2})T\).

We mention the property that in the case of a Gaussian elementary signal, whose Fourier transform has the same form as the elementary signal, the Fourier transform of the corresponding window function has the same form as the window function itself. Moreover, we note that for large positive \( r \), the extrema of the window function read

\[
T_w(\pm[r + \frac{1}{2}]T) \approx 2^{-\frac{1}{4}} \left( \frac{K_w}{\pi} \right)^{-3/2} (-1)^r,
\]

which implies that \(|w(t)|\) does not decrease with increasing value of \(|t|\). More properties of this particular window function can be found elsewhere [17].

Since the Zak transform of the Gaussian elementary signal has (simple) zeros for \((t = \frac{1}{2}T + mT, \omega = \frac{1}{4} \Omega + k \Omega)\), we can again construct a (not identically zero) function

\[
\tilde{z}(t, \omega; T) = \sum_{m} \sum_{k} (-1)^m \delta(t - \frac{1}{2}T - mT)2\pi \delta(\omega - \frac{1}{4} \Omega - k \Omega)z
\]

for which the product \(T \tilde{g}(t, \omega; T)\tilde{z}^*(t, \omega; T)\) [cf. (3.8)] vanishes. Thus, with the help of the inversion formula (3.3), a function

\[
z(t) = zT \sum_{m} (-1)^m \delta(t - \frac{1}{2}T - mT)
\]

occurs, which is a homogeneous solution of the bi-orthonormality relation (2.7). We conclude that if the Zak transform \( \tilde{g}(t, \omega; T) \) of an elementary signal \( g(t) \) has zeros, the corresponding window function may not be unique: if \( w(t) \) is a window function, then \( w(t) + z(t) \) is a proper window function, too.
Zeros in $\hat{g}(t, \omega; T)$ may be even worse. When we apply Parseval’s energy theorem (3.4) to $w(t)$ and substitute from relation (3.8) we get

$$
\frac{1}{T} \int |w(t)|^2 dt = \frac{1}{2\pi} \int \int_{\Omega} |\hat{w}(t, \omega; T)|^2 dtd\omega = \frac{1}{2\pi} \int \int_{\Omega} \frac{1}{|T\hat{g}(t, \omega; T)|^2} dtd\omega.
$$

From this relationship we conclude that in the case of zeros in $\hat{g}(t, \omega; T)$, the corresponding window function $w(t)$ may not be quadratically integrable. This consequence of zeros in $\hat{g}(t, \omega; T)$ is even worse than the fact that the window function is not unique; it may cause very bad convergence properties in the determination of Gabor’s expansion coefficients.

§4 Gabor and Zak transforms for continuous-time signals

Now that we have shown that, at least in principle, a window function $w(t)$ can be found corresponding to a given elementary signal $g(t)$, we will focus again on the two relations (2.3) and (2.6). These two relations form a transform pair, as has been remarked before, and we will therefore associate more appropriate names for these relations. We define the Gabor transform by means of relation (2.6)

$$
a_{mk} = \int \varphi(t)w^*_{mk}(t)dt;
$$

the Gabor transform thus yields the array of Gabor coefficients $a_{mk}$ that corresponds to a signal $\varphi(t)$. The inverse Gabor transform will then be defined by relation (2.3)

$$
\varphi(t) = \sum_{m} \sum_{k} a_{mk}g_{mk}(t);
$$

the inverse Gabor transform reconstructs the signal $\varphi(t)$ from its array of Gabor coefficients $a_{mk}$.

In Section 3 we have seen that the Zak transform can be helpful in determining the window function $w(t)$ for a given elementary signal $g(t)$. In this section we will study the possibility of applying the Zak transform to the Gabor transform and its inverse.

Let us first apply a Fourier transformation [cf. (2.11)] to the array of Gabor coefficients $a_{mk}$,

$$
\tilde{a}(t, \omega; T) = \sum_{m} \sum_{k} a_{mk}e^{-j(m\omega T - k\Omega t)},
$$

and let us substitute from the Gabor transform (2.6):

$$
\tilde{a}(t, \omega; T) = \sum_{m} \sum_{k} \left[ \int \varphi(t)w^*(\tau - mT)e^{-jk\Omega \tau} d\tau \right] e^{-j(m\omega T - k\Omega t)}.
$$
Along the same lines as the ones that we followed in deriving (3.8), we can now proceed to express the latter relationship in the form

$$\tilde{a}(t, \omega; T) = T\tilde{\varphi}(t, \omega; T)\tilde{w}^*(t, \omega; T).$$  (4.1)

Hence, the Gabor transform (2.6) can be transformed into the product form (4.1).

A product form can also be found for the inverse Gabor transform. If we apply a Zak transformation [see (3.1)] to both sides of (2.3), we get

$$\tilde{\varphi}(t, \omega; T) = \sum_n \left[ \sum_m \sum_k a_{mk} g(t + nT - mT)e^{jk\Omega t} \right] e^{-jn\omega T}.$$  (4.2)

After rearranging factors

$$\tilde{\varphi}(t, \omega; T) = \sum_m \sum_k a_{mk} e^{-j(m\omega T - k\Omega t)} \left[ \sum_n g(t + [n - m]T)e^{-j(n - m)\omega T} \right]$$

we immediately get the product relation

$$\tilde{\varphi}(t, \omega; T) = \tilde{a}(t, \omega; T)\tilde{g}(t, \omega; T).$$  (4.2)

Now that we have found product forms for the Gabor transform and its inverse, we have also found a different way of determining Gabor’s expansion coefficients $a_{mk}$, without explicitly determining a window function $w(t)$:

- from the signal $\varphi(t)$ and the elementary signal $g(t)$ we derive their Zak transforms $\tilde{\varphi}(t, \omega; T)$ and $\tilde{g}(t, \omega; T)$, respectively, according to the definition (3.1);
- under the assumption that division by $\tilde{g}(t, \omega; T)$ is allowed, the function $\tilde{a}(t, \omega; T)$ can be found by means of the product relation (4.2);
- finally, the expansion coefficients $a_{mk}$ follow from the function $\tilde{a}(t, \omega; T)$ with the help of the inverse Fourier transformation (2.13).

Again, we conclude that Gabor’s expansion coefficients may be non-unique in the case that $\tilde{g}(t, \omega; T)$ has zeros. In that case homogeneous solutions $z_{mk}$ may occur for which the Fourier transform $\tilde{z}(t, \omega; T)$ satisfies the relation

$$\tilde{z}(t, \omega; T)\tilde{g}(t, \omega; T) = 0.$$  (4.3)

Relation (4.3), which is similar to the product relation (4.2) with $\tilde{\varphi}(t, \omega; T) = 0$, can be transformed into the relation

$$\sum_m \sum_k z_{mk} g_{mk}(t) = 0.$$  (4.4)
which is similar to relation (2.3) with $\varphi(t) = 0$. Relation (4.4) shows that certain arrays of nonzero coefficients in Gabor’s signal expansion may yield a zero result. We thus conclude that Gabor’s signal expansion may be non-unique: if the array of coefficients $a_{mk}$ yields the signal $\varphi(t)$, then the array $a_{mk} + z_{mk}$ yields the same signal.

§ 5 Gabor and Zak transforms for discrete-time signals

Until now we have only considered continuous-time signals. In this and the following section we will extend the concepts of the Gabor transform and the Zak transform to discrete-time signals [9].

Let us consider a discrete-time signal $\varphi[n]$; to distinguish the discrete-time case from the continuous-time case, we will use square brackets $[ ]$ to denote a discrete-time signal, whereas we used curved brackets $( )$ to denote a continuous-time signal. The Fourier transform of a discrete-time signal is defined by

$$X[n] = \sum_n \varphi[n] e^{-j\Omega n};$$

(5.1)

note that this Fourier transform is periodic in the frequency variable $\theta$ with period $2\pi$. The inverse Fourier transformation reads

$$\varphi[n] = \frac{1}{2\pi} \int_{2\pi} \hat{\varphi}(\theta) e^{j\theta n} d\theta,$$

(5.2)

where the integration extends over one period $2\pi$. As already expressed in the introductory Section 1, we will consistently use $n$, $m$ and $N$ as time variables, $\theta$, $k$ and $\Theta$ as frequency variables, and the relation $\Theta N = 2\pi$ holds throughout.

On the analogy of the Gabor transform (2.6) for continuous-time signals, we introduce the Gabor transform for discrete-time signals

$$a_{mk} = \sum_n \varphi[n] w^*_{mk}[n]$$

(5.3)

with the short-hand notation

$$w_{mk}[n] = w[n - mN] e^{jk\Theta n}$$

(5.4)

again [cf. (2.2)]; in the discrete-time case, the positive integer $N$ and the parameter $\Theta = 2\pi/N$ are the respective counterparts of $T$ and $\Omega = 2\pi/T$ in the continuous-time case. We remark that the Gabor transform for discrete-time signals is an array that is periodic in the frequency variable $k$ with period $N$; this periodicity in the Gabor transform, like the periodicity in the Fourier transform, results from the discrete nature of the signal. On the analogy of the corresponding relation (2.3) for continuous-time signals, the inverse Gabor transform for discrete-time signals takes the form

$$\varphi[n] = \sum_m \sum_{k < N_0} a_{mk} g_{mk}[n],$$

(5.5)
where the summation over \( k \) extends over one period \( N \) of the periodic array \( a_{mk} \).

