1/f Noise as a diagnostic tool to investigate the quality of isotropic conductive adhesive bonds

Citation for published version (APA):

DOI:
10.1109/6144.796549

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
1/f Noise as a Diagnostic Tool to Investigate the Quality of Isotropic Conductive Adhesive Bonds

L. K. J. Vandamme, Marie Geneviève Périchaud, E. Noguera, Yves Danto, and Ulrich Behner

Abstract—Reliability assessment of conductive adhesive bonds by thermo-cycling up to 830 cycles is time consuming, and does not give much information about the details of the onset of degradation. There is a need for faster tests giving more details about degradation. In this paper, low frequency noise of such contacts is investigated. 1/f Noise stems from conductance fluctuations. The observed voltage noise is enhanced due to current crowding in the electrical contacts on a microscopic scale. In this research contact bonds were made and compared of isotropic conductive adhesives from three suppliers. The 1/f noise of the contact resistance can be interpreted in terms of a multispot contact behavior. We investigated the relative noise C versus contact resistance R in two ways:

1) after an increasing number of thermo-cycles;
2) after increasing mechanical stress.

The results often show an increase in relative noise of three orders of magnitude for poor quality polymer bonds. A maximum increase of one order of magnitude is observed for the best quality conductive adhesive. The contact resistance increases by a factor 1.7 and not more than 1.14 for the poor and best quality bonds, respectively. From the analysis based on a noise model for multispot contact, the onset of delamination can be characterized as a reduction in electrical contact area A_. The relative noise is proportional to A_−γ/2. The surprising result is that samples submitted to a mechanical stress show pictures similar to thermocycled samples. Thermo-cycling with less than 200 cycles leads to less noise, an increase in electrical contact area, and hence a contact improvement. This behavior is understood. Noise analysis under mechanical stress of nondegraded or slightly cycled bonds is a fast diagnostic tool for reliability characterization. The degree of delamination is expressed quantitatively by the D-factor, D = A_ max/A_ min ≡ (C_max/C_min)^γ/δ.

Index Terms—Conductive adhesive, contact resistance, electrical contact, failure analysis, fault diagnosis, 1/f noise, reliability.

I. INTRODUCTION

A N OVERVIEW of recent developments in polymeric electronics packaging and conductive adhesive interconnection technologies can be found in the June 1998 issue of the IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY—PART A. Today, anisotropic conductive adhesives are the dominant connection technique for large area liquid crystal displays (LCD) [1]. Now there is growing interest in using conductive adhesives in, for example, automotive applications for interconnection between components and printed circuit boards for high current levels. Their reliability is normally evaluated during accelerated life tests through electrical and mechanical measurements [2]. By thermal cycling the contact resistance increases by a factor 1.7 and not more than 1.14 for the poor and best quality bonds respectively. Thermal cycle aging up to 800 cycles between −55 and 125 °C is a standard life test and takes about four weeks, making it rather time-consuming.

However, for rather good bonds, the increase in interconnection resistance often is very weak, which makes quality assessment very difficult [2]. 1/f noise in contact resistance often is a better diagnostic tool for degradation than resistance measurements only [3], [4]. Behner et al. [5], [6] used 1/f noise measurements to characterize conductive adhesive interconnections for the first time.

Here, we investigate the 1/f noise of contact resistances made by isotropic conductive adhesives focusing on reliability during lifetime stresses. The analysis of the results is based on a model for multispot contacts in [7]. In a special case of multispot contacts with k-conducting spots, with diameter 2a, far apart from each other, k and a can be calculated [7], [8].

The noise of twenty interconnections in series was investigated to test:

1) whether or not the 1/f noise is a useful diagnostic tool for reliability assessment;
2) whether or not a 1/f noise analysis gives more detailed information on the real electrical area and the onset of delamination in thermo-cycled interconnections;
3) whether or not the amount of increase of 1/f noise measured under mechanical stress on nondegraded or slightly cycled interconnections can be used as a criterion to differentiate between reliable and unreliable conductive adhesives.

