Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a non-chlorinated solvent

Citation for published version (APA):

DOI:
10.1002/adma.201504272

Document status and date:
Published: 01/01/2016

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. Jun. 2023
Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Non-Chlorinated Solvent

By Yunjing Ji, Chengyi Xiao, Qiang Wang, Jianqi Zhang, Cheng Li,* Yonggang Wu, Zhixiang Wei, Xiaowei Zhan, Wenping Hu, Zhaohui Wang, René A. J. Janssen* and Weiwei Li*

[*] Prof. W. Hu, Prof. Z. Wang, Prof. W. Li, Dr. C. Li, Y. Ji, C. Xiao
Beijing National Laboratory for Molecular Sciences
Key Laboratory of Organic Solids
Institute of Chemistry, Chinese Academy of Sciences (ICCAS)
Beijing 100190, P. R. China
E-mail: licheng1987@iccas.ac.cn; liweiwei@iccas.ac.cn

Prof. R. A. J. Janssen, Q. Wang
Molecular Materials and Nanosystems
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
E-mail: r.a.j.janssen@tue.nl

Prof. Z. Wei, Dr. J. Zhang
National Center for Nanoscience and Technology
Beijing 100190, China

Prof. X. Zhan
Department of Materials Science and Engineering, College of Engineering
Peking University
Beijing 100871, China

Prof. Y. Wu, Y. J
College of Chemistry and Environmental Science
Hebei University
Baoding 071002, China

Keywords: conjugated polymer; field-effect transistor; polymer solar cells; non-chlorinated solvent;

Conjugated polymers based on electron-deficient diketopyrrolopyrrole (DPP) units have been intensively explored and applied in solution-processed organic electronic devices. Due to their good planarity and strong intermolecular π-π interactions of the conjugated backbone, DPP polymers show high carrier mobilities > 1 cm² V⁻¹ s⁻¹ in field-effect
transistors (FETs),\cite{1-8} exceeding those of amorphous silicon. The strong electron-withdrawing character of DPP units also causes DPP polymers to absorb near infrared light and their absorption spectra cover a significant part of the solar spectrum. As a result, DPP-based polymer solar cells (PSCs) can provide high photocurrents above 20 mA cm-2 \cite{9,10,11} and achieve excellent power conversion efficiencies (PCEs) > 8\%\cite{11,12,13}. Compared to other high performance polymer semiconductors, DPP polymers show significantly less synthetic complexity.\cite{14} All these merits indicate that DPP polymers have great potential for large-area industrial application. However, an important drawback of DPP polymers for FETs and PSCs is that the film formation requires the use of a chlorinated solvent, such as chloroform (CHCl\textsubscript{3}), chlorobenzene, or \textit{ortho}-dichlorobenzene (\textit{o}-DCB), resulting in detrimental effects on the environment. Therefore, it is urgent to design new DPP polymers that can be solution-processed from non-chlorinated solvents for organic electronic thin film devices.

The repeat unit of DPP polymers generally comprises four different principal components: the DPP unit, flanked by two adjacent aromatic substituents, a central \pi-conjugated segment, and solubilizing alkyl chains on the lactam ring. The aromatic substituents originate from the aromatic nitrile precursors that are used to synthesize the DPP core, which does not exist as a unit by itself.\cite{15} The solubility of the polymers is determined by their chemical structure, in which the length of the side chains\cite{16-18} and the size of conjugated segment are important parameters.\cite{19} Long branched alkyl chains attached to the lactam ring of DPP enhance the solubility of the conjugated polymer and decrease the \pi-\pi stacking, promoting the hole mobilities in FETs.\cite{7} However, the change of side chain length has little influence on the polarity and non-covalent interactions of the polymer backbone that prevent the polymer to become soluble in less-polar solvents, such as toluene. Furthermore, DPP polymers with long alkyl side chains were found to form a fibrillar micro-phase separation with large diameter fibrils in bulk-heterojunction solar cells, which lowers the efficiency for charge generation and the PCE.\cite{16} However, the solubility of DPP polymers
can be effectively adjusted by variations in the conjugated backbone. When the DPP monomers were randomly copolymerized with two different conjugated segments \cite{20,21} or with an asymmetric conjugated segment,\cite{22} the resulting DPP polymer lacks perfect translational symmetry along the chain and becomes well soluble in non-chlorinated solvents, such as toluene and tetrahydrofuran, while still affording high hole mobilities > 1 cm2 V$^{-1}$ s$^{-1}$ in FETs.

Here we focus on exploring new DPP polymers that can be solution-processed from non-chlorinated solvents for high performance FETs and PSCs. Our design strategy is based on the use of two different flanking aromatic substituents on the DPP monomer. For the synthesis of symmetrical DPP monomers, the two aromatic units, such as benzene,\cite{23,24} pyridine,\cite{3,25,26} thiophene (T),\cite{27,28} furan,\cite{16,29,30} 3-methylthiophene (MT),\cite{31} thieno[3,2-b]thiophene (TT),\cite{12,32} selenophene,\cite{33} and thiazole,\cite{34,35} are introduced using their nitrile derivatives via one-step reaction with diethyl succinate. By using two-step methods, asymmetric DPP monomers can be synthesized, affording structures like T-DPP-MT or T-DPP-TT (Scheme 1). Asymmetric DPP compounds have also been reported for dye-sensitized solar cells.\cite{36,37} In this work, we show the first example of asymmetric DPP polymers by incorporating two different aromatic substituents. The new DPP polymers, PDPPTT-2T and PDPPMT-2T (Scheme 1), possess a high molecular weight (> 100 kg mol$^{-1}$) and small band gap, and show good solubility in toluene, but at the same time afford highly crystalline thin films. Processing either of the two polymers from toluene with diphenyl ether (DPE) as additive provides bottom gate – bottom contact (BGBBC) configuration FETs with a hole mobility as high as 12.5 cm2 V$^{-1}$ s$^{-1}$. In addition, PSCs based on the two polymers as electron donor, processed from a toluene/DPE solvent mixture, show PCEs of 6.5% with a photoresponse above 900 nm. The results demonstrate that incorporating structural asymmetry into the main chain via different aromatic substituents is an efficient strategy to
achieve high performance FETs and PSCs of DPP polymers using non-chlorinated solution-processing.

(i) sodium/FeCl₃ in 2-methyl-2-butanol at 95 °C, 2 h; 1 was added and thieno[3,2-b]thiophene-2-carbonitrile (or 4-methylthiophene-2-carbonitrile) was added dropwise at 120 °C; reflux at 120 °C, 3 h; (ii) K₂CO₃, 18-crown-6, and 2-octyldodecyl bromide (or 2-hexyldecyl bromide) in DMF at 120 °C, 16 h; (iii) Br₂ in CHCl₃; (iv) Stille polymerization by using Pd₂(dba)₃/PPh₃ in toluene/DMF (10:1, v/v) at 115 °C.