On the analogy of the continuous-time case we need the Fourier transform of the array \( a_{mk} \), which will be defined by [cf. (2.11)]

\[
\tilde{a}(n; \theta; N) = \sum_{m} \sum_{k < N/2} a_{mk} e^{-j(m\theta N - k\theta n)} \quad \text{(with } \Theta N = 2\pi),
\]

(5.6)

where the summation over \( k \) extends again over one period \( N \). We remark that this Fourier transform is periodic in the (discrete) time index \( n \) with period \( N \) and periodic in the (continuous) frequency variable \( \theta \) with period \( \Theta \). The inverse Fourier transform reads [cf. (2.13)]

\[
a_{mk} = \frac{1}{2\pi} \sum_{n=-N/2}^{N/2} \tilde{a}(n; \theta; N)e^{j(m\theta N - k\theta n)} d\theta,
\]

(5.7)

where the summation over \( n \) extends over one period \( N \), and the integration over \( \theta \) extends over one period \( \Theta \).

Furthermore we need the Zak transform for discrete-time signals, which will be defined by [cf. (3.1)]

\[
\tilde{\varphi}(n, \theta; N) = \sum_m \varphi(n + mN)e^{-jm\theta N}.
\]

(5.8)

The Zak transform in the discrete-time case is periodic in the (continuous) frequency variable \( \theta \) with period \( \Theta \) and quasi-periodic in the (discrete) time index \( n \) with quasi-period \( N \) [cf. (3.2)]:

\[
\tilde{\varphi}(n + mN, \theta + k\Theta; N) = \tilde{\varphi}(n, \theta; N)e^{jm\theta N}.
\]

(5.9)

The inverse Zak transform now reads [cf. (3.3)]

\[
\varphi(n + mN) = \frac{1}{\Theta} \int_{\Theta} \tilde{\varphi}(n, \theta; N)e^{jm\theta N} d\theta,
\]

(5.10)

where the time index \( n \) can be restricted to an interval of length \( N \), with \( m \) taking on all integer values.

Using the discrete-time equivalents of the Gabor transform, the Fourier transform, and the Zak transform, it is not difficult to show that the Gabor transform (5.3) can be transformed into the product form [cf. (4.1)]

\[
\tilde{a}(n, \theta; N) = N\tilde{\varphi}(n, \theta; N)\tilde{\varphi}^*(n, \theta; N)
\]

(5.11)

and the inverse Gabor transform (5.5) into the product form [cf. (4.2)]

\[
\tilde{\varphi}(n, \theta; N) = \tilde{a}(n, \theta; N)\tilde{\varphi}(n, \theta; N).
\]

(5.12)

Let us now consider Gabor’s choice of a Gaussian elementary signal \( g(t) \) again [see (2.1)], and let us consider a discrete-time version \( g[n] \) of this elementary signal, symmetrically positioned with respect to the sampling grid on the \( t \)-axis with a sampling distance \( T/N \):

\[
g[n] = g\left(\frac{nT}{N}\right) = 2^k e^{-\pi(n/N)^2} \quad (N \text{ odd});
\]

(5.13)
\[ g[n] = g\left(n + \frac{1}{2} \right) = 2^j e^{-\pi (n + \frac{1}{2})^2 / N} \] (N even). 

The corresponding Zak transforms \( \hat{g}(n, \theta; N) \) follow from substituting from (5.13) and (5.14) into (5.8) and read [cf. (3.9)]

\[ \hat{g}(n, \theta; N) = 2^j e^{-\pi (n/N)^2} \theta_3(\pi \xi^*; e^{-\pi}) \quad \text{(with } \xi = \theta / \Theta + jn/N) \] (5.15)

\[ \hat{g}(n, \theta; N) = 2^j e^{-\pi [(n + 1/2)/N]^2} \theta_3(\pi \xi^*; e^{-\pi}) \quad \text{(with } \xi = \theta / \Theta + j[n + 1/2]/N) \] (5.16)

for odd and even \( N \), respectively. It is important to note that in the discrete-time case the zeros of the theta function do not occur on a raster point! Hence, the Zak transform \( \hat{g}(n, \theta; N) \) of a Gaussian elementary signal has no zeros.

Let us, for the sake of simplicity, take \( N \) odd, which implies that there is a sampling point at \( t = 0 \). The corresponding window function \( w[n] \) then reads [cf. (3.15)]

\[ N w[n] = 2^{-j} e^{\pi (n/N)^2} \left( \frac{K_o}{\pi} \right)^{-3/2} \sum_{p=\pm \lfloor n/N \rfloor}^{\infty} (-1)^p e^{-\pi (p + \frac{1}{2})^2}, \] (5.17)

or, in a different form [cf. (3.16)],

\[ N w[n] = 2^{-j} \left( \frac{K_o}{\pi} \right)^{-3/2} \left[ (-1)^m e^{\pi (n/N)^2} - (m + \frac{1}{2})^2 \right] \]

\[ \sum_{p=m}^{\infty} (-1)^{p-m} e^{-\pi [(p + \frac{1}{2})^2 - (m + \frac{1}{2})^2]}, \] (5.18)

which form can be approximated by [cf. (3.17)]

\[ N w[n] \approx 2^{-j} \left( \frac{K_o}{\pi} \right)^{-3/2} \left[ (-1)^m e^{\pi (n/N)^2} - (m + \frac{1}{2})^2 \right], \] (5.19)

with \( m \) defined by \( (m - \frac{1}{2})N < |n| \leq (m + \frac{1}{2})N \). We remark that for large positive \( r \), the extrema of the window function read

\[ N w[\pm (r + \frac{1}{2}) N - 1/2] \approx 2^{-j} \left( \frac{K_o}{\pi} \right)^{-3/2} \left[ (-1)^r e^{\pi [(r + \frac{1}{2})^2 - 1/2 /2N] - (r + \frac{1}{2})^2} \right] \]

\[ = 2^{-j} \left( \frac{K_o}{\pi} \right)^{-3/2} \left[ (-1)^r e^{\pi ((1 /2)N)^2} - (r + \frac{1}{2})/N] \right] \]

\[ \approx 2^{-j} \left( \frac{K_o}{\pi} \right)^{-3/2} \left[ (-1)^r e^{-\pi (r/N)} \right]. \] (5.20)

Unlike in the continuous-time case, where \( |w(t)| \) did not decrease with increasing value of \( |t| \) [see (3.18)], the function \( |w[n]| \) does eventually decrease exponentially with increasing value of \( |n| \). A similar result holds when \( N \) is chosen even.
§6 Discrete Gabor transform and discrete Zak transform

In this section we will introduce discrete versions of the Gabor and the Zak transform [2, 3, 21, 22, 24, 25, 26, 29] by sampling the continuous variable \( \theta \) that arises both in the Fourier transform (5.6) and in the Zak transform (5.8) of discrete-time signals. We start with the Fourier transform (5.6)

\[
\tilde{a}(n; \theta; N) = \sum_m \sum_{k \in \mathbb{Z}} a_{mk} e^{-j(m\theta N - k\Theta n)},
\]

which is periodic in the discrete time index \( n \) with period \( N \) and periodic in the continuous frequency variable \( \theta \) with period \( \Theta \). We define the array \( \tilde{a}[n; \theta; N] \) as samples of this Fourier transform \( \tilde{a}(n; \theta; N) \)

\[
\tilde{a}[n, l; N, M] = \tilde{a} \left( n, \frac{\Theta}{M} l; N \right) = \sum_m \sum_{k \in \mathbb{Z}} a_{mk} e^{-j[m(2\pi/M)l - k(2\pi/N)n]}, \quad (6.1)
\]

thus we have sampled the frequency axis such that in each period of length \( \Theta \) there appear \( M \) equally-spaced sampling points a distance \( \Theta/M \) apart. We then define the array \( A_{mk} \) as a kind of inverse Fourier transform [cf. (5.7)] of the array \( \tilde{a}[n; \theta; N, M] \) by

\[
A_{mk} = \frac{1}{MN} \sum_n \sum_{l=-M} a_{mk} e^{j[m(2\pi/M)l - k(2\pi/N)n]}, \quad (6.2)
\]

We remark that, whereas the array \( a_{mk} \) is periodic in the frequency variable \( k \) with period \( N \) but does not have a periodicity with respect to the time index \( m \), the array \( A_{mk} \) is periodic in both the frequency variable \( k \) and the time index \( m \) with periods \( N \) and \( M \), respectively. It can easily be shown that the relation between \( A_{mk} \) and \( a_{mk} \) reads

\[
A_{mk} = \sum_r a_{m+rM, k}, \quad (6.3)
\]

from which relation we conclude that \( A_{mk} \) is a summation of the array \( a_{mk} \) and all its replicas shifted along the \( m \)-direction over distances \( rM \) (\( r = -\infty, \ldots, +\infty \)). Of course, the array \( \tilde{a}[n, l; N, M] \) can directly be expressed in the array \( A_{mk} \) through the relationship [cf. (6.1)]

\[
\tilde{a}[n, l; N, M] = \sum_m \sum_{k \in \mathbb{Z}} A_{mk} e^{-j[m(2\pi/M)l - k(2\pi/N)n]}, \quad (6.4)
\]