II. SAMPLE DESCRIPTION

The conductive adhesives of three different suppliers were investigated. All have Ag grains. The DM4030 SR, Polysolder, and Ablebond have resistivities of 1.1 × 10−4Ωm, 2 × 10−4Ωm, and 5 × 10−4Ωm, respectively. The details from microscopic
analysis and pictures of cross-sections can be found elsewhere [2]. The Ablebond has a grain size in the range of about 1–50 μm. The others two have grain sizes in the range of 1–10 μm. The DM4030 SR is a product from DIEMA T Inc., with longer polymer chains in the matrix and a less homogeneous distribution of silver grains than in the Polysolder [2]. The cross-sections of the conductive adhesive bonds that can be found in Fig. 1(a) and (b) show perspective views of a bonded bridge, with the details of the adhesive contact area $A = 0.5 \text{ mm} \times 1.6 \text{ mm}$ and thickness of the conductive adhesive $t = 20 \mu\text{m}$.

In our configuration, ten metal bridges are bonded on a goldplated pattern on a printed circuit board to study the average resistance and noise behavior of 20 bonds in series. The width of the metal bridge is 1.6 mm.

III. NOISE MEASUREMENT SET-UP

In order to be able to measure the noise of conductive adhesive bonds with resistance values between 14 and 18 mΩ, we chose to put ten bonded bridges in series, resulting in 20 bonds in series. The total resistance of a line R_P then becomes approximately 0.45 Ω. The applied constant current through R_{P1} and R_{P2} was kept below 200 mA, which results in macroscopic current densities in the bonds below $J = 25 \text{ A/cm}^2$. The real current density is at least ten times higher, because the real electrical contact area A_e is maximally 10% of the apparent contact area A. This has also been discussed by Kotthaus et al. [9]. The maximum allowable current density is 100 A/cm2 in order to avoid degradation. We have chosen a bridge measurement system consisting of $R_{P1} \approx R_{P2}$ as shown in Fig. 2. The advantages of putting 40 bonds in series $(0.8 \Omega < R_{P1} + R_{P2} < 1 \Omega)$, as shown in Fig. 2, are twofold.

1) Thermal noise of $R_{P1} + R_{P2}$ is slightly higher than the background noise of the amplifier with its equivalent noise resistor R_{eq} of 0.8 Ω for the range 3 Hz < f < 15 kHz.

2) Direct measurement of the average behavior of 40 bonds is possible.

The bridge is balanced with R_{v1} and R_{v2} in such a way that $R_{v1} \times R_{v2} = R_{v2} \times R_{v1}$. The advantages of bridge measurements are described in [10]. By using a Wheatstone...
bridge configuration, the parasitic current noise, e.g., from the batteries, the disturbance due to temperature drift or fluctuations common to all elements of the bridge can be regarded as common mode signals. Common mode signals have no influence on the measurements if the bridge is in perfect balance [10]. Between \(Q_1 \) and \(Q_2 \) an ultra-low-noise transformer-amplifier from Stanford Research (SR554) is used as shown in Fig. 2. The dc power supply \(U \) is a 12 V lead-acid battery. The series resistance \(R_{V1} \) and \(R_{V2} \) are well shielded; they are type 1408 two-decade bank resistor from Burster Prazisions-messtechnik with a resolution down to 0.01 \(\Omega \) and negligible contact and resistance noise. The values of \(R_{V1} \) and \(R_{V2} \) are chosen to be at least 100 times larger than the sample resistors \(R_{P1} \) and \(R_{P2} \) to realize a constant current. Values for \(R_{V1} \) and \(R_{V2} \) are about 60 or 100 \(\Omega \) for noise measurements at current levels of about 200 and 120 mA, respectively. The decade bank is used to realize a voltage difference \(V_{Q1} - V_{Q2} \) across \(Q_1Q_2 \) as low as a few \(\mu \)V. No blocking capacitors in series with the transformer are used in order to realize the lowest possible cut-off frequency. With a source impedance of about \(R_{P1} + R_{P2} \approx 1 \Omega \) the low pass cut-off frequency is less than 1 Hz. Replacing the battery by a short circuit results in a background spectrum as shown in Fig. 3(a). This background level of 4 \(kT \) is put in the memory of a HP 35665A spectrum analyzer. The spectral values obtained with a current through the sample are corrected for the background. The corrected spectra in all samples show a \(1/f^\gamma \) noise with a frequency index \(1 < \gamma < 1.2 \). We call it \(1/f \) noise. Immediately after applying mechanical stress the frequency index \(\gamma \) becomes larger than 1.3 due to drift; but then after a few minutes \(\gamma \) drops back down to 1.3 or less again. We tried to avoid transient phenomena. The contact noise of conductive adhesives at current levels lower than 120 mA can be measured with an ac excitation instead of a dc current [5], [6], [11]. All the fluctuations in the contact resistance \(R_{P1} \) and \(R_{P2} \) are transformed around the carrier frequency. Hence, low frequency fluctuations in the resistance values of \(R_{P1} \) and \(R_{P2} \) at for example \(f_L = 0.1 \) Hz are transformed into voltage fluctuations in the frequency range \(f_c = f_L \pm f_L \). This is far away from the frequency range, where the \(1/f \) background noise of the preamplifier becomes important, and far away from the frequency where the transformer shows its low pass cut-off frequency. A double lock-in amplifier followed by a dual channel FFT analyzer is often used to demodulate and get rid of the thermal noise [5], [6], [11].