The synthetic procedures for the DPP monomers and polymers are presented in Scheme 1. Starting from the initial precursor, ethyl 5-oxo-2-(thiophen-2-yl)-4,5-dihydro-1H-pyrrole-3-carboxylate (1)[38] with thiophene as aromatic group, and using TT or MT based nitriles, the asymmetric DPP compounds 2 and 3 were prepared. After N-alkylation and bromination of 2 and 3, the asymmetric dibromo-DPP monomers 4 and 5 were obtained. The polymers PDPPTT-2T and PDPPMT-2T were synthesized via Stille polymerization, in which a Pd₂(dba)₃/PPh₃ (1:4) catalyst and toluene/DMF (10:1) solvent mixture were applied to reduce the homo-coupling side reactions and achieve a high molecular weight.[39] Both polymers show good solubility in CHCl₃. The polymers are also soluble in toluene, but form gel-like structures in 10 min. at room temperature (supporting information, SI, Table S1). This indicates that the two polymers are less soluble in toluene than in CHCl₃. The molecular weight of the two polymers was determined by gel permeation chromatography (GPC) with o-
DCB as eluent at 140 °C, as shown in supporting information (SI) (Figure S1). Both polymers show a number average molecular weight (M_n) above 100 kg mol$^{-1}$ and PDI around 2, which is comparable to analogous symmetric DPP polymers such as PDPP3T$^{[13]}$, PMDPP3T$^{[31]}$ and P1.$^{[32]}$ It is to be noticed that for both polymers, the repeating units can have two possible structures as shown in Figure S2 and S3. Density functional theory (DFT) calculations reveal that the two types show similar frontier energy levels and have a planar backbone with very small torsion angles. The high molecular weight and coplanar backbone are beneficial for charge transport in FETs and PSCs.

The two polymers show similar electronic absorption spectra in CHCl$_3$ solution and in thin films. The optical band gaps (E_g) of PDPPTT-2T and PDPPMT-2T were 1.38 eV and 1.39 eV in chloroform solution (Figure S4), and 1.36 eV and 1.34 eV in thin films (Figure 1). The optical band gap is similar to that of symmetric DPP polymers.$^{[13,31,32]}$ The two polymers have the same reduction and oxidation potentials of -1.31 and 0.00 V vs. ferrocene (Fc/Fc$^+$) respectively, as determined by cyclic voltammetry in α-DCB (Figure S5 and Table S2).

![Normalized Absorbance vs Wavelength](image)

Figure 1. Absorption spectra of thin films of PDPPTT-2T and PDPPMT-2T.

The two DPP polymers were applied in FETs devices with a BGBC configuration. The silicon dioxide gate dielectric used was passivated with octadecyltrichlorosilane (OTS). The
polymers were applied via spin coating from CHCl₃ or toluene solution without or with DPE as additive and thermally annealed for 2 h at 120 °C in vacuum. Initially, the hole mobilities of PDPPTT-2T and PDPPMT-2T spin coated from CHCl₃ solution were measured to be 2.06 and 5.22 cm² V⁻¹ s⁻¹ (Figure S6 and Table 1). The hole mobilities were slightly less (1.96 and 4.68 cm² V⁻¹ s⁻¹) when the polymers were processed from toluene solution. When adding a small amount of high boiling point DPE as additive into toluene solution, the hole mobilities increased dramatically to 5.24 and 10.3 cm² V⁻¹ s⁻¹ for PDPPTT-2T and PDPPMT-2T, with a maximum mobility of 12.5 cm² V⁻¹ s⁻¹ for the latter (Figure 2, Table 1 and Figure S7). To the best of our knowledge, this represents the highest hole mobility for polymer FETs fabricated from a non-chlorinated solvent. Interestingly, PDPPMT-2T with methylthiophene as bridge has a more than doubled hole mobility compared to PDPPTT-2T with fused TT as bridge. The two polymers also have good solubility in other non-chlorinated solvents, such as xylene and 1,2,4-trimethylbenzene (TMB). FETs devices based on thin films of the two polymers fabricated from xylene or TMB with or without DPE show similar hole mobilities compared to those from toluene solution (Figure S8, Figure S9 and Table S3).
Figure 2. (a), (c) Transfer and (b), (d) output curves obtained from BGBC FETs devices with DPP polymer thin films annealed at 120 °C. (a) and (b) for PDPPTT-2T, (c) and (d) for PDPPMT-2T. The thin films were spin cast from toluene/DPE solution.

Table 1. Field effect hole mobilities of the DPP polymers in a BGBC configuration. The polymer thin films were thermal annealed at 120 °C for 2 h before measurement.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>solvent</th>
<th>μ_h [cm² V⁻¹ s⁻¹]</th>
<th>V_T [V]</th>
<th>I_{on}/I_{off}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPPTT-2T</td>
<td>CHCl₃</td>
<td>2.06/2.17</td>
<td>-10.8</td>
<td>1×10⁷</td>
</tr>
<tr>
<td></td>
<td>toluene</td>
<td>1.96/2.07</td>
<td>-5.2</td>
<td>8×10⁶</td>
</tr>
<tr>
<td></td>
<td>toluene/DPE (3%)</td>
<td>5.24/5.87</td>
<td>-7.5</td>
<td>2×10⁵</td>
</tr>
<tr>
<td>PDPPMT-2T</td>
<td>CHCl₃</td>
<td>5.22/5.28</td>
<td>-1.7</td>
<td>4×10⁴</td>
</tr>
<tr>
<td></td>
<td>toluene</td>
<td>4.68/4.87</td>
<td>-4.6</td>
<td>9×10⁵</td>
</tr>
<tr>
<td></td>
<td>toluene/DPE (2%)</td>
<td>10.3/12.5</td>
<td>-2.9</td>
<td>7×10⁴</td>
</tr>
</tbody>
</table>