The latter relationship (6.4) between the arrays \( \tilde{a}[n, l; N, M] \) and \( A_{mk} \) is known as the discrete Fourier transform, whereas the relation (6.2) is consequently called the inverse discrete Fourier transform. It is important to note that if \( a_{mk} \neq 0 \) in an \( m \)-interval of length \( M \) and vanishes outside that interval, the array \( a_{mk} \) is just one period of the periodic array \( A_{mk} \) and can thus be reconstructed from \( A_{mk} \) and, hence, from \( \tilde{a}[n, l; N, M] \).
We will now perform an analogous procedure for the Zak transform (5.8)

\[ \tilde{\varphi}(n, \theta; N) = \sum_m \varphi[n + mN]e^{-jm\theta N}, \]

which, like the Fourier transform (5.6), is periodic in the continuous frequency variable \( \theta \) with period \( \Theta \), as well. We define the array \( \tilde{\varphi}[n, l; N, M] \) as samples of this Zak transform \( \tilde{\varphi}(n, \theta; N) \)

\[ \tilde{\varphi}[n, l; N, M] = \tilde{\varphi}(n, \left(\frac{\theta}{M}\right); N) = \sum_m \varphi[n + mN]e^{-jm(2\pi/M)l}; \quad (6.5) \]

thus we have again sampled the frequency axis such that in each period of length \( \Theta \) there appear \( M \) equally-spaced sampling points a distance \( \Theta/M \) apart. We then define the function \( \Phi[n + mN] \) as a kind of inverse Zak transform [cf. (5.10)] of the array \( \tilde{\varphi}[n, l; N, M] \) by

\[ \Phi[n + mN] = \frac{1}{M} \sum_{l=0}^{M-1} \tilde{\varphi}[n, l; N, M]e^{jm(2\pi/M)l}. \quad (6.6) \]

It can easily be shown that the relationship

\[ \Phi[n] = \sum_r \varphi[n + rMN] \]

holds; thus, \( \Phi[n] \) is a summation of the signal \( \varphi[n] \) and all its replicas shifted over distances \( rMN \) \((r = -\infty, \ldots, +\infty)\). The sequence \( \Phi[n] \) is thus periodic in the time index \( n \) with period \( MN \). Of course, the array \( \tilde{\varphi}[n, l; N, M] \) can directly be expressed in the sequence \( \Phi[n] \) through the relationship [cf. (6.5)]

\[ \tilde{\varphi}[n, l; N, M] = \sum_{m=-\infty}^{\infty} \Phi[n + mN]e^{-jm(2\pi/M)l}. \quad (6.8) \]

On the analogy of the discrete Fourier transform (6.4), we shall call the latter relationship (6.8) between the array \( \tilde{\varphi}[n, l; N, M] \) and the sequence \( \Phi[n] \) the discrete Zak transform, whereas the relation (6.6) will consequently be called the inverse discrete Zak transform. It is important again to note that if \( \varphi[n] \neq 0 \) in an interval of length \( MN \) and vanishes outside that interval, the signal \( \varphi[n] \) is just one period of the periodic sequence \( \Phi[n] \) and can thus be reconstructed from \( \Phi[n] \) and, hence, from \( \tilde{\varphi}[n, l; N, M] \).

We are now prepared to sample the product form (5.11) of the Gabor transform for discrete-time signals, leading to

\[ a[n, l; N, M] = N\tilde{\varphi}[n, l; N, M]\tilde{\varphi}^*[n, l; N, M]. \quad (6.9) \]

Upon substituting the latter expression into the inverse discrete Fourier transform (6.2), we get

\[ A_{nk} = \frac{1}{MN} \sum_{n=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} N\tilde{\varphi}[n, l; N, M]\tilde{\varphi}^*[n, l; N, M]e^{jm(2\pi/M)l - k(2\pi/N)n}. \]
in which relation we substitute from the discrete Zak transform (6.8) for \( \Phi[n] \)

\[
A_{mk} = \frac{1}{M} \sum_{n=-N}^{N-1} \sum_{l=-M}^{M-1} \left[ \sum_{r=-M}^{M-1} \Phi[n + rN]e^{-j(r/2\pi)l} \right] \tilde{w}^*[n, l; N, M]e^{jm(2\pi/M)l} - k(2\pi/N)n. 
\]

We rearrange factors

\[
A_{mk} = \sum_{n=-N}^{N-1} \sum_{r=-M}^{M-1} \Phi[n + rN] \left[ \frac{1}{M} \sum_{l=-M}^{M-1} \tilde{w}[n, l; N, M]e^{j(r-m)(2\pi/M)l} \right]^* e^{-jk(2\pi/N)n} 
\]

and recognize [cf. (6.6)] the inverse discrete Zak transform of \( W[n] \)

\[
A_{mk} = \sum_{n=-N}^{N-1} \sum_{r=-M}^{M-1} \Phi[n + rN] W^*[n + rN - mN]e^{-jk(2\pi/N)n}. 
\]

If we introduce, on the analogy of (5.4), the short-hand notation

\[
W_{mk}[n] = W[n - mN]e^{jk(\theta)n} = W[n - mN]e^{jk(2\pi/N)n}, \quad (6.10)
\]

the coefficients \( A_{mk} \) take the form

\[
A_{mk} = \sum_{n=-N}^{N-1} \sum_{r=-M}^{M-1} \Phi[n + rN] W_{mk}^*[n + rN], 
\]

which finally leads to

\[
A_{mk} = \sum_{n=-M}^{M} \Phi[n] W_{mk}^*[n]. \quad (6.11)
\]

The latter relationship will be called the discrete Gabor transform. As we remarked before, the discrete Gabor transform \( A_{mk} \) shows — apart from the usual periodicity with period \( N \) in the \( k \)-direction, due to the discrete nature of the signal — a periodicity with period \( M \) in the \( m \)-direction.

The inverse of the discrete Gabor transform results from sampling the product form (5.12) of the inverse of the Gabor transform for discrete-time signals, leading to

\[
\tilde{\phi}[n, l; N, M] = \tilde{a}[n, l; N, M] \tilde{g}[n, l; N, M]. \quad (6.12)
\]

Upon substituting the latter expression into the inverse discrete Zak transform (6.6), we get

\[
\Phi[n] = \frac{1}{M} \sum_{l=-M}^{M} \tilde{a}[n, l; N, M] \tilde{g}[n, l; N, M]. 
\]
in which relation we substitute from the discrete Fourier transformation (6.4)

\[ \Phi[n] = \frac{1}{M} \sum_{l=-M}^{M} \left[ \sum_{m=-M}^{M} \sum_{k=-N}^{N} A_{mk} e^{-j[m(2\pi/M)l - k(2\pi/N)n]} \right] \]

\[ \hat{g}[n; l; N, M]. \]

We rearrange factors

\[ \Phi[n] = \sum_{m=-M}^{M} \sum_{k=-N}^{N} A_{mk} \left[ \frac{1}{M} \sum_{l=-M}^{M} \hat{g}[n; l; N, M] e^{-jm(2\pi/M)l} \right] e^{jk(2\pi/N)n} \]

and recognize [cf. (6.6)] the inverse discrete Zak transform of \( G[n] \)

\[ \Phi[n] = \sum_{m=-M}^{M} \sum_{k=-N}^{N} A_{mk} G[n - mN] e^{jk(2\pi/N)n}. \]

With the short-hand notation [cf. (6.10)]

\[ G_{mk}[n] = G[n - mN] e^{jk(2\pi/N)n}, \]

the inverse discrete Gabor transform thus reads

\[ \Phi[n] = \sum_{m=-M}^{M} \sum_{k=-N}^{N} A_{mk} G_{mk}[n]. \quad (6.13) \]

What is the importance of having a discrete Gabor transform (6.11), whereas we are in fact only interested in the coefficients of Gabor’s signal expansion and thus in the normal Gabor transform (5.3)? Assume that the signal \( \varphi[n] \neq 0 \) in an interval of length \( N_{\varphi} \) and vanishes outside that interval, and that the window function \( w[n] \neq 0 \) in an interval of length \( N_{w} \) and vanishes outside that interval; then the coefficients of the (normal) Gabor expansion (5.3)

\[ a_{mk} = \sum_{n} \varphi[n] w_{mn}^* [n] \]

can only be \( \neq 0 \) in an \( m \)-interval of length \( M \), say, where \( M \) is the smallest integer for which the relation \( MN \geq N_{\varphi} + N_{w} - 1 \) holds. Now take \( M \) such that \( MN \geq N_{\varphi} + N_{w} - 1 \) and construct the periodic signal sequence \( \Phi[n] = \sum r \varphi[n + rMN] \) and the periodic window sequence \( W[n] = \sum r w[n + rMN] \) according to (6.7). In that case the array \( a_{mk} \) of the (normal) Gabor transform (5.3) can be identified with one period of the array \( A_{mk} \) of the discrete Gabor transform (6.11)

\[ A_{mk} = \sum_{n=-MN}^{MN} \Phi[n] W_{mk}^* [n]. \]
The array $A_{mk}$ (and thus $a_{mk}$) can be computed via the discrete Zak transform and the inverse discrete Fourier transform, and in computing these transforms we can use a fast computer algorithm known as the fast Fourier transform (FFT). Calculating the discrete Gabor transform $A_{mk}$ in such a way could be called the fast discrete Gabor transform and is equivalent to the fast convolution well-known in digital signal processing. In detail we proceed as follows:

- from the signal $\varphi[n]$ and the window function $w[n]$ we determine — with the use of a fast computer algorithm — their discrete Zak transforms $\hat{\varphi}[n, I; N, M]$ and $\hat{w}[n, I; N, M]$, respectively, via (6.5);
- the discrete Fourier transform $\tilde{a}[n, I; N, M]$ follows from the product form (6.9) of the discrete Gabor transform;
- from the array $\tilde{a}[n, I; N, M]$ we determine — with the use of a fast computer algorithm again — the inverse discrete Fourier transform $A_{mk}$, according to (6.2);
- the array of Gabor expansion coefficients $a_{mk}$ then follows as one period of the periodic array $A_{mk}$.

