A note on sustainability and investment rules

Citation for published version (APA):

Document status and date:
Published: 01/01/1996

Publisher Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us:
openaccess@tue.nl
providing details. We will immediately remove access to the work pending the investigation of your claim.
Abstract

We show in a rather general framework that if the motion of an economy can be described by a set of autonomous (differential) equations and if the economy is aiming at sustainability, the value of the total stocks of capital should be constant over time. For the case where time enters the constraints explicitly we provide a modification of this rule.
1 Introduction

By now there exists an abundant literature on the subject of sustainability, which is commonly defined as constant per capita well-being over time\(^1\). We refer to Asheim (1986, 1994b and 1995), Dasgupta and Mäler (1993), Dixit et al. (1980), Hartwick (1977, 1978, 1994a, 1994b, 1995a, 1995b), Hartwick and Van Long (1995), Mäler (1991), Pezzey (1994), Sefton and Weale (1994), Solow (1974, 1986 and 1992), Vellinga and Withagen (1995), Weitzman (1976 and 1995). This literature aims at finding rules for sustainability. A common feature of such rules seems to be that the value of capital is constant over time (beginning with the well-known Hartwick rule). So far these results were obtained for special cases and particular models. We will show in this note that a considerable generalization is possible in a control-theoretic framework. The central idea can be sketched as follows.

The state in which an economy finds itself at a particular instant of time can be characterized by its stocks. Examples are the stocks of natural exhaustible resources, renewable natural resources, man-made physical capital, human capital, international financial wealth, the stock of labor and the stocks of pollutants. Some of these stocks influence instantaneous well-being directly, such as those pollutants that have negative health effects. Others have an indirect impact, because well-being is derived from using their services, which is the case when raw materials are extracted from the exhaustible resources and when human capital is used as a factor to produce consumer commodities. The motion of the stocks in the economy can be described by a set of differential equations. Moreover, technological and other constraints can be modelled in another set of equations. With the particular concept of sustainability given above in mind, maximal constant instantaneous per capita well-being can be found as the outcome of an optimal control problem with a (generally) non-constant rate of discount. This is the case in most of the papers mentioned above. The next step is then to show that the current value of the corresponding Hamiltonian just equals the constant value of well-being, corrected for non-autonomous elements in the constraints. If such element are absent then the current value Hamiltonian is constant which implies that the total value of net investments in the stocks involved should be zero. It is to be understood that the stocks are evaluated

\(^1\)We are aware of the fact that this anthropocentric interpretation and operationalization of sustainability is subject to some criticism, but for our purpose this is irrelevant. See also Krantkraemer et al. (1993) and Asheim (1994a)].
at their shadow-prices originating from the optimal control problem. These prices need not prevail on the actual markets, especially not when negative externalities are present. With non-autonomous differential equations, caused for example by exogenous technical change, varying world market prices or non-constant exogenous interest rates, the situation becomes more complicated in the sense that no easy economic interpretation can be given. On the other hand, it is clear from a mathematical point of view what corrections should be made to have sustainability. This is particularly useful when one is looking for a national income concept that incorporates sustainability. See Sefton and Weale (1994), Vellinga and Withagen (1995) and Johanson and Lofgren (1995).

2 The main result

We consider an optimal control problem with \(n\) state variables, \(r\) control variables and \(m\) constraints. There are given an open set \(X \subseteq \mathbb{R}^n\), a set \(U \subseteq \mathbb{R}^r\) and \(T := \mathbb{R}_+\). We shall only be interested in state variables \(x : T \rightarrow X\) having piece-wise continuous derivatives and control variables \(u : T \rightarrow U\) being piece-wise continuous. Given are also the functions \(\rho : T \rightarrow \mathbb{R}_+\), \(f_0 : X \times U \rightarrow \mathbb{R}\), \(f := (f_1, f_2, \ldots, f_n) : X \times U \times T \rightarrow \mathbb{R}^n\) and \(g := (g_1, g_2, \ldots, g_m) : X \times U \times T \rightarrow \mathbb{R}^m\). We assume that \(f_0, f\) and \(g\) are continuously differentiable. We shall also assume that

\[
\pi(t) := e^{-\int_0^t \rho(\tau) \, d\tau} \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty
\]

Now suppose that \((\hat{x}, \hat{u})\) solves the following problem: maximize

\[
\int_0^\infty \pi(t)f_0(x(t), u(t))dt
\]

subject to

\[
\dot{x}(t) = f(x(t), u(t), t) \quad (t \in T) \quad (2)
\]

\[
g(x(t), u(t), t) \geq 0 \quad (t \in T) \quad (3)
\]
It is well-known that in order to apply the usual necessary conditions, some kind of constraint qualification must be satisfied. It is assumed here that this is indeed the case.

Define the current value Hamiltonian and the current value Lagrangean:

\[\mathcal{H}(x, u, t, \lambda) := f_0(x, u) + \lambda \cdot f(x, u, t) \]

\[\mathcal{L}(x, u, t, \lambda, \mu) := \mathcal{H}(x, u, t, \lambda) + \mu \cdot g(x, u, t) \]

Now the following holds: there exist \(\lambda : T \to \mathbb{R}^n \) and \(\mu : T \to \mathbb{R}^m_+ \) with \(\lambda \) continuous and piece-wise continuously differentiable and \(\mu \) piece-wise continuous, such that

\[\frac{\partial \mathcal{L}}{\partial u_j} = 0 \quad (j = 1, 2, \cdots, m; \ t \in T) \]

(4)

\[\mu(t) \cdot g(\hat{x}(t), \hat{u}(t), t) = 0 \quad (t \in T) \]

(5)

\[-\lambda_i(t) = \frac{\partial \mathcal{L}}{\partial x_i} - \rho(t) \lambda_i(t) \quad (i = 1, 2, \cdots, n; \ t \in T) \]

(6)

Here all the partial derivatives are evaluated in the optimum.