The morphology and crystal characteristics of the DPP polymer films were further investigated by atomic force microscopy (AFM) image and 2D grazing-incidence wide angle X-ray scattering (2D-GIWAXS), as shown in Figure 3 and Figure S10. The polymer films processed from toluene/DPE solutions show crystalline domain and possess a higher surface roughness (Figure S10c and d, 2.13 nm and 1.38 nm for PDPPTT-2T and PDPP2T-T) than the films from toluene solution (Figure S10a and b, 0.86 nm and 0.71 nm for PDPPTT-2T and
PDPP2T-T). 2D-GIWAXS patterns show that the polymer films spin coated from toluene/DPE and annealed at 120 °C are highly ordered and highly crystalline, as evidenced by the series of reflections associated with the lamellar packing of the alkyl chains. Distinct \((h00)\) diffraction peaks up to the fourth order can be observed in the out-of-plane direction (Figure 3a and b) for both polymers. The highest intensity \((100)\) peaks of PDPPTT-2T and PDPPMT-2T at \(q_z = 0.30\) and 0.34 Å\(^{-1}\) correspond \(d\)-spacings of 20.9 and 18.5 nm, respectively (Figure 3c and d, Table S4). The distinct \((010)\) diffraction peak in the in-plane direction of the PDPPTT-2T evidences \(\pi-\pi\) stacking (spacing: \(\sim 3.63\) Å). PDPPMT-2T shows a less pronounced \((010)\) diffraction peak also in the in-plane direction with a \(\pi-\pi\) stacking distance of \(\sim 3.9\) Å and a low intensity \((100)\) peak can also be observed. This indicates that PDPPMT-2T has less preferential order than PDPPTT-2T, although PDPPMT-2T shows a much higher hole mobility than PDPPTT-2T. High mobilities for less ordered organic semiconductors have also been reported in other high molecular weight conjugated polymers.\(^{21,40}\) Semi-crystalline conjugated polymers contain ordered and disordered regions in thin films. For high mobility polymers it has been suggested that charge transport is predominantly occurring along the backbone and requires only occasional intermolecular hopping through short \(\pi\)-stacking bridges such that short-range intermolecular aggregation is sufficient for efficient long-range charge transport.\(^{41,42}\) Compared to PDPPTT-2T, PDPPMT-2T may show better aggregation in the disordered regions, explaining the higher mobility.
Figure 3. Characteristics of the polymer thin films spin coated from toluene/DPE and annealed at 120 °C. (a) and (b) 2D-GIWAXS patterns, and (c) and (d) the out-of-plane (OOP) and in-plane (IP) cuts of the corresponding 2D-GIWAXS patterns. (a) and (c) for PDPPTT-2T, (b) and (d) for PDPPMT-2T.

The two polymers exhibit both (100) and (010) diffraction peaks in the out-of-plane direction when processed from toluene solution. We attribute this to the absence of a clear preference for edge on orientation of the polymer chains on the surface (Figure S11). AFM and 2D-GIWAXS results shows that the polymer films fabricated from pure toluene solution exhibit less crystallinity and preferential orientation, which is consistent with their lower mobilities compared to films fabricated from toluene/DPE solutions. The 2D-GIWAXS results show that both asymmetric DPP polymers exhibit preferentially edge-on molecular packing with high crystallinity when processed from toluene/DPE solutions, which could lead to their high hole mobilities for in plane transport.

The two polymers were further applied as electron donors in bulk heterojunction photovoltaic cells after blending with phenyl-C71-butyric acid methyl ester ([70]PCBM) as
electron acceptor in an inverted device configuration with an ITO/ZnO electrode for electron collection and a MoO₃/Ag electrode for hole collection. The photoactive layers were carefully optimized with respect to the solvent used for spin coating, solvent additive, ratio of donor to acceptor, and thickness, as summarized in Table S5-8 and Figure S12-14. The optimized polymer-fullerene weight ratio is 1:2. The $J-V$ characteristics and external quantum efficiency (EQE) for the optimized solar cells are shown in Figures 4a and b, and Table 2. The J_{sc}s were determined by integrating the EQE with the AM1.5G spectrum. PDPPTT-2T:[70]PCBM cells had a PCE of 5.1% with $J_{sc} = 13.5$ mA cm$^{-2}$, $V_{oc} = 0.61$ V, and fill factor (FF) = 0.63 when the active layer is spin coated from CHCl$_3$ with 10\% o-DCB as additive. The PCE increased to 6.1\% due to much higher $J_{sc} = 15.8$ mA cm$^{-2}$ when using toluene with 3\% DPE as additive. For PDPPMT-2T:[70]PCBM cells, the PCE was 5.8\% by using CHCl$_3$ with 2\% DPE as additive, which increased to 6.5\% when spin coating from toluene/DPE. This was mainly due to the enhancement of J_{sc} from 15.1 to 15.8 mA cm$^{-2}$ and FF from 0.61 to 0.66. The two cells processed from toluene/DPE solution show a broad photoresponse from 300 nm to 900 nm with a maximum EQE over 0.55 in the near-infrared spectral region where the polymer absorbs light (Figure 4b). The photo-active layers can also be fabricated from non-chlorinated xylene or TMB solutions with DPE as additive, which gave comparable PCEs as films fabricated from toluene/DPE system (Table S9 and Figure S15).

Table 2. Characteristics of optimized inverted solar cells of the DPP polymers with [70]PCBM.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Solvent</th>
<th>Thickness [nm]</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPPTT-2Tb</td>
<td>CHCl$_3$/o-DCB (10%)</td>
<td>100</td>
<td>13.5</td>
<td>0.61</td>
<td>0.63</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Toluene/DPE (3%)</td>
<td>90</td>
<td>15.8</td>
<td>0.60</td>
<td>0.64</td>
<td>6.1</td>
</tr>
<tr>
<td>PDPPMT-2Tb</td>
<td>CHCl$_3$/DPE (2%)</td>
<td>70</td>
<td>15.1</td>
<td>0.63</td>
<td>0.61</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Toluene/DPE (2%)</td>
<td>65</td>
<td>15.8</td>
<td>0.62</td>
<td>0.66</td>
<td>6.5</td>
</tr>
</tbody>
</table>
J_{sc} as calculated by integrating the EQE spectrum with the AM1.5G spectrum; Weight ratio of the polymers to [70]PCBM is 1:2.

The photoactive layers were further investigated by 2D-GWAXS and transmission electron microscopy (TEM). Clear (100) and (200) diffraction peaks can be observed in out-of-plane direction, but the higher order diffraction peaks are no longer visible in the blend (Figure 4c and d, Figure S16). This indicates that the crystallinity of DPP polymers is reduced in the blends with [70]PCBM compared to the pure films. Accordingly, the diffraction (010) peak in the blend films can be found in out-of-plane direction but with low intensity. The diffraction halo observed near $q = 1.32$ Å$^{-1}$ is attributed to [70]PCBM. TEM images based on the polymer-fullerene systems spin coated from toluene/DPE solution reveal that both of PDPPTT-2T and PDPPMT-2T present fibril-like nanostructures with a diameter below 10 nm, similar to other DPP-fullerene blend films. Because the radius of these polymer fibrils is on the order of the exciton diffusion length, most excitons will reach the donor/acceptor interface to generate charges and improve the PCE.
Figure 4. (a) $J-V$ characteristics in dark (dashed lines) and under white light illumination (solid lines). (b) EQE of the optimized polymer:[70]PCBM (1:2) solar cells fabricated from toluene/DPE solution. (c) The out-of-plane (OOP) and in-plane (IP) line cuts of the 2D GIWAXS patterns of optimized PDPPTT-2T:[70]PCBM (1:2) thin films fabricated from toluene/DPE solution. (d) Same for PDPPMT-2T:[70]PCBM (1:2). (e) Bright field TEM image (1.2×1.2 μm²) of the optimized PDPPTT-2T:[70]PCBM (1:2) thin films fabricated from toluene/DPE solution. (f) Same for DPPMT-2T:[70]PCBM (1:2).