In general the signal $\varphi[n]$ does not vanish outside a certain interval or, if it does, the interval can be too large. In that case we can apply overlap-add techniques by splitting the signal $\varphi[n]$ in parts and treating all parts separately. In detail we proceed as follows. We represent the signal $\varphi[n]$ as a sequence of partial signals $\varphi^{(r)}[n]$, where each partial signal vanishes outside an interval $N_p$; hence,

$$\varphi[n] = \sum_r \varphi^{(r)}[n]$$  \hspace{1cm} (6.14)

with

$$\varphi^{(r)}[n] = \begin{cases} \varphi[n] & \text{for } rN_p \leq n \leq (r + 1)N_p - 1 \\ 0 & \text{elsewhere}. \end{cases}$$  \hspace{1cm} (6.15)

Upon substituting the expansion (6.14) into the Gabor transform (5.3) we get

$$a_{mk} = \sum_n \left[ \sum_r \varphi^{(r)}[n] \right] w_{mk}^*[n] = \sum_r \left[ \sum_n \varphi^{(r)}[n] w_{mk}^*[n] \right] = \sum_r a^{(r)}_{mk},$$  \hspace{1cm} (6.16)

where each partial Gabor transform

$$a^{(r)}_{mk} = \sum_n \varphi^{(r)}[n] w_{mk}^*[n]$$

can be evaluated along the lines described in the previous paragraph. The last summation in (6.16) must take into account, of course, the overlap between the partial Gabor transforms.
§7 Gabor’s expansion in the case of integer oversampling

In his original paper, Gabor restricted himself to a critical sampling of the time-frequency domain, where the expansion coefficients can be interpreted as independent data, i.e. degrees of freedom of a signal. It is the aim of this section to extend — for continuous-time signals — Gabor’s concepts to the case of oversampling, in which case the expansion coefficients are no longer independent.

Let us consider an elementary signal $g(t)$ again, but let us now construct a discrete set of shifted and modulated versions defined as [cf. (2.2)]

$$g(t) = \sum_{m} \sum_{k} a_{mk} g(t - maT)e^{jk\Omega t}, \quad (7.1)$$

where the time shift $\alpha T$ and the frequency shift $\beta \Omega$ satisfy the relationships $\Omega T = 2\pi$ and $\alpha \beta \leq 1$, and where $m$ and $k$ may take all integer values. Gabor’s signal expression would then read [cf. (2.3)]

$$\Psi(t) = \sum_{m} \sum_{k} a_{mk} g(t - maT)e^{jk\Omega t}. \quad (7.2)$$

Gabor’s original signal expansion was restricted to the special case $\alpha \beta = 1$ (and more particular $\alpha = \beta = 1$), in which case the expansion coefficients $a_{mk}$ can be identified as degrees of freedom of the signal. For $\alpha \beta > 1$, the set of shifted and modulated versions of the elementary signal is not complete and thus cannot represent any arbitrary signal, while for $\alpha \beta < 1$, the set is overcomplete which implies that Gabor’s expansion coefficients become dependent and can no longer be identified as degrees of freedom. In the special case $\alpha \beta = 1$, it has been shown in Section 3 how a window function $w(t)$ can be found such that the expansion coefficients can be determined via the so-called Gabor transform, which would now take the form [cf. (2.6)]

$$a_{mk} = \int \Psi(t) w^*(t - maT)e^{-jk\Omega t} dt. \quad (7.3)$$

It is the aim of this section to show how a window function can be found when the parameters $\alpha$ and $\beta$ satisfy the relation $\alpha \beta = 1/p < 1$ in the special case that $p$ is a positive integer.

That a window function can be found in the case of oversampling (i.e. $\alpha \beta < 1$) is not surprising. To see this let us consider the continuous analogues of Gabor’s signal expansion and the Gabor transform. The Gabor transform (7.3) can be considered as a sampled version of the sliding-window spectrum $s(t, \omega)$ [7, 10] of the signal $\Psi(t)$, defined as

$$s(t, \omega) = \int \Psi(\tau) w^*(\tau - t)e^{-j\omega \tau} d\tau, \quad (7.4)$$

where the sampling appears on the time-frequency lattice $(t = maT, \omega = k\beta \Omega$). Gabor’s expansion coefficients follow from the sliding-window spectrum through the relation $a_{mk} = s(maT, k\beta \Omega)$. It is well known that the signal $\Psi(t)$ can be reconstructed
from its sliding-window spectrum $s(t, \omega)$ in many different ways, one of them reading

$$
\varphi(\tau) \int |w(t)|^2 dt = \frac{1}{2\pi} \int \int s(t, \omega) w(\tau - t) e^{i\omega \tau} d\omega dt.
$$

(7.5)

It is not difficult to see that the latter signal representation is a continuous analogue of Gabor’s signal expansion (7.2), and that it can be derived from this expansion by letting the time step $\alpha T$ and the frequency step $\beta \Omega$ tend to zero. In fact, the signal representation (7.5) is identical to Gabor’s signal expansion (7.2) with an infinitely dense sampling lattice. We conclude that in that limiting case, the window function $w(t)$ may be chosen proportional to the elementary signal $g(t)$. Later on in this section we will derive a detailed transition from Gabor’s signal expansion to its continuous analogue, by letting $\alpha \beta \downarrow 0$.

Using the Fourier transform [cf. (2.11)] and the Zak transform [cf. (3.1)], it can be shown (see Appendix B) that the Gabor transform (7.3) can be transformed into the product form

$$
\tilde{a}(t, \omega; T) = \alpha p T \tilde{\varphi} \left( \alpha t, \frac{\omega}{\alpha}; \alpha p T \right) \tilde{w} \left( \alpha t, \frac{\omega}{\alpha}; \alpha T \right).
$$

(7.6)

If we consider the domains of the functions $\tilde{a}(t, \omega; T)$, $\tilde{\varphi}(\alpha t, \omega/\alpha; \alpha p T)$, and $\tilde{w}(\alpha t, \omega/\alpha; \alpha T)$ in the fundamental Fourier interval $\left(-\frac{1}{2} T < t \leq \frac{1}{2} T, -\frac{1}{4} \Omega < \omega \leq \frac{1}{4} \Omega\right)$, we note that, whereas the Fourier transform $\tilde{a}(t, \omega; T)$ appears only once in the fundamental Fourier interval, the Zak transforms $\tilde{\varphi}(\alpha t, \omega/\alpha; \alpha p T)$ and $\tilde{w}(\alpha t, \omega/\alpha; \alpha T)$ appear $p$-fold: $\tilde{\varphi}(\alpha t, \omega/\alpha; \alpha p T)$ as $p$ identical stripes with height $\Omega/p$ and width $T$, and $\tilde{w}(\alpha t, \omega/\alpha; \alpha T)$ as $p$ stripes with width $T/p$ and height $\Omega$, which stripes are identical to each other apart from the factor $e^{i\omega T}$ [cf. the periodicity property (3.2) of the Zak transform].

Note that the product form (7.6) of the Gabor transform enables us to determine Gabor’s expansion coefficients in an easy way:

- we first determine the Zak transform $\tilde{\varphi}(\alpha t, \omega/\alpha; \alpha p T)$ of the signal $\varphi(t)$ and the Zak transform $\tilde{w}(\alpha t, \omega/\alpha; \alpha T)$ of the window function $w(t)$ by means of definition (3.1);
- we then find the Fourier transform $\tilde{a}(t, \omega; T)$ by means of the product rule (7.6);
- we finally determine Gabor’s expansion coefficients $a_{mk}$ via the inverse Fourier transformation [cf. (2.13)].