IV. EXPERIMENTAL RESULTS

For two resistors with \(S_{R_{P1}} \approx S_{R_{P2}} = S_{R_{P}} \) and \(R_{P1} \approx R_{P2} = R_{P} \) in series as in Fig. 2, the observed voltage fluctuation \(S_{V_{1/f}} \) across \(Q_1Q_2 \) is doubled and given by

\[
S_{V_{1/f}} = 2(2R_{P})^2 \frac{S_{R_{P}}}{R_{P}} = \frac{2V^2C}{f}. \tag{1}
\]

The thermal noise becomes

\[
S_{V_{th}} = 4kT(2R_{P}). \tag{2}
\]

The corner frequency \(f_c \) for which it holds that \(S_{V_{th}} = S_{V_{1/f}} \) is given by

\[
f_c = \frac{f^2R_{P}C}{4kT} \tag{3}
\]

where \(S_{V_{1/f}} \) is due to \(1/f \) noise in the bond resistances represented by \(S_{R_{P}} \), and \(C \) is the relative \(1/f \) noise in the sample defined by \(C = fS_{R}/R^2 \) [3]. This equation gives an indication of the current needed to have a reliable \(1/f \) spectrum over a large enough frequency range. The corner
frequency f_c is independent of the number of bonds in series if the noise of the preamplifier can be ignored. From (1) we see that C values down to 10^{-17} are detectable applying currents up to 200 mA and accepting f_c values of about 12 Hz. In Fig. 3(a), two S_V spectra are shown for two Polysolder samples submitted to two different forced life tests by thermo-cycling (450 and 830 cycles). In Fig. 3(b), the relative noise versus the number of thermo-cycles is shown for the Polysolder bond. The resistor increase by thermal cycling is a factor 1.7 and not more then a factor 1.14 for the poor and best quality joints, respectively. In Fig. 4(a), the relative noise, C, versus resistance ($R = R_P$) is shown after different numbers of thermo-cycles for three conductive adhesives. In Fig. 4(b), C versus R due to an applied mechanical stress is shown. The relative noise is calculated from experimentally observed noise spectra at $f = 10$ Hz, as in Fig. 3(a) with [see (1)]

$$C = \frac{1}{2} \frac{f S V}{\sqrt{V}}.$$

If we consider N conductive adhesive bonds in series in R_P, which are uniform in resistance and $1/f$ noise (statistical properties), then for one single bond the resistance R_b and the relative noise C_b are given by

$$R_b = R_P/N \quad \text{and} \quad C_b = CN.$$

Here we ignore the $1/f$ noise contributions of the metal bridges and the metal strips on the printed circuit board, which are negligible [3]. The values of R_b and C_b are inversely proportional to the physical area of the bond A (the so-called apparent area) which is always larger than the real electrical contact area. If the thickness of the adhesives is the same and we can assume statistical uniformity of grain contacts then a bound can be represented by characteristic values for resistance and relative noise, R_{us} and C_{us}