Interestingly, solar cells fabricated from toluene/DPE exhibit higher J_{sc}s, FFs, and PCEs than those from CHCl$_3$ with o-DCB or DPE as additive, which may originate from the morphology difference in blend films. AFM results show that polymer:[70]PCBM films fabricated from toluene/DPE solution have a higher RMS roughness than films from CHCl$_3$ solution (Figure S17), indicating more micro-phase separation in blend films. 2D-GIWAXS results also reveal that the blend films spin coated from toluene/DPE have strong (100) diffraction peaks (Figure 4c and d) as compared to those spin coated from CHCl$_3$ mixture solution (Figure S18a – d), which confirms that the polymers in blend films spin coated from toluene/DPE have improved aggregation and crystallinity. Further analysis by TEM shows that the blend films fabricated from CHCl$_3$ with additive contain large fibril-like structures (PDPPTT-2T, Figure S18e) or less-detectable fibers (PDPPMT-2T, Figure S19f), both of which is not beneficial for charge generation. As indicated in the solubility test, the polymers form gel-like structures in toluene solution, indicating pre-aggregation before solution-processing. This may responsible for the better aggregation of polymers in blending films and achieve high PCEs when solution-processed from toluene/DPE.

In conclusion, two asymmetric DPP polymers with different aromatic substituents were designed, synthesized, and applied in FETs and PSCs. The new polymers provide high molecular weights, small band gaps, and good solubility in toluene. The polymers have hole
Submitted to **ADVANCED MATERIALS**

Mobilities as high as 12.5 cm² V⁻¹ s⁻¹ in FETs due to their high crystallinity in thin films when processed from toluene/DPE solution. With the same solvent combination, photovoltaic devices based on these two polymers reach PCEs of 6.5% with a photoresponse up to 900 nm. The results demonstrate that DPP polymers that have an asymmetry in the flanking aromatic substituents form a successful approach towards semiconducting materials that can be processed from non-chlorinated solvents, while maintaining a high performance in FETs and PSCs.

Experimental Section

The organic field-effect transistors were fabricated on a commercial Si/SiO₂/Au substrate purchased from First MEMS Co. Ltd. A heavily N-doped Si wafer with a SiO₂ layer of 300 nm served as the gate electrode and dielectric layer, respectively. The Ti (2 nm)/Au (28 nm) source–drain electrodes were sputtered and patterned by a lift-off technique. Before deposition of the organic semiconductor, the gate dielectrics were treated with octadecyltrichlorosilane (OTS) in a vacuum oven at a temperature of 120 °C, forming an OTS self-assembled monolayers. The treated substrates were rinsed successively with hexane, chloroform, and isopropyl alcohol. Polymer thin films were spin coated on the substrate from solution with a thickness of around 30 – 50 nm. The devices were thermally annealed at 120 °C in a high vacuum chamber (~10⁻³ Pa) for 2 h, cooled down and then moved into a glovebox filled with N₂. The devices were measured on a Keithley 4200 SCS semiconductor parameter analyzer at room temperature. The mobilities were calculated from the saturation region with the following equation: \(I_{DS} = \frac{W}{2L}C_i \mu (V_G - V_T)^2 \), where \(I_{SD} \) is the drain–source current, \(W \) is the channel width (1400 μm), \(L \) is the channel length (30 μm for PDPPTT-2T and 40 μm for PDPPMT-2T), \(\mu \) is the field-effect mobility, \(C_i \) is the capacitance per unit area of the gate dielectric layer, and \(V_G \) and \(V_T \) are the gate voltage and threshold voltage, respectively. This equation defines the important characteristics of electron mobility (\(\mu \)).
on/off ratio (I_{on}/I_{off}), and threshold voltage (V_T), which could be deduced by the equation from the plot of current–voltage.

Photovoltaic devices with inverted configuration were made by spin-coating a ZnO sol-gel\cite{43} at 4000 rpm for 60 s onto pre-cleaned, patterned ITO substrates. The photoactive layer was deposited by spin coating a chloroform (or toluene) solution containing DPP polymers and [70]PCBM and the appropriate amount of processing additive such as DIO, o-DCB, or DPE in air. MoO$_3$ (10 nm) and Ag (100 nm) were deposited by vacuum evaporation at ca. 4×10^{-5} Pa as the back electrode.

The active area of the cells was 0.04 cm2. The J-V characteristics were measured by a Keithley 2400 source meter unit under AM1.5G spectrum from a solar simulator (Enlitech model SS-F5-3A). Solar simulator illumination intensity was determined at 100 mW cm$^{-2}$ using a monocrystal silicon reference cell with KG5 filter. Short circuit currents under AM1.5G conditions were estimated from the spectral response and convolution with the solar spectrum. The external quantum efficiency was measured by a Solar Cell Spectral Response Measurement System QE-R3011 (Enli Technology Co., Ltd.). The thickness of the active layers in the photovoltaic devices was measured on a Veeco Dektak XT profilometer.

TEM was performed on a Tecnai G2 Sphera transmission electron microscope (FEI) operated at 200 kV. 2D-GIWAXS measurements were conducted on a Xenocs-SAXS/WAXS system with X-ray wavelength of 1.5418 Å. The film samples were irradiated at a fixed angle of 0.2°. All film samples were prepared by spin-coating toluene/DPE solutions on Si substrates. The pure polymer thin films were annealed at 120 °C for 10 min before measurement.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
Acknowledgements

Y. Ji, C. Xiao, and Q. Wang contributed equally to this work. We thank Ralf Bovee at Eindhoven University of Technology (TU/e, Netherlands) for GPC analysis and Jacobus J. van Franeker (TU/e) for TEM measurements. This work was supported by the Recruitment Program of Global Youth Experts of China. The work of Q.W. forms part of the research programme of the Dutch Polymer Institute (DPI), project #762. The work was further supported by the National Natural Science Foundation of China (21574138, 21474026), the 973 Program (2011CB932301, 2014CB643600, 2013CB933500), and the Strategic Priority Research Program (XDB12010100) of the Chinese Academy of Sciences. The research forms part of the Solliance OPV programme and has received funding from the Ministry of Education, Culture and Science (Gravity program 024.001.035) of the Netherlands.

Received: (will be filled in by the editorial staff))
Revised: (will be filled in by the editorial staff))
Published online: (will be filled in by the editorial staff))

References

Newly designed asymmetric diketopyrrolopyrrole conjugated polymers with two different aromatic substituents possess a hole mobility of 12.5 cm2 V$^{-1}$ s$^{-1}$ in field-effect transistors and a power conversion efficiency of 6.5% in polymer solar cells, when solution-processed from a non-chlorinated toluene/diphenyl ether mixed solvent.