Using the Fourier transform and the Zak transform, it can also be shown (see Appendix C) that Gabor’s signal expansion (7.2) can be transformed into the sum-of-products form

$$
\tilde{\varphi} \left( \alpha t, \frac{\omega}{\alpha}; \alpha p T \right) = \frac{1}{p} \sum_{r = < p>} \tilde{a} \left( t, \omega + \frac{\Omega}{p}; T \right) \tilde{\tilde{g}} \left( \alpha t, \frac{\omega + r \Omega/p}{\alpha}; \alpha T \right).
$$

(7.7)
where the expression \( r = \langle p \rangle \) is used throughout as a short-hand notation for an interval of \( p \) successive integers \((r = 0, 1, 2, \ldots, p - 1, \text{ for instance; due to the periodicity of the Fourier transform and the Zak transform, however, any sequence of } p \text{ successive integers can be chosen}). If we consider the domains of the three functions \( \tilde{\psi}(apt, \omega/\alpha; \alpha T) \), \( \tilde{\alpha}(t, \omega; T) \), and \( \tilde{g}(apt, \omega/\alpha; \alpha T) \) in the fundamental Fourier interval \((-\frac{1}{2}T < t \leq \frac{1}{2}T, -\frac{1}{2}\Omega < \omega \leq \frac{1}{2}\Omega)\), we note as before that, whereas the Fourier transform \( \tilde{\alpha}(t, \omega; T) \) appears only once in the fundamental Fourier interval, the Zak transforms \( \tilde{\psi}(apt, \omega/\alpha; \alpha T) \) and \( \tilde{g}(apt, \omega/\alpha; \alpha T) \) appear \( p \)-fold: 

\[
\tilde{\psi}(apt, \omega/\alpha; \alpha T) = \sum_{r=\langle p \rangle}^{\langle p \rangle} \tilde{\psi}(apt, \omega+r\Omega/p; \alpha T) \tilde{\psi}^{*}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T)
\]

After rearranging things

\[
\tilde{\psi}(apt, \omega/\alpha; \alpha T) = \alpha T \sum_{r=\langle p \rangle}^{\langle p \rangle} \tilde{\psi}(apt, \omega+r\Omega/p; \alpha T) \tilde{\psi}^{*}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T)
\]

and using the periodicity property \((3.2)\) of \( \tilde{\psi}(apt, \omega/\alpha; \alpha T) \), we get

\[
\tilde{\psi}(apt, \omega/\alpha; \alpha T) = \tilde{\psi}(apt, \omega/\alpha; \alpha T) \sum_{r=\langle p \rangle}^{\langle p \rangle} \tilde{\psi}^{*}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T) \tilde{g}(apt, \omega+r\Omega/p; \alpha T)
\]
From the latter equality — which should hold for any signal \( \varphi(t) \) — we conclude that Gabor's signal expansion (7.2) and the Gabor transform (7.3) form a transform pair if the elementary signal \( g(t) \) and the window function \( w(t) \) satisfy the condition

\[
\sum_{r=0}^{p-1} \tilde{w}^*(\alpha t, \Omega / p; \alpha T) \tilde{g}(\alpha t, \Omega / p; \alpha T) = 1. \quad (7.8)
\]

Note that since the Zak transform \( \hat{\varphi}(\alpha t, \Omega / p; \alpha T) \) is periodic in \( \omega \) with period \( \Omega / p \) and quasi-periodic in \( t \) with quasi-periodic \( T \), we can restrict ourselves again to the interval \( -\frac{1}{2}T < t < \frac{1}{2}T, -\frac{1}{2} \Omega / p < \omega < \frac{1}{2} \Omega / p \).

In Gabor's original case, i.e. for \( p = 1 \) (and \( \alpha = 1 \)), the Gabor transform and Gabor's signal expansion form a transform pair, if the window function \( w(t) \) and the elementary signal \( g(t) \) satisfy the relation \( T \tilde{w}(t, \omega; T) \tilde{g}(t, \omega; T) = 1 \) [see (3.8)]. This relation enables us to determine a window function for a given elementary signal. However, finding the corresponding window function in this way can be difficult if the Zak transform of the elementary signal has zeros, which is very often the case [17] if the elementary signal is continuous and square integrable. Moreover, from Parseval's energy theorem, we already concluded [see (3.21)] that the window function \( w(t) \) may not be quadratically integrable when the Zak transform of the elementary signal \( \tilde{g}(t, \omega; T) \) has zeros. The difficulties that we encounter for critical sampling (\( p = 1 \), Gabor's original case) have in fact led to this study of oversampling (\( p > 1 \)).

For \( p > 1 \), the window function that corresponds to a given elementary signal is not unique. This is in accordance with the fact that in the case of oversampling, the set of shifted and modulated versions of the elementary signal is overcomplete, and that Gabor's expansion coefficients are dependent and can no longer be considered as degrees of freedom, as we have mentioned before. One way to find a window function in the case of oversampling by an integer factor \( p \) is the following.

With the short-hand notations

\[
w_r(t, \omega) = \tilde{w}(\alpha t, \Omega / p; \alpha T) \quad (7.9)
\]

and

\[
g_r(t, \omega) = \tilde{g}(\alpha t, \Omega / p; \alpha T), \quad (7.10)
\]

and choosing, for convenience, \( r = 0, 1, \ldots, p-1 \), we can construct the \( p \)-dimensional row vectors of functions

\[
w = [w_0(t, \omega) \quad w_1(t, \omega) \quad \ldots \quad w_{p-1}(t, \omega)] \quad (7.11)
\]

and

\[
g = [g_0(t, \omega) \quad g_1(t, \omega) \quad \ldots \quad g_{p-1}(t, \omega)]. \quad (7.12)
\]

With the help of these row vectors, (7.8) can be expressed in the elegant inner product form

\[
\alpha T \mathbf{w}^\ast = 1, \quad (7.13)
\]
where, as usual, the asterisk in connection with a vector denotes complex conjugation and transposition.

In the case of oversampling, the conditions (7.8) and (7.13) do not lead to a unique solution for the window function \( w(t) \), which allows us to impose additional constraints on the solution. Let us, for instance, impose the condition of minimum \( L_2 \) norm. It is well known that the optimum solution in the sense of minimum \( L_2 \) norm can be found with the help of the so-called generalized (Moore-Penrose) inverse \([11]\) \( g^\dagger \) of \( g \), defined by

\[
g^\dagger = g^*(gg^*)^{-1};
\]

(7.14)

note that \( gg^T = 1 \) and that \( g^Tgg^* = g^* \). The optimum solution \( w_{opt} \) then reads

\[
w_{opt} = \frac{1}{\alpha T}(g^\dagger)^* = \frac{1}{\alpha T}(gg^*)^{-1}g.
\]

(7.15)

Of course, if we proceed in this way, we will find, for any \( r \) and \( \omega \), the minimum \( L_2 \) norm solution for the vector \( w \). It is not difficult to show, however, that minimum \( L_2 \) norm of the vector \( w \) corresponds to minimum \( L_2 \) norm of the Zak transform \( \hat{w}(apT, \omega/\alpha; \alpha T) \) and thus, with the help of Parseval’s energy theorem (3.4), to minimum \( L_2 \) norm of the window function \( w(t) \) itself. In Figure 4 we have depicted the Zak transforms of the optimum window functions that correspond to the Gaussian elementary signal (2.1) for different values of \( \alpha \) and \( \beta \), resulting in different values of oversampling \( p \), while in Figure 5 we have depicted these optimum window functions themselves. We remark that the resemblance between the window function and the elementary signal increases with increasing value of \( p \).

Let us finally consider the \( L_2 \) norm \( gg^* \) in the limiting case that \( \alpha T \downarrow 0 \) and \( p \to \infty \):

\[
 gg^* = \sum_{r=0}^{p-1} |g_r(t, \omega)|^2 = \sum_{r=0}^{p-1} \left| \hat{g}\left(apt, \frac{\omega + r\Omega/p}{\alpha}; \alpha T \right) \right|^2.
\]

Since \( |\hat{g}(t, \omega; \alpha T)| \) is almost independent of \( t \) for small values of \( \alpha T \) [cf. (3.6)], we might as well write

\[
 gg^* \simeq \sum_{r=0}^{p-1} \left| \hat{g}\left( t, \frac{\omega + r\Omega/p}{\alpha}; \alpha T \right) \right|^2,
\]

and for large values of \( p \) — and remembering that \( \omega \) is restricted to a (small) interval of length \( \Omega/p \) — this might as well be written as

\[
 gg^* \simeq \sum_{r=0}^{p-1} \left| \hat{g}\left( t, \frac{r\Omega/p}{\alpha T} \right) \right|^2.
\]