We will now state and prove the main result of this paper.

Theorem

Suppose that \(f(\hat{x}(t), \hat{u}(t)) = \alpha \), a constant \(t \in T \), and that \(\pi(t)\mathcal{H}(\hat{x}(t), \hat{u}(t), t, \lambda(t)) \to 0 \) as \(t \to \infty \). Then

\[\mathcal{H}(\hat{x}(t), \hat{u}(t), t, \lambda(t)) = \alpha - \frac{1}{\pi(t)} \int_t^\infty \pi(s) \left[\lambda(s) \frac{\partial f(\hat{x}(s), \hat{u}(s), s)}{\partial s} \right. + \mu(s) \frac{\partial g(\hat{x}(s), \hat{u}(s), s)}{\partial s} \left. \right] ds \]

Proof

Let \(f_i \) and \(g_i \) denote the partial derivatives of \(f \) and \(g \) with respect to time.

It follows from Seierstad and Sydsaeter (1987, p. 277 note 2) that

\[\frac{d\mathcal{L}^*}{dt} = \frac{\partial \mathcal{L}^*}{\partial t} \]
at all continuity points of \(u \), where \(\mathcal{L}^* := \pi \mathcal{L} \). Hence
\[
\dot{\mathcal{L}} = \rho[\mathcal{L} - \alpha] + \lambda \cdot f_i + \mu \cdot g_i
\]
at all continuity points of \(u \). Therefore
\[
\mathcal{H}(t) = \mathcal{L}(t) = \frac{1}{\pi(t)} \int_0^\infty \pi(s)[\rho(s) \alpha - \lambda(s) \cdot f_s - \mu(s) \cdot g_s] ds
\]
as is easily verified. Moreover,
\[
\frac{1}{\pi(t)} \int_0^\infty \pi(s) \rho(s) \alpha ds = \alpha
\]
The following is now immediate:

Corollary

Suppose that \(f \) and \(g \) are autonomous. Then \(\lambda(t) \cdot \dot{\mathcal{L}}(t) = 0 \) (all \(t \in T \)).

Proof

\[
\mathcal{H}(t) = \alpha + \lambda(t) \cdot f(x, u, t) = \alpha + \lambda(t) \cdot \dot{\mathcal{L}}(t) = \alpha
\]

3 Discussion

The result presented above strongly resembles the findings of Dixit, Hammond and Hoel (1980). The major difference is that our result is obtained in an optimal control framework whereas they work in the context of a competitive equilibrium.

It would go too far to verify for each model employed in this line of research whether or not it satisfies the assumptions we made. We shall therefore restrict ourselves to some important examples.

In the Solow (1974) model there are two stocks: a stock of an exhaustible natural resource and a stock of man-made capital. Capital and the raw material are used in a Cobb-Douglas production process that yields a consumer commodity. In the case at hand the maximin rate of consumption can be calculated explicitly and it is easily seen that this is also the outcome of an optimal control problem with a decreasing rate of time preference.
Also the recent work of Hartwick and Van Long (1995) fits in our general framework. They consider constant consumption in an economy which derives instantaneous profits \(P \) from for example selling raw material from exhaustible resources on the world market. The optimal profits are an exogenous function of time. Then the accumulation of financial capital \((W) \) is given by

\[
\dot{W}(t) = P(t) + r(t)W(t) - C(t)
\]

Where \(r \) is the exogenous world market interest rate. The maximand is

\[
\int_{0}^{\infty} \pi(t)C(t)dt
\]

It is easy to see that along an optimum the rate of time preference must equal the interest rate. Moreover, it follows immediately from our theorem that with a constant rate of consumption

\[
\dot{W} = -\frac{1}{\pi} \int_{t}^{\infty} \pi[\dot{r}W + \dot{P}]dt
\]

If we define \(V \) as the current value at time \(t \) of all future profits:

\[
V := \frac{1}{\pi} \int_{t}^{\infty} \pi P dt
\]

then it readily follows that

\[
\dot{W} = -\dot{V} - \frac{1}{\pi} \int_{t}^{\infty} \pi[\dot{r}W + V]dt
\]

which is exactly the investment rule derived by Hartwick and Long.

4 Conclusion

In this note we have derived a general investment rule that must be satisfied in a situation of sustainable economic development. To the best of our knowledge it can be applied to all the models used in the literature on this subject. As was already mentioned in the
Introduction, the investments should be weighted by the optimal shadow prices, which not necessarily prevail in reality. This also implies that if the Hamiltonian is considered as a fair approximation of net national income, actual NNP might not be a good measure of sustainability.

Acknowledgement

I have received very helpful comments from Geir Asheim.

References

Hartwick, J. (1994a): “Sustainability and constant consumption paths in open economies with exhaustible resources”, mimeo Queen’s University.