$$R_{us} = R_b A \quad \text{and} \quad C_{us} = C_b A.$$

All our samples showed a contact resistivity $R_{us} = 2 \Omega \text{cm}^2$, which is rather high compared with what is achievable in micro-electronic devices where uniform ohmic metal-semiconductor contact resistivities can be as low as $10^{-5} \Omega \text{cm}^2$. The relative noise C versus the number of thermo-cycles shows a minimum at about 50 cycles for the Ablebond and DM4030 SR. C_{min} is about 5.5 times smaller than the C_0-value for a non-degraded sample. This improvement of the noise after some thermo-cycling is due to a decrease in current density at a microscopic scale [3]. Even after manufacturing curing of the bond, thermal cycling still results in a shrinking of the polymer matrix. Another possible mechanism for the decrease in C while R remains about constant is the wearing away of the smallest contact asperity spots as the particles slide relative to one another as they are strained to form larger contact spots that have less noise. The so-called coalescence is discussed in [12] and [13]. These mechanisms can be considered as a kind of

Fig. 4. (a) C versus R: Ablebond (■), Polysolder (○), DM4030 SR (▲). A power law $C \propto R^m$ can approximate the results. From the noise model for multispot contacts it follows that a high value for m and a small range in C after a forced life test are indicators of a high reliability. (b) C versus R for DM4030 SR (▲, ○) and Polysolder (●, ■) under mechanical stress with the maximum stress corresponding to $p = 3$ mm. The first subscript in C indicates the number of thermo-cycles before applying mechanical stress. A higher C-value and a lower m-value for samples submitted to more cycles points to a lower electrical contact area A_e for such bonds.
TABLE I

<table>
<thead>
<tr>
<th></th>
<th>DM4030SR</th>
<th>Poly solder</th>
<th>Able bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0</td>
<td>1×10^{16}</td>
<td>2×10^{16}</td>
<td>1.5×10^{16}</td>
</tr>
<tr>
<td>C_{min}</td>
<td>$C_{00} = C_0/5.5$</td>
<td>$C_{sum} = C_0/12$</td>
<td>$C_{a0} = C_0/5.5$</td>
</tr>
<tr>
<td>m</td>
<td>25</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>C_m</td>
<td>10</td>
<td>3 x C_0</td>
<td>3 x C_0</td>
</tr>
<tr>
<td>C_{m+3}</td>
<td>$C_{100,mc} = 1.8 \times C_{100,mc,0}$</td>
<td>$C_{100,mc} = 5.7 \times C_{100,mc,0}$</td>
<td>$C_{100,mc} = 2.8 \times C_{100,mc,0}$</td>
</tr>
</tbody>
</table>

The Poly solder conductive adhesive [see Fig. 3(b)] shows a minimum C value at about 200 thermo-cycles, with C_{min} about a factor 12 lower than the starting value, C_0. For this reason the C values of nondegraded samples are not presented in Fig. 4(a). A measuring procedure on one and the same sample will result in less scatter. Here the results are presented from different samples of the same batch each submitted to different thermo-cycles, which explains some scatter in the results.

In the next section, it will be explained that a high value of the exponent m in the C versus R^m relation and a small increase in C are both quality indicators.

The experimental results are summarized in Table I. The average value of the relative noise for nondegraded samples, C_0, is given in the first row. The minimum values of the relative noise versus number of thermo-cycles are indicated in the second row. C_{min} is compared with C_0. The subscript x in C_0 shows the number of thermo-cycles needed to obtain this minimum. The third row shows the relative noise after 830 thermo-cycles. The fourth row shows the value of the exponent m in the power law $C \propto R^m$. The fifth row shows the increase in noise on nondegraded samples under static mechanical stress of one cycle with $p_{max} = 2$ mm. The first index in C indicates the number of thermo-cycles of the sample (zero for row five). The sixth row shows the noise increase for a mechanical stress corresponding to $p_{max} = 3$ mm. Part of the scattering in the results is due to deviations in homogeneity between bonds. One out of 20 bond contacts with a resistance of 30 mΩ, instead of the average value of 16 mΩ, can result in a relative noise two orders of magnitude higher than for homogeneous bonds in series. After replacing the weak bond by a short circuit in the resistance path, normal values for the noise are again observed. The anomalous value is not represented in Fig. 4(a).