Keywords: conjugated polymer; field-effect transistor; polymer solar cells; non-chlorinated solvent;

Yunjing Ji, Chengyi Xiao, Qiang Wang, Jianqi Zhang, Cheng Li,* Yonggang Wu, Zhixiang Wei, Xiaowei Zhan, Zhaohui Wang, Wenping Hu, René A. J. Janssen* and Weiwei Li*

Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Non-Chlorinated Solvent

ToC figure
Supporting Information

Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Non-Chlorinated Solvent

By Yunjing Ji, Chengyi Xiao, Qiang Wang, Jianqi Zhang, Cheng Li,* Yonggang Wu, Zhixiang Wei, Xiaowei Zhan, Zhaohui Wang, Wenping Hu, René A. J. Janssen* and Weiwei Li*

Contents
1. Synthesis of the monomers and polymers
2. Solubility test
3. GPC
4. DFT calculations
5. Optical properties
6. Cyclic voltammetry
7. FETs
8. Polymer solar cells
9. Morphology characterization of blend films
10. References

1. Synthesis of the monomers and polymers
The synthesis of the monomer 4 and 5, and the polymers PDPPTT-2T and PDPPMT-2T is shown in Scheme 1. All synthetic procedures were performed under argon atmosphere. Commercial chemicals were used as received. THF and toluene were distilled from sodium under an N₂ atmosphere. [6,6]-phenyl-C₇₁-butyric acid methyl ester ([70]PCBM) was purchased from Solarmer Materials Inc. Ethyl 5-oxo-2-(thiophen-2-yl)-4,5-dihydro-1H-pyrrole-3-carboxylate (1)¹ and thieno[3,2-b]thiophene-2-carbonitrile² were synthesized according to literature procedures. ¹H-NMR and ¹³C-NMR spectra were recorded at 400 MHz and 100 MHz on a Bruker AVANCE spectrometer with CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard.
3-(thieno[3,2-b]thiophen-2-yl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (2). Sodium (0.68 g, 29.6 mmol) and iron(III) chloride (10 mg) were added into 2-methyl-2-butanol (40 mL) and the mixture was heated to 95 °C for 2 h until the sodium dissolved. Compound 1 (2 g, 8.4 mmol) and thieno[3,2-b]thiophene-2-carbonitrile (1.67 g, 10.1 mmol) were added and the mixture was heated to 120 °C for 2 h. The reaction was cooled to 50 °C, and methanol (40 mL) and glacial acetic acid (10 mL) were added. The mixture was then refluxed for 30 min, cooled to room temperature, and poured into methanol (100 mL). The precipitate was filtered and washed with water and methanol to afford 2 as dark red solid (2.74 g, 91.5%), which was used without further purification.

2,5-bis(2-octyldodecyl)-3-(thieno[3,2-b]thiophen-2-yl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (6). To a solution of 2 (0.6 g, 1.68 mmol), potassium carbonate (0.7 g, 5.04 mmol), and 18-crown-6 (10 mg) in DMF (30 mL) was added 2-octyldodecyl bromide (1.52 g, 4.2 mmol). The reaction mixture was stirred at 120 °C for 16 h and then cooled to room temperature. CHCl₃ (100 mL) and water (100 mL) were added and the layers were separated. The organic layer was washed with brine and the solvent evaporated. The resulting solid was subjected to column chromatography (silica, eluent hexane/CH₂Cl₂, v/v 80/20) to afford 6 as red solid (0.29 g, 18.8%). ¹H NMR δ (ppm): 9.28 (s, 1H), 8.87 (d, 1H), 7.60 (m, 2H), 7.30 (m, 2H), 4.05 (d, 4H), 1.95 (m, 2H), 1.50-1.20 (m, 64H), 0.85 (m, 12H). ¹³C NMR δ (ppm): 161.76, 161.69, 143.25, 140.97, 135.18, 131.99, 131.20, 130.43, 129.89, 128.40, 127.54, 119.30, 108.20, 108.14, 46.45, 46.33, 37.83, 37.77, 31.92, 31.89, 31.25, 31.19, 30.04, 29.66, 29.64, 29.58, 29.52, 39.33, 29.30, 26.23, 26.20, 22.69, 22.67, 14.12. MS (MALDI): calculated: 917.51, found: 917.8 (M⁺).

3-(5-bromothieno[3,2-b]thiophen-2-yl)-6-(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (4). To a solution of 6 (0.25 g, S1
0.27 mmol), K₂CO₃ (0.19 g, 1.4 mmol) in CHCl₃ (20 mL) was added dropwise a Br₂ (0.17 g, 1.08 mmol) in CHCl₃ (10 mL) solution in 10 min at 0 °C. The reaction mixture was stirred at room temperature for 10 min. Sodium thiosulfate (5 g, 20 mL H₂O) solution was added into reaction mixture and stirred for 30 min to remove Br₂. The mixture was washed with brine and the layers were separated. The resulting solid was subjected to column chromatography (silica, eluent hexane/CH₂Cl₂, v/v 80/20) to afford 4 as crude product. The solid was dissolved in CHCl₃ (5 mL) and precipitated into methanol (100 mL) to afford pure 4 (0.14 g, 48.2%) as a red solid. ¹H NMR δ (ppm): 9.19 (s, 1H), 8.62 (d, 1H), 7.32 (s, 1H), 7.20 (d, 1H), 4.0 (m, 4H), 1.91 (m, 2H), 1.4-1.2 (m, 64H), 0.85 (m, 12H). ¹³C NMR δ (ppm): 161.50, 161.40, 142.10, 140.88, 140.42, 138.74, 135.13, 131.38, 131.25, 130.38, 127.00, 122.07, 119.10, 118.77, 108.27, 108.19, 46.48, 37.83, 37.78, 31.93, 31.89, 31.23, 31.15, 30.02, 29.65, 29.58, 29.52, 29.37, 29.31, 26.24, 26.18, 22.69, 22.68, 14.12. MS (MALDI): calculated: 1075.30, found: 1074.7 (M⁺).

3-(4-methylthiophen-2-yl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (3). Same procedure as for 2 was used, but now 1 (2 g, 8.4 mmol) and 4-methylthiophene-2-carbonitrile (1.25 g, 10.1 mmol) were used as the reactants. Yield: 2.2 g (83.3%).

2,5-bis(2-hexyldecyl)-3-(4-methylthiophen-2-yl)-6-(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (7). Same procedure as for 6 was used, but now 3 (0.6 g, 1.9 mmol) and 2-hexyldecyl bromide (1.47 g, 4.8 mmol) were used as the reactants. Yield: 0.43 (29.7%). ¹H NMR δ (ppm): 8.88 (d, 1H), 8.73 (s, 1H), 7.62 (d, 1H), 7.29 (m, 1H), 4.03 (m, 4H), 2.39 (s, 3H), 1.93 (m, 2H), 1.5-1.2 (m, 48H), 0.85 (m, 12H). ¹³C NMR δ (ppm): 161.82, 161.72, 140.68, 140.05, 139.19, 135.03, 130.27, 129.91, 129.52, 128.34, 126.64, 108.08, 107.68, 46.20, 37.71, 31.88, 31.76, 31.22, 30.01, 29.68, 29.50, 29.29, 26.23, 26.20, 22.66, 22.63, 15.61, 14.10, 14.07. MS (MALDI): calculated: 763.24, found: 762.7 (M⁺).
3-(5-bromo-4-methylthiophen-2-yl)-6-(5-bromothiophen-2-yl)-2,5-bis(2-hexyldecyl)-2,5-
dihydropyrrolo[3,4-c]pyrrole-1,4-dione (5). Same procedure as for 4 was used, but now 7
(0.4 g, 0.52 mmol) and Br₂ (0.33 g, 2.08 mmol) were used. Yield: 0.29 g (60.6%). ¹H NMR δ
(ppm): 8.60 (d, 2H), 8.57 (s, 1H), 7.20 (s, 1H), 3.92 (m, 4H), 2.30 (s, 3H), 1.88 (m, 2H), 1.5-
1.2 (m, 48H), 0.85 (m, 12H). ¹³C NMR δ (ppm): 161.43, 161.32, 139.73, 139.11, 138.98,
136.65, 135.12 131.33, 131.25, 128.92, 118.72, 116.94, 108.11, 107.71, 46.31, 37.73, 31.89,
31.76, 31.21, 29.99, 29.85, 29.51, 29.30, 26.22, 26.18, 22.68, 22.63, 15.18, 14.11, 14.08. MS
(MALDI): calculated: 921.03, found: 920.4 (M⁺).

