SPOR-Report 2000-01

Sample size and the accuracy of a consistent estimator

P. van der Laan, C. van Eeden

SPOR-Report
Reports in Statistics, Probability and Operations Research

Eindhoven, January 2000
The Netherlands
Sample size and the accuracy of a consistent estimator

Paul van der Laan and Constance van Eeden

Eindhoven University of Technology and The University of British Columbia

Key words and phrases: Peakedness, consistency, logconcave densities, strong unimodality.

ABSTRACT

Birnbaum (1948) introduced the notion of peakedness about θ of a random variable T, defined by $P(|T - \theta| < \varepsilon)$, $\varepsilon > 0$. What seems to be not well-known is that, for a consistent estimator T_n of θ, its peakedness does not necessarily converge to 1 monotonically in n. In this article some known results on how the peakedness of the sample mean behaves as a function of n are recalled. Also, new results concerning the peakedness of the median and the midrange are presented.

1 Introduction

Suppose X_1, \ldots, X_n are a sample from a distribution with finite variance and one wants to estimate $\mu = \mathbb{E}X_1$ based on (X_1, \ldots, X_n). Then it is, of course, well-known that $\bar{X}_n = \frac{1}{n}\sum_{i=1}^{n} X_i$ is a consistent estimator of μ, i.e., for all $\varepsilon > 0$,

$$p_{\bar{X}_n}(\varepsilon) = P(|\bar{X}_n - \mu| < \varepsilon) \to 1 \quad \text{as } n \to \infty.$$

What seems to be less well-known is that $p_{\bar{X}_n}(\varepsilon)$ does not necessarily converge to one monotonically in n. Thus, judging the accuracy of \bar{X}_n by $p_{\bar{X}_n}(\varepsilon)$, $\varepsilon > 0$, a larger n might give a worse estimator.

In this article we first recall in Section 2 some known results on how $p_{\bar{X}_n}(\varepsilon)$ behaves as a function of n. Then, in Section 3, we present new results on this question for the case where the median or the midrange are used to estimate the median or the mean of X_1.

1
2 Results for \bar{X}_n and some generalizations

Birnbaum (1948) calls
\[p_T(\varepsilon) = P(|T - \theta| < \varepsilon) \quad \varepsilon > 0 \]
the peakedness (with respect to θ) of T and calls T more peaked than S when $p_T(\varepsilon) \geq p_S(\varepsilon)$ for all $\varepsilon > 0$. He proves several properties of the peakedness and gives, e.g., conditions under which, for the same θ and the same sample size, one of two sample means is more peaked than the other.

Proschan (1965) gives several results on the behaviour of $p_{T_n}(\varepsilon)$ as a function of n where T_n is a convex combination of X_1, \ldots, X_n, a sample from a distribution F. He supposes that F has a density which is symmetric with respect to θ and is logconcave on the support of F. In particular, Proschan shows that for such a distribution $p_{\tilde{X}_n}(\varepsilon)$ is, for each $\varepsilon > 0$, strictly increasing in n (i.e., of course, for those $\varepsilon > 0$ which are in the interior of the support of $X_1 - \theta$).

Proschan also gives an example where $p_{\tilde{X}_n}(\varepsilon)$ is not increasing in n. In fact, he gives a distribution for which X_1 is more peaked about 0 than $(X_1 + X_2)/2$. This distribution is the convolution of a distribution with a symmetric (about zero) logconcave density and a Cauchy distribution with median zero. Then, for ϕ strictly increasing and convex on $(0, \infty)$ with $\phi(x) = \phi(-x)$ for all x, $\phi(X_1)$ is more peaked with respect to zero than $(\phi(X_1) + \phi(X_2))/2$. Of course, for this case \bar{X}_n does not converge to zero in probability, so the result might not be too surprising. However, Dharmadhikari and Joag-Dev (1988, p. 171-172) show that, e.g., for the density
\[f(x) = \frac{1}{3}I(|x| \leq 1) + \frac{1}{18}I(1 \leq |x| \leq 4), \]
X_1 is more peaked with respect to zero than $(X_1 + X_2)/2$. And for this distribution (1.1) clearly holds.