The Poly solder showed the highest C value of all the nondegraded samples, which were all between 10^{-16} and 2×10^{-16}. This indicates that noise measurements on nondegraded samples without application of mechanical stress are less sensitive as a diagnostic tool for quality assessment (see first row of Table I). The results under mechanical stress, however, show larger noise increase factors and reveal the advantages of noise measurements under mechanical stress as a diagnostic tool [see fifth and sixth row of Table I and Fig. 4(b)]. The noise increase factors are one ten and three for $p = 2$ in DM4030SR, Poly solder, and Able bond, respectively. This is an indication for a reduction of the electrical (internal) contact area by a factor one (no reduction at all); $10^{2/3}$; and $3^{2/3}$ for DM, Poly solder, and Able bond, respectively. This will be explained by (13) in the next section.

V. MODEL FOR THE NOISE IN CONDUCTIVE ADHESIVE BONDS

The experimentally observed resistance value of a single conductive adhesive bond is at least two orders of magnitude higher than the simple relation $R = \rho_{ad} t / A$ predicts, where ρ_{ad} is the resistivity of the conductive adhesive, t the thickness, and A the area of the conductive adhesive layer. This discrepancy of at least a factor of 100, which is often observed, can only be explained by considering the microscopic details of the contact between conductive adhesive layer and the two metal layers. We assume a multispot contact behavior on both sides of the conductive adhesive as shown in Fig. 5(a) and (b). The semicircles in Fig. 5(a) indicate the cross-section of the equipotentials around the narrow conducting spots on the metal bridge and printed circuit board side. Fig. 5(b) shows the top view of a multispot contact; for simplicity it is assumed to be completely regular. The patchiness parameters k and q are the number of spots and the spot radius, respectively, while $2l$ is the distance between the spot centers. The resistance and $1/f$ noise were calculated for a general multispot contact [7].

The electrical contact area $A_c = k \pi b^2$ is smaller than the apparent conducting area A, which explains the discrepancy between experimentally observed resistance and calculated resistance from $\rho_{ad} t / A$. The characteristic length b with $\pi b^2 = A$ will show up in the equations for resistance and noise.

Formulae for the contact resistance of an assembly of α spots were previously published [7], [8], [12], [14], [15]. Multispot contacts can be simplified in two limiting cases and a transition region henceforth denoted by region II contact.

1) Region I contact has a high patchiness density ($0.25 < A_c / A < 1$). In such almost uniform contacts there is hardly an evolution in resistance and noise for a change in α and k values.

2) Region III contact has a low patchiness density ($A_c / A < 0.25 \times 10^{-2}$.)

The general relation for the resistance of a multispot contact can be written as follows [7, (1)]:

$$R = \frac{\rho_{ad}}{2 \pi b} \left[\left(\frac{2}{\alpha} - 1 \right) \frac{l}{b} + 1 \right]$$

(7)

where b is the radius of the circular multispot contact or the radius of a circle with the same area as the apparent area A of the contact ($b = (A/\pi)^{1/2}$). That relation is also applicable to contacts with slightly unequal spots that are spread over the apparent contact area [15].
The general relation for the relative noise of a multispot contact is given by [7, eq. (3)]

\[
C = \frac{\alpha}{10\pi b^2 n}\left[\frac{(l/b)(l/\alpha)^2 - 1 + 1}{((l/b)(l/\alpha - 1) + 1)^2}\right].
\]

(8)

For (7) and (8) it holds that \(l/b = k^{-1/2}\) and \(l/\alpha = (b/\alpha)k^{-1/2}\) and \(a/l = (A_e/A)^{1/2}\). From (7) and (8), simplified equations can be derived for regions I, II, and III [7], [12]. From our analysis it follows that conductive adhesive bonds are region II contacts. A region II contact with \(2 < l/\alpha < k^{1/3}\) is a transition region between regions I and III. The \(a/l\) range results in an \(A_e/A\) ratio of less than 25% for \(k > 20\). \(C\) is very sensitive but \(R\) is less sensitive to changes in \(l/\alpha\).