PDPPTT-2T. To a degassed solution of the monomer 4 (116.78 mg, 0.11 mmol), 5,5’-
bis(trimethylstannyl)thiophene (44.5 mg, 0.11 mg) in toluene (2 mL) and DMF (0.2 mL),
tris(dibenzylideneacetene)dipalladium(0) (2.98 mg, 3.3 µmol) and triphenylphosphine (3.42
mg, 13 µmol) were added. The mixture was stirred at 115 °C for 16 h, after which it was
precipitated in methanol and filter through a Soxhlet thimble. The polymer was extracted with
acetone, hexane, dichloromethane and then dissolved in 1,1,2,2-tetrachloroethane (TCE) (80
mL) at 140 °C, which was then precipitated into acetone. Finally the resulting polymer can be
solubilized in CHCl₃ and toluene for device fabrication. Yield: 106.8 mg (97.3%) as a dark
solid. GPC (o-DCB, 140 °C): $M_n = 106.7$ kg mol⁻¹, $M_w = 205.9$ kg mol⁻¹ and PDI = 1.93.

PDPPMT-2T. Same procedure as for PDPPTT-2T was used, but now 5 (120 mg, 0.13 mmol)
and 5,5’-bis(trimethylstannyl)thiophene (53.39 mg, 0.13 mmol) were used as the monomers.
Yield: 85 mg (77.5%). GPC (o-DCB, 140 °C): $M_n = 138.8$ kg mol⁻¹, $M_w = 229.4$ kg mol⁻¹,
and PDI = 1.65.

2. Solubility test
Polymer solubility test was performed in CHCl₃ and toluene with 5 mg mL⁻¹ and 10 mg mL⁻¹.
The polymer was stirred and dissolved in CHCl₃ and toluene at the corresponding temperature
(90 °C for CHCl₃ and 120 °C for toluene) and then cooled to room temperature without stir.
Notably, the polymers can be steadily dissolved in CHCl₃ at 90 °C and toluene at 120 °C.
Table S1. Polymer solubility test at room temperature with 5 mg mL\(^{-1}\) and 10 mg mL\(^{-1}\) in CHCl\(_3\) or toluene.

<table>
<thead>
<tr>
<th>polymer</th>
<th>solvent (5 mg mL(^{-1}))</th>
<th>solvent (10 mg mL(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHCl(_3)</td>
<td>toluene</td>
</tr>
<tr>
<td>PDPPTT-2T</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>PDPPMT-2T</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

+++ good solubility. ++ soluble but form gel-like structures after 10 min. + soluble but form gel-like structures after 2 min.

3. GPC

Molecular weight was determined with GPC at 140 °C on a PL-GPC 220 system using a PL-GEL 10 μm MIXED-B column and o-DCB as the eluent against polystyrene standards. Low concentration of 0.1 mg mL\(^{-1}\) polymer in o-DCB was applied to reduce aggregation.

Figure S1. GPC recorded at 140 °C with o-DCB as eluent for (a) PDPPTT-2T and (b) PDPPMT-2T.

4. DFT calculations

Density functional theory (DFT) calculations were performed at the B3LYP/6-31G* level of theory by using the Gaussian 09 program package.
5. Optical properties

Electronic spectra were recorded on a JASCO V-570 spectrometer.

Figure S4. Absorption spectra of PDPPTT-2T and PDPPMT-2T in CHCl₃ solution.
6. Cyclic voltammetry

Cyclic voltammetry was conducted with a scan rate of 0.1 V s\(^{-1}\) under an inert atmosphere with 1 M tetrabutylammonium hexafluorophosphate in 1,2-dichlorobenzene (o-DCB) as the electrolyte. The working electrode was a platinum disk, the counter electrode was a silver electrode, and an Ag/AgCl quasi-reference electrode was used. The concentration of the sample in the electrolyte was approximately 1 mM, based on monomers. Fc/Fc\(^+\) was used as an internal standard.

![Cyclic voltammograms of PDPPTT-2T and PDPPMT-2T in o-DCB. Potential vs. Fc/Fc\(^+\). The reduction potential (E\(_{\text{red}}\)) and oxidation potential (E\(_{\text{ox}}\)) for both of the polymers are -1.31 eV and 0.0 eV.](image)

Figure S5. Cyclic voltammograms of PDPPTT-2T and PDPPMT-2T in o-DCB. Potential vs. Fc/Fc\(^+\). The reduction potential (E\(_{\text{red}}\)) and oxidation potential (E\(_{\text{ox}}\)) for both of the polymers are -1.31 eV and 0.0 eV.

Table S2. Optical and electrochemical properties of PDPPTT-2T and PDPPMT-2T.

<table>
<thead>
<tr>
<th>Materials</th>
<th>E(_g)(^{\text{sol}}) (eV)</th>
<th>E(_g)(^{\text{film}}) (eV)</th>
<th>E(_{\text{red}}) (^a) (V)</th>
<th>E(_{\text{ox}}) (^a) (V)</th>
<th>E(_g)(^{\text{CV}}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPPTT-2T</td>
<td>1.38</td>
<td>1.36</td>
<td>-1.31</td>
<td>0.0</td>
<td>1.31</td>
</tr>
<tr>
<td>PDPPMT-2T</td>
<td>1.39</td>
<td>1.34</td>
<td>-1.31</td>
<td>0.0</td>
<td>1.31</td>
</tr>
</tbody>
</table>

\(^a\) Versus Fc/Fc\(^+\).

7. FETs
Figure S6. (a), (b), (c) and (d) Transfer, (e), (f), (g) and (h) output curves obtained from BGBC OFETs devices with polymer thin film annealed at 120 °C. The polymer and solution-processed solvents were indicated in the figure.

Figure S7. The mobility distribution for over 15 FET devices based on PDPPTT-2T (red) and PDPPMT-2T (blue) thin films spin coated from toluene/DPE.

Figure S8. (a), (b), (c) and (d) Transfer, (e), (f), (g) and (h) output curves obtained from BGBC OFETs devices with PDPPTT-2T thin film annealed at 120 °C, processed from different solvents. Solvents used are indicated in the figure.
Figure S9. (a), (b), (c) and (d) Transfer, (e), (f), (g) and (h) output curves obtained from BGBC OFETs devices with PDPPMT-2T thin films annealed at 120 °C, processed from different solvents. Solvents used are indicated in the figure.