In the limit of \( \alpha T \downarrow 0 \) and \( p \to \infty \), we might as well write the latter expression in the form

\[
 gg^* \simeq \frac{p}{2\pi} \int_{\alpha T} \int_{\Omega/\alpha} |\hat{g}(t, \omega; \alpha T)|^2 dt d\omega,
\]
Figure 4. The Zak transform \( \hat{\omega}(t, \omega; \alpha T) \) in the case of a Gaussian elementary signal for different values of oversampling: (a) \( \alpha = \beta = 1/\sqrt{2}, \ p = 2 \), (b) \( \alpha = 1, \ \beta = 1/3, \ p = 3 \), (c) \( \alpha = 1/3, \ \beta = 1, \ p = 3 \), (d) \( \alpha = \beta = 1/\sqrt{3}, \ p = 3 \), (e) \( \alpha = 1/3, \ \beta = 3/4, \ p = 4 \), and (f) \( \alpha = \beta = 1/2, \ p = 4 \).
Figure 5. A Gaussian elementary signal $g(t)$ (dashed line) and its corresponding window function $\alpha Tw(t)$ (solid line) for different values of oversampling: (a) $\alpha = \beta = 1/\sqrt{2}$, $p = 2$, (b) $\alpha = 1$, $\beta = 1/3$, $p = 3$, (c) $\alpha = 1/3$, $\beta = 1$, $p = 3$, (d) $\alpha = \beta = 1/\sqrt{3}$, $p = 3$, (e) $\alpha = 1/3$, $\beta = 3/4$, $p = 4$, and (f) $\alpha = \beta = 1/2$, $p = 4$. 
which, with the help of Parseval’s energy theorem (3.4), can be expressed in the form
\[ \mathbf{g g}^* \simeq \frac{p}{\alpha T} \int |g(t)|^2 dt. \]

Since \( g = \alpha T(\mathbf{g g}^*)w_{opt} \), we finally conclude that
\[ g(t) \simeq \left[ p \int |g(t)|^2 dt \right] w_{opt}(t), \]
or
\[ g(t) \simeq \frac{w_{opt}(t)}{p \int |w_{opt}(t)|^2 dt}. \quad (7.16) \]

We can link this result to the continuous analogue (7.5) of Gabor’s signal expansion. Approximating the double integration in this continuous analogue by a double summation we get
\[ \varphi(t) \simeq \frac{\alpha \beta}{f |w(t)|^2 dt} \sum_m \sum_k s(m\alpha T, k\beta \Omega) w(\tau - m\alpha T)e^{jk\beta \Omega \tau}, \]
which expression has indeed the form of a Gabor expansion [cf. (7.2)] with expansion coefficients \( a_{mk} = s(m\alpha T, k\beta \Omega) \) and with an elementary signal \( g(t) \) that is proportional to the window function [cf. (7.16)].

**§8 Coherent-optical generation of the Gabor coefficients**

In this section we describe a coherent-optical set-up with which Gabor’s expansion coefficients of a rastered, one-dimensional signal can be generated.

We already noted that (7.6) allows an easy determination of the array of Gabor coefficients \( a_{nk} \) via the Zak transform. Since we are in fact only dealing with Fourier transformations, (7.6) enables a coherent-optical implementation. Let us therefore consider the optical arrangement depicted in Figure 6, and let us identify the two variables \( t \) and \( \omega \) in the Zak transforms and the Fourier transform, as the \( x \) and \( y \) coordinates. Moreover, let us, for the sake of convenience, take \( \alpha = 1/p \), with which (7.6) reduces to
\[ \tilde{a}(t, \omega; T) = T\tilde{\varphi}(t, p\omega; T)\tilde{w}^* \left( t, p\omega, \frac{T}{p} \right). \quad (8.1) \]

A plane wave of monochromatic laser light is normally incident upon a transparency situated in the input plane. The transparency contains the signal \( \varphi(x) \) in a rastered format. With \( X \) being the width of this raster and \( p\mu X \) (with \( \mu > 0 \)) being the spacing between the raster lines, the light amplitude \( \varphi_i(x_i, y_i) \) just behind the transparency reads
\[ \varphi_i(x_i, y_i) = \text{rect} \left( \frac{x_i}{X} \right) \sum_n \varphi(x_i + nX)\delta(y_i - n\mu X). \quad (8.2) \]
Figure 6. Coherent-optical arrangement to generate Gabor’s expansion coefficients of a rastered, one-dimensional signal.
An astigmatic optical system between the input plane and the middle plane performs a Fourier transformation in the $y$-direction and an ideal imaging (with inversion) in the $x$-direction. Such an astigmatic system can be realized as shown, for instance, using a combination of a spherical and a cylindrical lens. The astigmatic operation results in the light amplitude

$$\varphi_1(x, y) = \int \int \varphi_0(x_i, y_i)e^{-j\gamma_1 y_i\delta(x - x_i)}dx_idy_i$$

just in front of the middle plane; the parameter $\gamma_1$ contains the effect of the wavelength $\lambda$ of the laser light and the focal length $f_i$ of the spherical lens:

$$\gamma_1 = 2\pi/\lambda f_i.$$ Note that in (8.3) we have introduced the Zak transform of $\varphi(x)$, defined by (3.1) with $t$ replaced by $x$, $\omega$ replaced by $p\mu\gamma_1 y$, and $\tau$ replaced by $X$.

A transparency with amplitude transmittance

$$m(x, y) = \text{rect}\left(\frac{x}{X}\right)\text{rect}\left(\frac{y}{Y}\right)X\hat{a}(x, p\mu\gamma_1 y; X/p),$$

where $\mu\gamma_1 Y = 2\pi/X$, is situated in the middle plane. Just behind this transparency, the light amplitude takes the form

$$\varphi_2(x, y) = m(x, y)\varphi_1(x, y) = \text{rect}\left(\frac{x}{X}\right)\text{rect}\left(\frac{y}{Y}\right)\hat{a}(x, p\mu\gamma_1 y; X),$$

where use has been made of (8.1), with $t$ replaced by $x$, $\omega$ replaced by $p\mu\gamma_1 y$, and $T$ replaced by $X$. Note that the aperture $\text{rect}(x/X)\text{rect}(y/Y)$ contains one period of the periodic Fourier transform $\hat{a}(x, p\mu\gamma_1 y; X)$, $p$ periods of the (periodic) Zak transform $\hat{a}(x, p\mu\gamma_1 y; X)$, and $p$ quasi-periods of the (quasi-periodic) Zak transform $\hat{a}(x, p\mu\gamma_1 y; X/p)$.

One of the reasons for oversampling is the additional freedom in choosing the window function $w(t)$. In particular, a window function can be chosen such that it is mathematically well-behaved; this is usually not the case for the original Gabor expansion with critical sampling ($p = 1$). Indeed, when the Zak transform $\hat{g}$ of the elementary signal $g(t)$ has zeros, the Zak transform $\hat{w} = 1/T\hat{g}^*$ [cf. (3.8)] of the corresponding window function $w(t)$ has poles, which reflects the bad behaviour of the window function. We remark that in the case of oversampling ($p > 1$) the Zak transform $\hat{w}(x, p\mu\gamma_1 y; X/p)$ can be constructed such that it has no poles, and, hence, that a practical transparency can indeed be fabricated!

Finally, a two-dimensional Fourier transformation is performed between the middle plane and the output plane. Such a Fourier transformation can be realized as shown, for instance, using a spherical lens. The light amplitude in the output plane then takes the form

$$\varphi_o(x_o, y_o) = \frac{1}{XY} \int \int \varphi_2(x, y)e^{-j\gamma_0 (xox - yoy)}dxdy$$
where the sinc-function \( \text{sinc}(z) = \sin(\pi z) / (\pi z) \) has been introduced; the parameter \( \gamma_o \), again, contains the effects of the wave length \( \lambda \) of the laser light and the focal length \( f_o \) of the spherical lens: \( \gamma_o = 2\pi / \lambda f_o \). We conclude that Gabor’s expansion coefficients appear on a rectangular lattice of points

\[
a_{mk} = \psi_o \left( \frac{\gamma_i}{\gamma_o} \mu Y, m \frac{\gamma_i}{\gamma_o} \mu X \right)
\]

in the output plane.

We remark that it is not an essential requirement that the input transparency consists of Dirac functions. When we replace the practically unrealizable Dirac functions \( \delta(y - np\mu X) \) by realizable functions \( d(y - np\mu X) \), say, then (8.2) reads

\[
\psi_i(x_i, y_i) = \text{rect} \left( \frac{X}{X} \right) \sum_n \psi(x_i + nX)d(y_i - np\mu X)
\]

and the light amplitude \( \varphi_1(x, y) \) just in front of the middle plane takes the form [cf. (8.3)]

\[
\varphi_1(x, y) = \text{rect} \left( \frac{X}{X} \right) \tilde{d}(\gamma_1 y).
\]

The additional factor \( \tilde{d}(\gamma_1 y) \) — the Fourier transform of \( d(y) \) — can easily be compensated for by means of a transparency in the middle plane.

The technique described in this section to generate Gabor’s expansion coefficients, fully utilizes the two-dimensional nature of the optical system, its parallel processing features, and the large space-bandwidth product possible in optical processing. The technique exhibits a resemblance to folded spectrum techniques, where space-bandwidth products in the order of 300 000 are reported [12]. In the case of speech processing, where speech recognition and speaker identification are important problems, such a space-bandwidth product would allow us to process speech fragments of about 1 minute.