The degradation process is characterized by onset of delamination leading to a reduction in electrical contact area. Here we distinguish between two types of onset of delamination.

1) Degradation, with \(k\) constant and \(a\) decreasing.

2) Degradation with \(a\) constant and \(k\) decreasing.

A small decrease in \(A_e = k\pi\alpha^2\) will result in a \(C\) versus \(R\) that can be approximated by a power law \(C \propto R^m\) with typical values for the exponent \(m \gg 3\). The exponent \(m\) can be as high as 25 as is shown in the calculated \(C\) versus \(R\) plot in Fig. 6(a). The general relations for noise and resistance applied to region II multispot contacts, as derived in [7], explain why \(1/f\) noise can be successfully used as a diagnostic tool to investigate the quality and robustness for degradation by thermo-cycling and mechanical stress. The change in \(A_e\) is easily observable in \(C\) but not in \(R\). Fig. 6(a) shows the onset of delamination in a multispot contact where \(k\) remains constant and \(A_e\) changes by a reduction in spot size. Fig. 6(b) shows the effect of an onset of delamination by a change in \(k\) and hence in the average value of \(l\) while \(a\) remains constant. The transition between region II (high \(m\)-values) and region III contacts (low \(m\)-values) becomes clear. Thermo-cycling or mechanical stress provoke degradation resulting in an onset of delamination and a reduction of \(A_e\). The plots in Fig. 6(a) and (b) are calculated with (7) and (8) in arbitrary units. The experimental results obtained on the three different conductive adhesives shown in Fig. 4 display the same behavior as the simulated ones in Fig. 6 for the onset of delamination.

Under the assumption \(l/\alpha \geq 10\), (7) and (8) can be approximated by [7]

\[
R = \rho_{aoa}/k\pi \alpha a',
\]

(9)

\[
S_R = C' \propto \frac{1}{R^{5/2}};
\]

(10)

From these two independent equations \(k\) and \(a\) can be calculated from experimental results if all other parameters are known [8]. The onset of delamination with \(k\) constant for a region III multispot contact results in a \(C \propto 1/R^3\) behavior as can be seen from (9) and (10). The onset of delamination with \(a\) constant results in \(C \propto R\) or \(m = 1\) as can be seen from (9) and (10).

Uniform contacts without current crowding on a microscopic scale and suffering from delamination due to a reduction in \(A_e\) will show \(m = 1\) because

\[
R \propto 1/A;
\]

\[
C' \propto 1/A
\]

(11)

From the experimental results in Fig. 4(a) the exponent \(m\) in the power law \(C \propto R^m\) is well above 3, hence our conductive adhesive bonds are neither region III multispot contacts nor uniform contacts but region II contacts. For region I contacts neither \(C\) nor \(R\) changes with small changes in \(A_e\). Hence, such contacts cannot be characterized by a power law with a specific value for \(m\).

The onset of delamination in region II multispot contacts can be studied in a quantitative way for degradation of type (i) \((\alpha\)-reduction only) and type (ii) \((k\)-reduction). For a region II contact we find from (7) and (8) that \(C \propto A_e^{-5/2}\) holds, and hence for the ratio between the maximum value and the minimum value for the relative noise after a degradation process, we have

\[
\frac{C_{\text{max}}}{C_{\text{min}}} \propto \left(\frac{A_{e_{\text{max}}}}{A_{e_{\text{min}}}}\right)^{5/2}.
\]

(12)

We choose for the notation where the maximum amount of noise \(C_{\text{max}}\) corresponds with the minimum value of electrical contact area \(A_{e_{\text{min}}}\) and vice versa. Thus from noise measurements we can quantitatively express the degree of delamination by a \(D\)-factor defined as

\[
D = \frac{A_{e_{\text{max}}}}{A_{e_{\text{min}}}} \propto \left(\frac{C_{\text{max}}}{C_{\text{min}}}\right)^{2/5}.
\]