The results of Proschan (1965) have been extended to the multivariate case by Olkin and Tong (1987) (see also Dharmadhikari and Joag-Dev (1988, Theorem 7.11)). Further, Ma (1998) generalized Proschan’s (1965) result to the case where the random variables X_1, \ldots, X_n are independent but not necessarily indentically distributed.

3 The case of the median and the midrange

Assume that X_1, \ldots, X_n is a sample from a distribution with a density and that n is odd. Let M_n be the median of X_1, \ldots, X_n. For this case, Karlin (1992) proved that, when the density of X_1 is symmetric around μ, M_{n+2} is more peaked around μ than M_n. We give, in Theorem 3.1 below, a more general and more precise form of this result with a different proof.
Theorem 3.1 Let \(X_1, \ldots, X_n \) be a sample from a distribution \(F \) with density \(f \). Let \(M = \{ x \mid F(x) = 1/2 \} \) be the set of medians of \(F \). Then, for \(n \) odd and \(m \in M \), the peakedness of \(M_n - m \) is strictly increasing in \(n \) when \(F(m - \varepsilon) < F(m + \varepsilon) \). For \(\varepsilon \) such that \(F(m - \varepsilon) = F(m + \varepsilon) = 1/2 \) the peakedness of \(M_n \) is independent of \(n \) and equal to 0.

Proof. Assume without loss of generality that \(m = 0 \). First note that, for \(x \in (-\infty, \infty) \),

\[
P(M_n > x) = \sum_{i=0}^{(n-1)/2} \binom{n}{i} F(x)^i(1-F(x))^{n-i} = 1 - \frac{1}{B\left(\frac{n+1}{2}, \frac{n+1}{2}\right)} \int_0^{\frac{F(x)}{2}} t^{\frac{n-1}{2}}(1-t)^{\frac{n-1}{2}} \, dt.
\]

So, as a function of \(y = F(x) \), \(0 < y < 1 \),

\[
\frac{d}{dy} P(M_n > x) = -\frac{y^{\frac{n-1}{2}}(1-y)^{\frac{n-1}{2}}}{B\left(\frac{n+1}{2}, \frac{n+1}{2}\right)}.
\]

Putting \(Q_n(y) = P(M_n > x) - P(M_{n+2} > x) \), this gives

\[
\frac{d}{dy} Q_n(x) = \frac{(n+2)!}{\left(\frac{n+1}{2}\right)!} y^{\frac{n+1}{2}}(1-y)^{\frac{n+1}{2}} - \frac{n!}{\left(\frac{n-1}{2}\right)!} y^{\frac{n-1}{2}}(1-y)^{\frac{n-1}{2}}
\]

\[
= y^{\frac{n-1}{2}}(1-y)^{\frac{n-1}{2}} \frac{n!}{\left(\frac{n+1}{2}\right)!} \left((n+1)(n+2)y(1-y) - \left(\frac{n+1}{2}\right)^2 \right).
\]

This last expression is, for \(0 < y < 1, > 0, = 0, < 0 \) if and only if

\[
G(y) = -y^2 + y - \frac{n+1}{4(n+2)} = \frac{1}{4(n+2)} - (y - \frac{1}{2})^2 \left\{ \begin{array}{ll} > & 0, \\ = & 0, \\ < & 0, \end{array} \right. \]

which is equivalent to

\[
\left| y - \frac{1}{2} \right| = \left\{ \begin{array}{ll} < & \frac{1}{2} \sqrt{(n+2)^{-1}}, \\ > & \end{array} \right. \]

So, \(Q_n(y) \) is increasing on \(\left(\frac{1}{2} - c, \frac{1}{2} + c\right) \) and decreasing on \((0, \frac{1}{2} - c) \) and on \((\frac{1}{2} + c, 1) \). Combining this with the fact that, for all \(n \),

\[
P(M_n > x) = \left\{ \begin{array}{ll} 1 & \text{for } y = 0, \\ \frac{1}{2} & \text{for } y = \frac{1}{2}, \\ 0 & \text{for } y = 1, \end{array} \right.
\]