\section{Conclusion}

In this paper we have presented Gabor’s expansion of a signal into a discrete set of properly shifted and modulated versions of an elementary signal. We have also described the inverse operation — the Gabor transform — with which Gabor’s expansion coefficients can be determined, and we have shown how the expansion coefficients can be determined, even in the case that the set of elementary signals is not orthonormal. The key solution was the construction of a window function such that the discrete set of shifted and modulated versions of the window function is bi-orthonormal to the corresponding set of elementary signals. Thus, we have shown a strong relationship between Gabor’s expansion of a signal on the one hand and sampling of the sliding-window spectrum of the signal on the other.
The Gabor lattice played a key role in the first part of this paper. It is the regular lattice \((t = mT, \omega = k\Omega)\) with \(\Omega T = 2\pi\) in the time-frequency domain, in which each cell occupies an area of \(2\pi\). The density of the Gabor lattice is thus equal to the Nyquist density \(1/2\pi\), which, as is well known in information theory, is the minimum time-frequency density needed for full transmission of information. Gabor’s expansion coefficients can then be interpreted as degrees of freedom of the signal.

We have introduced the Zak transform and we have shown its intimate relation to the Gabor transform. Not only did we consider the Gabor transform and the Zak transform in the continuous-time case, but we have also considered the discrete-time case. Furthermore, we have introduced the discrete Gabor transform and the discrete Zak transform, by sampling the continuous frequency variable that still occurred in the discrete-time case. The discrete transforms enable us to determine Gabor’s expansion coefficients via a fast computer algorithm, analogous to the fast Fourier transform algorithm well known in digital signal processing.

Using the Zak transform, we have seen that—at least for critically sampling the time-frequency domain on the lattice \((t = mT, \omega = k\Omega)\)—the Gabor transform, as well as Gabor’s signal expansion itself, can be transformed into a product form. Determination of the expansion coefficients via the product forms may be difficult, however, because of the occurrence of zeros in the Zak transform. One way of avoiding the problems that arise from these zeros is to sample the time-frequency domain on a denser lattice \((t = maT, \omega = k\beta\Omega)\), with the product \(a\beta\) smaller than 1. In this paper we have considered the special case \(a\beta = 1/p\), where \(p\) is a positive integer. We have shown that in this case of oversampling by an integer factor, the Gabor transform can again be transformed into a product form; furthermore, Gabor’s signal expansion itself can likewise be transformed into a sum-of-products form. Using these product forms, it was possible to show that the Gabor transform and Gabor’s signal expansion form a transform pair. The properties of denser lattices have already been studied in many other papers [2, 3, 13, 21, 22, 24, 25, 26, 29, 34].

The process of oversampling introduces dependence between the Gabor coefficients; whereas these coefficients can be considered as degrees of freedom in the case of critical sampling, they can no longer be given such an interpretation in the case of oversampling. In controlling the dependence between the Gabor coefficients, we were able to avoid the problems that arise from the occurrence of zeros in the Zak transform. In particular it was shown how the window function that appears in the Gabor transform, can be constructed from the elementary signal that is used in Gabor’s signal expansion. The additional freedom caused by oversampling, allowed us to construct the window function in such a way that it is mathematically well-behaved; in particular, we showed a way to find an (optimum) window function that has minimum \(L_2\) norm. Moreover, it was shown that for large oversampling the optimum window function becomes proportional to the elementary signal; this result is in accordance with the continuous analogue of Gabor’s signal expansion.

Finally, a coherent-optical arrangement was described which is able to generate Gabor’s expansion coefficients of a rastered, one-dimensional signal via the Zak transform. The technique described there— which resembles folded spectrum techniques
M.J. Bastiaans

— fully utilizes the two-dimensional nature of the optical system, its parallel processing features, and the large space-bandwidth product possible in optical processing. Due to the possibility of avoiding the problems that arise from the occurrence of zeros in the Zak transform, the required optical transparency can indeed be fabricated.

We conclude this paper by drawing attention to some related topics: the wavelet transform of a signal and the way of representing a signal as a discrete set of wavelets. There is some resemblance between these topics and the ones that were presented in this paper. But, whereas the Gabor transform and the sliding-window spectrum lead to a time-frequency representation of the signal, the wavelet transform leads to a time-scale representation. And whereas the Gabor lattice is linear both in the time and the frequency variable, the lattice that is used in the wavelet representation is nonlinear. An excellent review on the wavelet transform can be found in [13].

Appendix A. The second bi-orthonormality condition (2.8)

We will show that the first bi-orthonormality condition (2.7), which in product form reads [see (3.8)]

\[ T \tilde{w}^* (t, \omega; T) \tilde{g} (t, \omega; T) = 1, \]

implies the second bi-orthonormality condition (2.8)

\[ \sum_m \sum_k w^*_m (t_1) g_m (t_2) = \delta(t_2 - t_1). \]

We start with the left-hand side of the second bi-orthonormality condition (2.8)

\[ \sum_m \sum_k w^*_m (t_1) g_m (t_2) = \sum_m \sum_k w^*(t_1 - mT) e^{-jk\Omega t_1} g(t_2 - mT) e^{jk\Omega t_2}. \]

After expressing the window function \( w(t_1 - mT) \) by means of its Zak transform \( \tilde{w}(t_1, \omega; T) \) [cf. (3.3)], the latter expression takes the form

\[ \sum_m \sum_k \left[ \frac{1}{\Omega} \int_\Omega \tilde{w}(t_1, \omega; T) e^{-jmoT} d\omega \right]^* e^{-jk\Omega t_1} g(t_2 - mT) e^{jk\Omega t_2}. \]

We rearrange factors

\[ \sum_k e^{jk\Omega(t_2 - t_1)} \frac{1}{\Omega} \int_\Omega \tilde{w}^*(t_1, \omega; T) \left[ \sum_m g(t_2 - mT) e^{jmoT} \right] d\omega \]

and recognize [cf. (3.1)] the Zak transform \( \tilde{g}(t_2, \omega; T) \) of the function \( g(t_2) \)

\[ \sum_k e^{jk\Omega(t_2 - t_1)} \frac{1}{\Omega} \int_\Omega \tilde{w}^*(t_1, \omega; T) \tilde{g}(t_2, \omega; T) d\omega. \]
Gabor’s Expansion and the Zak Transform

We replace the sum of exponentials by a sum of Dirac functions

$$T \sum_n \delta(t_2 - t_1 - nT) \frac{1}{\Omega} \int_{\Omega} \hat{w}^*(t_1, \omega; T) \hat{g}(t_2, \omega; T) d\omega$$

and replace the variable $t_2$ in the integral by $t_1 + nT$

$$T \sum_n \delta(t_2 - t_1 - nT) \frac{1}{\Omega} \int_{\Omega} \hat{w}^*(t_1, \omega; T) \hat{g}(t_1 + nT, \omega; T) d\omega.$$

We use the quasi-periodicity property [cf. (3.2)] of the Zak transform $\hat{g}(t_1, \omega; T)$

$$\sum_n \delta(t_2 - t_1 - nT) \frac{1}{\Omega} \int_{\Omega} T \hat{w}^*(t_1, \omega; T) \hat{g}(t_1, \omega; T) e^{in\omega T} d\omega.$$

and substitute from the product form (3.8) of the first bi-orthonormality condition

$$\sum_n \delta(t_2 - t_1 - nT) \frac{1}{\Omega} \int_{\Omega} e^{in\omega T} d\omega.$$

We evaluate the integral

$$\sum_n \delta(t_2 - t_1 - nT) \delta_n$$

and conclude that the expression reduces to the required Dirac function

$$\delta(t_2 - t_1).$$

**Appendix B. Derivation of the product form (7.6)**

In the Fourier transform [cf. (2.11)] of the array $a_{mk}$, we substitute from the Gabor transform (7.3)

$$\hat{a}(t, \omega; T) = \sum_m \sum_k \left[ \int \psi(\tau) w^*(\tau - maT) e^{-jk\beta \Omega \tau} d\tau \right] e^{-j(m\omega T - k\Omega t)}.$$

In the right-hand side of the latter equation we rearrange factors

$$\sum_m \left[ \int \psi(\tau) w^*(\tau - maT) \left\{ \sum_k e^{-jk\Omega (\beta \tau - t)} \right\} d\tau \right] e^{-j(m\omega T - k\Omega t)}$$