(13)

In Fig. 7(a), \(C\) versus \(A_e/A\) and \(R\) versus \(A_e/A\) are plotted for the region II multispot contact with an onset of delamination by \(\alpha\)-reduction only. In Fig. 7(b), \(C\) versus \(A_e/A\) and \(R\) versus...
VI. Conclusion

The classical forced life test by thermo-cycling is an important, although time-consuming way of testing, and it gives few details about the onset of degradation. The contact resistance increases by a factor 1.7 and not more than 1.14 for the poor and best quality bonds, respectively. Therefore we investigated the low frequency (1/f) noise of the contact resistance of different conductive adhesive bonds. The observed increase in relative resistance noise \(C\) versus contact resistance \(R\) with increasing number of thermo-cycles is a very good indicator for the reliability of conductive adhesives. Even experimentally observed \(C\) versus \(R\) from nondegraded or slightly degraded bonds under mechanical stress can be used as a fast diagnostic tool. However, neither the \(C\)-value nor the \(R\)-value measured before life tests (zero thermo-cycles) are a strong indicator for region II multispot contact behavior.

\[A_c/A \] are plotted for the region II multispot contact with an onset of delamination by \(k\)-reduction for a reduction in \(A_r\) by a factor 10. A power law \(C \propto (A_c/A)^{-\beta}\) with \(\beta\) slightly less than 5/2 can summarize the simulation in Fig. 7(a) and (b). The calculations in Fig. 7(a) and (b) are made in arbitrary values for \(C\) and \(R\). Again the relative noise \(C\) is far more sensitive to changes in the real electrical contact area \(A_c\) than the resistance value \(R\) as can be seen from Fig. 7(a) and (b).

The analysis of our results is based on a general model for the resistance and noise in multispot contacts formerly published by Vandamme and Tijburg [7]. The weak dependence of \(R\) and the very strong dependence of \(C\) on changes in the real electrical contact area \(A_c = k \pi a^2\) are a typical behavior of the so-called region II multispot contact. For a region II contact it holds that the ratio between the average distance between \(a\)-spots and their diameter \(2a\) is in the range \(2 < l/\alpha < k^{3/2}\) with \(k\) the number of spots in parallel. This is equivalent to a ratio between electrical contact area to the apparent area, \(A_c/A\) of at most 25%, but higher than 0.25%.

The degree of increase in noise and degree of reduction in \(A_c\) due to thermo-cycling or mechanical stress allows us to assess the quality of conductive adhesive bonds. The degree of delamination is quantitatively expressed by the \(D\)-factor, \(D = A_{c\text{max}}/A_{c\text{min}} \approx (C_{\text{max}}/C_{\text{min}})^2/5\). Two types of onset of delamination can be considered: \(a\)-reduction only or \(k\)-reduction. The analysis of relative noise versus contact resistance in terms of the value of the exponent \(m\) in the power law \(C \propto R^m\) gives a less time-consuming and more sensitive criterion for quality assessment. The high values for \(m (6 < m < 25)\) are a strong indication for region II multispot contact with an onset of degradation due to a shrinking of the electrical contact area \(A_c\).

Good contacts show a small amount of increase in \(C\) and a high value of the exponent \(m\). This is equivalent to contacts which generate more noise then this is not necessarily an indication of being a bad joint.
exponent \(m = 1 \). Delamination for a region III contact with an \(\alpha \)-reduction only results in \(m = 3 \). This has not been observed under mechanical stress or in samples after thermo-cycling [see Fig. 4(a) and (b) with \(m > 3 \)]. This means that the investigated conductive adhesives bonds are region II contact.

From the analysis of a \(C \) versus \(R \) plot it is hard to distinguish between onset of delamination by an \(\alpha \)-reduction only or by a \(k \)-reduction. Both types of delamination result in a proportionality of about \(C \propto A_k^{5/2} \).