Table S3. Field effect hole mobilities of the DPP polymers in a BGBC configuration. The polymer thin films were thermal annealed at 120 °C for 2 h before measurement.

<table>
<thead>
<tr>
<th>polymer</th>
<th>solvent</th>
<th>μ_h [cm² V⁻¹ s⁻¹]</th>
<th>V_T [V]</th>
<th>I_{on}/I_{off} ave</th>
<th>I_{on}/I_{off} max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPPTT-2T</td>
<td>xylene</td>
<td>3.34</td>
<td>-4.4</td>
<td>1×10^5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>xylene/DPE (3%)</td>
<td>5.47</td>
<td>-1.1</td>
<td>1×10^5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMB</td>
<td>3.92</td>
<td>-3.3</td>
<td>1×10^5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMB/DPE(3%)</td>
<td>6.21</td>
<td>-3.2</td>
<td>2×10^5</td>
<td></td>
</tr>
<tr>
<td>PDPPMT-2T</td>
<td>xylene</td>
<td>5.38</td>
<td>-4.4</td>
<td>2×10^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>xylene/DPE (2%)</td>
<td>10.17</td>
<td>-0.2</td>
<td>2×10^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMB</td>
<td>6.26</td>
<td>-5.6</td>
<td>4×10^5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TMB/DPE(2%)</td>
<td>10.89</td>
<td>-0.5</td>
<td>4×10^3</td>
<td></td>
</tr>
</tbody>
</table>

AFM images were recorded using a digital instruments nanoscope IIIa multimode atomic force microscope in tapping mode.
Figure S10. AFM height images (3 μm × 3 μm) of the polymer thin films spin coated from toluene without (a and b), and with (c and d) DPE as additive and thermally annealed at 120 °C. (a) and (c) for PDPPTT-2T, (b) and (d) for PDPPMT-2T. The root-mean-square (RMS) roughnesses are 0.86 nm, 0.71 nm, 2.13 nm and 1.38 nm for (a) – (d).

Figure S11. Characteristics of the polymer thin films spin coated from toluene and annealed at 120 °C. (a) and (b) 2D-GIWAXS patterns, and (c) and (d) the out-of-plane (OOP) and in-plane (IP) cuts of the corresponding 2D-GIWAXS patterns. (a) and (c) for PDPPTT-2T, (d) and (d) for PDPPMT-2T.

Table S4. Crystallographic parameters of the polymer thin films without or with [70]PCBM from GIWAXS measurement.

<table>
<thead>
<tr>
<th></th>
<th>Lamellar spacing $q_z \ [\text{Å}^{-1}]$</th>
<th>$d \ [\text{Å}]$</th>
<th>$\pi-\pi$ spacing $q_{xy} \ [\text{Å}^{-1}]$</th>
<th>$d \ [\text{Å}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDPPTT-2T</td>
<td>0.30</td>
<td>20.9</td>
<td>1.73</td>
<td>3.63</td>
</tr>
<tr>
<td>PDPPTT-2T:[70]PCBM</td>
<td>0.31</td>
<td>20.3</td>
<td>1.79</td>
<td>3.51</td>
</tr>
<tr>
<td>PDPPMT-2T</td>
<td>0.34</td>
<td>18.5</td>
<td>1.61</td>
<td>3.9</td>
</tr>
</tbody>
</table>

S9
The polymer thin films were annealed at 120 °C for 10 min before measurement. From 2-D GIWAXS patterns of the polymer:[70]PCBM films, the crystallographic parameters of [70]PCBM can also be calculated: $q = 1.32 \text{ Å}^{-1}$ and $d = 0.48 \text{ Å}$ for PDPPTT-2T:[70]PCBM; $q = 1.34 \text{ Å}^{-1}$ and $d = 0.47 \text{ Å}$ for PDPPMT-2T:[70]PCBM.

8. Polymer Solar cells

Table S5. Characteristics of PDPPTT-2T:[70]PCBM inverted solar cells spin coated from different solution and different ratio of donor to acceptor.

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Solvent</th>
<th>Thickness [nm]</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2</td>
<td>CHCl$_3$</td>
<td>110</td>
<td>3.1</td>
<td>0.62</td>
<td>0.46</td>
<td>0.89</td>
</tr>
<tr>
<td>1:2</td>
<td>CHCl$_3$/DIO (2.5%)</td>
<td>94</td>
<td>13.6</td>
<td>0.59</td>
<td>0.51</td>
<td>4.4</td>
</tr>
<tr>
<td>1:2</td>
<td>CHCl$_3$/DPE (2%)</td>
<td>80</td>
<td>9.4</td>
<td>0.58</td>
<td>0.47</td>
<td>2.6</td>
</tr>
<tr>
<td>1:2</td>
<td>CHCl$_3$/o-DCB (10%)</td>
<td>100</td>
<td>13.5</td>
<td>0.61</td>
<td>0.63</td>
<td>5.1</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene</td>
<td>110</td>
<td>0.77</td>
<td>0.52</td>
<td>0.35</td>
<td>0.14</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (1%)</td>
<td>70</td>
<td>9.6</td>
<td>0.61</td>
<td>0.61</td>
<td>3.6</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (2%)</td>
<td>100</td>
<td>12.8</td>
<td>0.60</td>
<td>0.61</td>
<td>4.7</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (3%)</td>
<td>90</td>
<td>15.8</td>
<td>0.60</td>
<td>0.64</td>
<td>6.1</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (5%)</td>
<td>75</td>
<td>13</td>
<td>0.58</td>
<td>0.50</td>
<td>3.8</td>
</tr>
<tr>
<td>1:1</td>
<td>toluene/DPE (3%)</td>
<td>60</td>
<td>9.7</td>
<td>0.61</td>
<td>0.56</td>
<td>3.3</td>
</tr>
<tr>
<td>1:3</td>
<td>toluene/DPE (3%)</td>
<td>70</td>
<td>13.7</td>
<td>0.59</td>
<td>0.63</td>
<td>5.1</td>
</tr>
<tr>
<td>1:4</td>
<td>toluene/DPE (3%)</td>
<td>70</td>
<td>12.5</td>
<td>0.61</td>
<td>0.65</td>
<td>5.0</td>
</tr>
</tbody>
</table>

J_{sc} was calculated by integrating the EQE spectrum with the AM1.5G spectrum.

Table S6. Characteristics of PDPPTT-2T:[70]PCBM (1:2) inverted solar cells spin coated from toluene/DPE (3%) with different thickness of active layers.