and replace the sum of exponentials by a sum of Dirac functions

$$\sum_m \left[ \int \psi(\tau) w^*(\tau - maT) \left\{ \frac{T}{\beta} \sum_k \delta \left( \tau - \frac{t + kT}{\beta} \right) \right\} d\tau \right] e^{-j(m\omega T - k\Omega t)}.$$
We rearrange factors again
\[ \frac{T}{\beta} \sum_m \left[ \sum_k \int \varphi(\tau) w^*(\tau - m\alpha T) h\left( \tau - \frac{t + kT}{\beta} \right) d\tau \right] e^{-j\omega_0 T} \]
and evaluate the integral
\[ \frac{T}{\beta} \sum_m \left[ \sum_k \varphi \left( \frac{t + kT}{\beta} \right) w^* \left( \frac{t + kT}{\beta} - m\alpha T \right) \right] e^{-j\omega_0 T}. \]
After a final rearrangement of factors we get
\[ \frac{T}{\beta} \sum_k \varphi \left( \frac{t}{\beta} + k\frac{T}{\beta} \right) e^{-jk(\omega_0/\alpha)(T/\beta)} \]
\[ \left[ \sum_m w^* \left( \frac{t}{\beta} - \frac{m - k\alpha T}{\alpha \beta} \right) e^{-j(m - k/\alpha \beta)(\omega_0/\alpha)\alpha T} \right] = 
\frac{T}{\beta} \sum_k \varphi \left( \frac{t}{\beta} + k\frac{T}{\beta} \right) e^{-jk(\omega_0/\alpha)(T/\beta)} \]
\[ \left[ \sum_m w \left( \frac{t}{\beta} - \frac{m - pk\alpha T}{\alpha \beta} \right) e^{j(m - pk)(\omega_0/\alpha)\alpha T} \right]^*. \]
In the last expression we recognize the definitions [cf. (3.1)] for the Zak transforms \( \hat{\varphi}(t/\beta, \omega_0/\alpha; T/\beta) \) and \( \hat{w}(t/\beta, \omega_0/\alpha; \alpha T) \) of the signal \( \varphi(t) \) and the window function \( w(t) \), respectively, which leads to the result
\[ \hat{a}(t, \omega; T) = \frac{T}{\beta} \hat{\varphi} \left( \frac{t}{\beta} \frac{\omega_0}{\alpha}; \frac{T}{\beta} \right) \hat{w}^* \left( \frac{t}{\beta} \frac{\omega_0}{\alpha}; \alpha T \right) \]
or, with \( \beta = 1/\alpha p \),
\[ \hat{a}(t, \omega; T) = \alpha p T \hat{\varphi} \left( \alpha p \frac{\omega_0}{\alpha}; \alpha p T \right) \hat{w}^* \left( \alpha p \frac{\omega_0}{\alpha}; \alpha T \right). \]

Appendix C. Derivation of the sum-of-products form (7.7)
In Gabor’s signal expansion (7.2) we substitute from the inverse Fourier transform [cf. (2.13)]
\[ \varphi(t) = \sum_m \sum_k \left[ \frac{1}{2\pi} \int_T \int_{\Omega} \hat{a}(t, \omega; T) e^{j(\omega_0 T - k\Omega)T} dt d\omega \right] g(\tau - m\alpha T) e^{jk\beta T} \]
In the right-hand side of the latter equation we rearrange factors
\[ \frac{1}{2\pi} \int_T \int_{\Omega} \hat{a}(t, \omega; T) \left[ \sum_m g(\tau - m\alpha T) e^{jm\omega T} \right] \left[ \sum_k e^{-jk\Omega(t - \beta\tau)} \right] dt d\omega. \]
We replace the sum of exponentials by a sum of Dirac functions and recognize the Zak transform of the elementary signal \( g(t) \) [cf. (3.1)]:

\[
\frac{1}{2\pi} \int \int \tilde{a}(t, \omega; T) \tilde{g} \left( \tau, \frac{\omega}{\alpha}; \alpha T \right) \left[ T \sum_k \delta(t - \beta \tau + kT) \right] d\omega.
\]

We rearrange factors again and substitute from the periodicity property [cf. (2.12)] of \( \tilde{a}(t, \omega; T) \)

\[
\frac{1}{T} \int \left[ \sum_k \int_T \tilde{a}(t + kT, \omega; T) \delta(t + kT - \beta \tau) dt \right] \tilde{g} \left( \tau, \frac{\omega}{\alpha}; \alpha T \right) d\omega,
\]

and we replace the summation over \( k \) together with the time integral over the finite interval \( T \) by an integral over the entire time axis

\[
\frac{1}{T} \int \left[ \int_T \tilde{a}(t, \omega; T) \delta(t - \beta \tau) dt \right] \tilde{g} \left( \tau, \frac{\omega}{\alpha}; \alpha T \right) d\omega.
\]

Evaluation of the resulting time integral yields the intermediate result

\[
\varphi(\tau) = \frac{1}{T} \int \tilde{a}(\beta \tau, \omega; T) \tilde{g} \left( \tau, \frac{\omega}{\alpha}; \alpha T \right) d\omega.
\]

We now write down the definition of the Zak transform [cf. (3.1)]

\[
\tilde{\varphi} \left( \frac{\omega}{\alpha}, \frac{T}{\beta} \right) = \sum_n \varphi \left( \frac{\omega}{\alpha}, \frac{T}{\beta} + n \right) e^{-jn(\omega, \alpha)(T/\beta)}.
\]

In the right-hand side of the latter equation we substitute from the intermediate result above

\[
\sum_n \frac{1}{T} \int \tilde{a}(\beta \left[ \frac{\omega}{\alpha}, \frac{T}{\beta} + n \right], \omega; T) \tilde{g} \left( \frac{\omega}{\alpha}, \frac{T}{\beta} + n \right) e^{-jn(\omega, \alpha)(T/\beta)}.
\]

We rearrange things

\[
\sum_n \frac{1}{T} \int \tilde{a}(t + nT, \omega; T) \tilde{g} \left( \frac{\omega}{\alpha}, \frac{T}{\beta} + n \right) e^{-jn(\omega, \alpha)(T/\beta)} e^{-jp\omega T}.
\]

and use the periodicity property [cf. (2.12)] of \( \tilde{a}(t, \omega; T) \) and the (quasi-)periodicity property [cf. (3.2)] of \( \tilde{g}(t/\beta, \omega/\alpha; \alpha T) \)

\[
\sum_n \frac{1}{T} \int \tilde{a}(t, \omega; T) \tilde{g} \left( \frac{\omega}{\alpha}, \alpha T \right) e^{jpn(\omega, \alpha)T} d\omega.
\]

We rearrange factors

\[
\frac{1}{T} \int \tilde{a}(t, \omega; T) \tilde{g} \left( \frac{\omega}{\alpha}, \alpha T \right) \left[ \sum_n e^{jpn(\omega, \alpha)T} \right] d\omega.
\]
and replace the sum of exponentials by a sum of Dirac functions
\[
\frac{1}{\Omega} \int_{\Omega} \tilde{a}(t, \omega; T) \tilde{g} \left( \frac{t}{\beta}, \frac{\omega - \omega_0 - n \frac{\Omega}{p}}{\alpha}; \alpha T \right) \left[ \frac{\Omega}{p} \sum_n \delta \left( \omega - \omega_0 - n \frac{\Omega}{p} \right) \right] d\omega.
\]
We rearrange factors again
\[
\frac{1}{p} \sum_n \int_{\Omega} \tilde{a}(t, \omega; T) \tilde{g} \left( \frac{t}{\beta}, \frac{\omega - \omega_0 - n \frac{\Omega}{p}}{\alpha}; \alpha T \right) \delta \left( \omega - \omega_0 - n \frac{\Omega}{p} \right) d\omega
\]
and replace the summation over \( n \) by a double summation over \( r \) and \( m \) through the substitution \( n = mp - r \), where \( r \) extends over an interval of length \( p \)
\[
\frac{1}{p} \sum_{r < p} \sum_{m} \int_{\Omega} \tilde{a}(t, \omega; T) \tilde{g} \left( \frac{t}{\beta}, \frac{\omega - \omega_0 + [mp - r] \frac{\Omega}{p}}{\alpha}; \alpha T \right) \delta \left( \omega - \omega_0 + [mp - r] \frac{\Omega}{p} \right) d\omega.
\]
We substitute from the periodicity properties of the Fourier transform and the Zak transform [cf. (2.12) and (3.2)]
\[
\frac{1}{p} \sum_{r < p}
\]
\[
\sum_{m} \int_{\Omega} \tilde{a}(t, \omega + m\Omega; T) \tilde{g} \left( \frac{t}{\beta}, \frac{\omega + m\Omega}{\alpha}; \alpha T \right) \delta \left( \omega + m\Omega - \omega_0 - r \frac{\Omega}{p} \right) d\omega
\]
and replace the summation over \( m \) together with the frequency integral over the finite interval \( \Omega \) by an integral over the entire frequency axis
\[
\frac{1}{p} \sum_{r < p} \int_{\Omega} \tilde{a}(t, \omega; T) \tilde{g} \left( \frac{t}{\beta}, \frac{\omega + [r\Omega/p]}{\alpha}; \alpha T \right) \delta \left( \omega - \omega_0 - r \frac{\Omega}{p} \right) d\omega.
\]
Evaluation of the integral and replacing \( \omega_0 \) by \( \omega \) results in
\[
\tilde{\varphi} \left( \frac{t}{\beta}, \frac{\omega}{\alpha} \right) = \frac{1}{p} \sum_{r < p} \tilde{a}(t, \omega + r \frac{\Omega}{p}; T) \tilde{g} \left( \frac{t}{\beta}, \frac{\omega + r\Omega/p}{\alpha}; \alpha T \right)
\]
or, with \( \beta = 1/\alpha p \)
\[
\tilde{\varphi} \left( apt, \frac{\omega}{\alpha} ; \alpha T \right) = \frac{1}{p} \sum_{r < p} \tilde{a}(t, \omega + r \frac{\Omega}{p}; T) \tilde{g} \left( ap t, \frac{\omega + r\Omega/p}{\alpha}; \alpha T \right).
\]
References


Martin J. Bastiaans
Technische Universiteit Eindhoven
Faculteit Elektrotechniek
Postbus 513
5600 MB Eindhoven, Netherlands
M.J.Bastiaans@ele.tue.nl