The grain size in the conductive adhesive is similar to the thickness of the bond (\(t = 20 \mu m \)). The contact area \(A \) between bond and pad consist of a large number of contacting grains in parallel, resulting in a real electrical area \(A_e \). A minority of these conducting paths consists of a pair of grains in series. If such a grain-grain contact breaks, then the total number of multispot contacts in parallel is reduced by at least one. Making grain–grain contacts can then result in an increase in \(k \) and a reduction in noise. This is a possible explanation for the annealing observed after about 100 thermo-cycles. From the \(C \) versus \(R \) plots it is hard to distinguish between a reduction in \(A_e \) at the conductive adhesive interface with the pad or at the grain–grain contact.

The Ablebond conductive adhesive shows the lowest value of the exponent \(m \) in the \(C \) versus \(R \) plot in Fig. 4(a), which points to a multispot contact with fewer contacts in parallel. The grain size of the silver particles in the Ablebond is larger than in the other two conductive adhesives, which makes the observed trend from noise analysis explicable. The Polysolder shows a high [factor 100 in \(C \); see Fig. 4(a)] increase in relative noise. This points to a reduction in \(A_e \) by a factor 6.3 (\(D = 6.3 \)). From our analysis DM4030 SR has the best reliability and the lowest \(D \)-factor is observed (\(D = A_{\text{max}}/A_{\text{min}} = 2.2 \)). Considering the small range in relative noise and the high value for the exponent \(m \) in Fig. 4(a) and (b), we consider the DM4030 SR conductive adhesive to be the best and the Polysolder to be the poorest. Hence, the \(1/f \) noise analysis of the contact resistance of conductive adhesives bonds is a quantitative tool for investigating the quality of isotropic bonds.

Acknowledgment

The authors wish to thank C. J. A. Martens and H. W. Koelink, Mechanical Workshop, Department of Electrical Engineering, Eindhoven University of Technology, for realizing the mechanical measuring set-up to place the samples under mechanical stress.

References

L. K. J. Vandamme was born in De Panne, Belgium, in 1943. He received the B.S. degree from the University of Oostende, Belgium, in 1965, the M.S. degree in electrical engineering (cum laude) from the Delft University of Technology, The Netherlands, in 1971, and the Ph.D. degree from the Eindhoven University of Technology, The Netherlands, in 1976.

He has done research on 1/f noise in electrical contacts, and thin- and thick-film resistors and electronic devices. His current areas of research interest are 1/f noise in sub-micron MOSFET’s, bipolar transistors, and conductive adhesives. He has authored or co-authored more than 120 publications. From 1981 to 1982, 1987, and 1992, he was a Visiting Professor with the University of Science and Technology, Montpellier, France. He was with the University of Bordeaux, France, in 1998, and the University of Uppsala, Sweden, in 1999.

U. Behner was born in Wuppertal, Germany, in 1969. He received the Vordiplom degree from the University of Bonn, Bonn, Germany, in 1991, the diploma degree in physics with x-ray diffraction studies on Si/Ge superlattices from the Brunswick University of Technology, Germany, in 1995, and is currently pursuing the Ph.D. degree in electrical engineering at the Darmstadt University of Technology, Germany.

He is with the Development Project Management of Electronic Stability Program for Automotive Electronic Control Units for Automotive Electronic Stability Program (ESP) and is a Technology and Product Planning Coordinator for electronic control units in automotive applications, Robert Bosch GmbH, Reutlingen, Germany.

Mr. Behner is a member of the German Physical Society.

E. Noguera was born in Sabadell, Spain. She received the M.S. degree from the Polytechnic University of Catalonia, Spain, in 1999.

Yves Danto is head of the Component Reliability Group, Laboratory of Microelectronics, Universite Bordeaux I, Talence Cedex, France. He is involved in studies developed to new technologies evaluation, failure mechanisms, and modeling of component behaviour under stress. The field of his activity is ranging from semiconductor technologies to assembling technologies including BGA and flip-chip.

Marie Geneviève Périchaud was born in France in 1971. She received the M.S. degree and the DEA degree from the University of Bordeaux, France, in 1994 and 1995, respectively, where she is currently pursuing the Ph.D. degree.

She joined the Laboratoire de microelectronique IXL, Universite Bordeaux I, Talence, France, in 1995. Her research topics concern the reliability of conductive adhesives aimed to replace solder joints in SMT assemblies.