<table>
<thead>
<tr>
<th>Thickness [nm]</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>16.2</td>
<td>0.60</td>
<td>0.58</td>
<td>5.6</td>
</tr>
<tr>
<td>80</td>
<td>16.6</td>
<td>0.59</td>
<td>0.62</td>
<td>5.6</td>
</tr>
<tr>
<td>90</td>
<td>15.8</td>
<td>0.60</td>
<td>0.64</td>
<td>6.1</td>
</tr>
<tr>
<td>120</td>
<td>16.4</td>
<td>0.59</td>
<td>0.52</td>
<td>5.0</td>
</tr>
</tbody>
</table>

J_{sc} was calculated by integrating the EQE spectrum with the AM1.5G spectrum.
Figure S12. (a) $J-V$ characteristics under white light illumination and (b) EQE of the PDPPTT-2T:[70]PCBM (1:2) solar cells fabricated from toluene/DPE (3%) solution with the different thickness.

Table S7. Characteristics of PDPPMT-2T:[70]PCBM inverted solar cells spin coated from different solution and different ratio of donor to acceptor.

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Solvent</th>
<th>Thickness [nm]</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2</td>
<td>CHCl$_3$</td>
<td>120</td>
<td>2.4</td>
<td>0.63</td>
<td>0.52</td>
<td>0.81</td>
</tr>
<tr>
<td>1:2</td>
<td>CHCl$_3$/DIO (2.5%)</td>
<td>70</td>
<td>12.2</td>
<td>0.59</td>
<td>0.46</td>
<td>3.4</td>
</tr>
<tr>
<td>1:2</td>
<td>CHCl$_3$/DPE (2%)</td>
<td>70</td>
<td>15.1</td>
<td>0.63</td>
<td>0.61</td>
<td>5.8</td>
</tr>
<tr>
<td>1:2</td>
<td>CHCl$_3$/α-DCB (10%)</td>
<td>100</td>
<td>10.1</td>
<td>0.63</td>
<td>0.5</td>
<td>3.2</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene</td>
<td>120</td>
<td>0.94</td>
<td>0.64</td>
<td>0.43</td>
<td>0.25</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (1%)</td>
<td>120</td>
<td>8</td>
<td>0.63</td>
<td>0.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (2%)</td>
<td>65</td>
<td>15.8</td>
<td>0.62</td>
<td>0.66</td>
<td>6.5</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (3%)</td>
<td>80</td>
<td>14.3</td>
<td>0.61</td>
<td>0.5</td>
<td>4.4</td>
</tr>
<tr>
<td>1:2</td>
<td>toluene/DPE (5%)</td>
<td>70</td>
<td>14.1</td>
<td>0.58</td>
<td>0.53</td>
<td>4.3</td>
</tr>
<tr>
<td>1:1</td>
<td>toluene/DPE (2%)</td>
<td>65</td>
<td>11</td>
<td>0.63</td>
<td>0.53</td>
<td>3.6</td>
</tr>
<tr>
<td>1:3</td>
<td>toluene/DPE (2%)</td>
<td>80</td>
<td>11.6</td>
<td>0.62</td>
<td>0.61</td>
<td>4.4</td>
</tr>
<tr>
<td>1:4</td>
<td>toluene/DPE (2%)</td>
<td>100</td>
<td>10.3</td>
<td>0.63</td>
<td>0.58</td>
<td>3.8</td>
</tr>
</tbody>
</table>

a J_{sc} was calculated by integrating the EQE spectrum with the AM1.5G spectrum.

Table S8. Characteristics of PDPPMT-2T:[70]PCBM (1:2) inverted solar cells spin coated from toluene/DPE (2%) with different thickness of active layers.

<table>
<thead>
<tr>
<th>Thickness [nm]</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>PCE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>12.5</td>
<td>0.62</td>
<td>0.65</td>
<td>5.0</td>
</tr>
<tr>
<td>55</td>
<td>14.4</td>
<td>0.62</td>
<td>0.65</td>
<td>5.8</td>
</tr>
<tr>
<td>60</td>
<td>15.0</td>
<td>0.62</td>
<td>0.65</td>
<td>6.0</td>
</tr>
<tr>
<td>65</td>
<td>15.8</td>
<td>0.62</td>
<td>0.66</td>
<td>6.5</td>
</tr>
<tr>
<td>70</td>
<td>15.9</td>
<td>0.62</td>
<td>0.65</td>
<td>6.4</td>
</tr>
<tr>
<td>100</td>
<td>14.9</td>
<td>0.62</td>
<td>0.60</td>
<td>5.5</td>
</tr>
</tbody>
</table>
\[J_{sc} \] was calculated by integrating the EQE spectrum with the AM1.5G spectrum.

Figure S13. (a) \(J-V \) characteristics under white light illumination and (b) EQE of the PDPPMT-2T:[70]PCBM (1:2) solar cells fabricated from toluene/DPE (2\%) solution with the different thickness.

Figure S14. (a) \(J-V \) characteristics in dark (dashed lines) and under white light illumination (solid lines) and (b) EQE of the optimized polymer:[70]PCBM (1:2) solar cells fabricated from CHCl_3/\(\alpha \)-DCB (10\%) (PDPPTT-2T) or CHCl_3/DPE (2\%) (PDPPMT-2T) solution.

Table S9. Characteristics of DPP polymer:[70]PCBM (1:2) inverted solar cells spin coated from xylene or 1,2,4-trimethylbenzene (TMB) with or without DPE as additive. The thickness of active layers is 60 – 70 nm.
$a J_{sc}$ was calculated by integrating the EQE spectrum with the AM1.5G spectrum.

Figure S15. (a), (c) J-V characteristics in dark (dashed lines) and under white light illumination (solid lines) and (b), (d) EQE of the optimized polymer:[70]PCBM (1:2) solar cells fabricated from xylene/DPE or TMB/DPE solution. (a), (b) for PDPPTT-2T:[70]PCBM and (c), (d) for PDPPMT-2T:[70]PCBM.

9. Morphology characterization of blend films

Figure S16. 2D-GIWAXS patterns of (a) PDPPTT-2T:[70]PCBM (1:2) and (b) PDPPMT-2T:[70]PCBM thin films spin coated from toluene/DPE solution.
Figure S17. AFM height images (3 μm × 3 μm) of the polymer:[70]PCBM thin films spin coated from (a) CHCl₃/o-DCB (10%), (b) CHCl₃/DPE (3%), (c) toluene/DPE (2%) and (d) toluene/DPE (2%). (a) and (c) for PDPPTT-2T, (b) and (d) for PDPPMT-2T. The root-mean-square (RMS) roughnesses are 1.17 nm, 0.93 nm, 1.68 nm and 1.49 nm for (a) – (d).

Figure S18. Characteristics of the polymer:[70]PCBM (1:2) thin films. (a) and (b) 2D-GIWAXS patterns, and (c) and (d) the out-of-plane (OOP) and in-plane (IP) cuts of the corresponding 2D-GIWAXS patterns. (e) and (f) Bright field TEM image (1.2×1.2 μm²). (a), (c) and (e) PDPPTT-2T:[70]PCBM spin coated from CHCl₃/o-DCB (10%). (b), (d) and (f) PDPPMT-2T:[70]PCBM spin coated from CHCl₃/DPE (3%).

10. References