3
shows that

\[P(M_n > x) - P(M_{n+2} > x) \begin{cases} > 0 & \text{for } x \text{ such that } \frac{1}{2} < F(x) < 1 \\ = 0 & \text{for } x \text{ such that } F(x) = 1/2 \\ < 0 & \text{for } x \text{ such that } 0 < F(x) < \frac{1}{2}. \end{cases} \]

This shows that for \(x \geq 0 \), i.e. for \(x \) such that \(F(-x) \leq 1/2 \leq F(x) \),

\[P(\{|M_{n+2}| < x\} - P(\{|M_n| < x\} = \]

\[P(M_n > x) - P(M_{n+2} > x) - [P(M_n > -x) - P(M_{n+2} > -x)] \]

\[> 0 \quad \text{if } F(-x) < F(x) \]

\[= 0 \quad \text{if } F(-x) = F(x), \]

which proves the result. \(\square \)

Note, from Theorem 3.1, that the conditions on \(F \) for the median to have increasing peakedness in \(n \) are much weaker than those for the mean. Other than the obvious condition that not both \(m + \varepsilon \) and \(m - \varepsilon \) are medians of \(F \), all one needs for the median to have increasing peakedness with respect to an \(m \in \mathcal{M} \) is a density, while for the mean a logconcave symmetric density is needed in the proofs. But in order for the median to be a consistent estimator of the population median, one needs a unique median \(m \) and a density which is positive in a neighbourhood of \(m \). Under this condition the peakedness of the median with respect to \(m \) is strictly increasing in \(n \) for all \(\varepsilon > 0 \).

We do not know whether Theorem 3.1 holds for \(n \) even.

Now take the case of a sample \(X_1, \ldots, X_n \) from a uniform distribution on the interval \([\theta - 1, \theta + 1]\) and let \(S_n \) be the midrange of this sample, i.e.

\[S_n = \frac{1}{2} \left(\min_{1 \leq i \leq n} X_i + \max_{1 \leq i \leq n} X_i \right). \]

Then the following theorem holds.

Theorem 3.2 The peakedness of \(S_n \) with respect to \(\theta \) is strictly increasing in \(n \) for \(n \geq 2 \) and each \(\varepsilon \in (0, 1) \).

Proof. Suppose, without loss of generality, that \(\theta = 0 \). Then the joint density of \(\min_{1 \leq i \leq n} Y_i \) and \(\max_{1 \leq i \leq n} Y_i \) at \((x, y)\) is, for \(n \geq 2 \), given by

\[\frac{n(n-1)}{2^n} (y-x)^{n-2} \quad -1 \leq x < y \leq 1. \]
So, for $-1 \leq t \leq 0$,

$$P(\min_{1 \leq i \leq n} Y_i + \max_{1 \leq i \leq n} Y_i \leq 2t) = \frac{n(n-1)}{2^n} \int_{-1}^{t} dx \int_{x}^{2t-x} (y-x)^{n-2} dy = \frac{(1+t)^n}{2}$$

and, for $0 < t \leq 1$,

$$P(\min_{1 \leq i \leq n} Y_i + \max_{1 \leq i \leq n} Y_i \leq 2t) = 1 - P(\min_{1 \leq i \leq n} Y_i + \max_{1 \leq i \leq n} Y_i \leq -2t) = 1 - \frac{(1-t)^n}{2},$$

which gives, for $|t| < 1$,

$$P(|S_n| < t) = 1 - (1 - t)^n,$$

from which the results follows immediately. □

We have not been able to prove or disprove increasing peakedness in n of the midrange for distributions other than the uniform.

Remark

Note that, in quoting Proschan's (1965) results, we ask for the distribution function F to have a density f which is logconcave on the support of F, while Proschan asks for this density to be a Pólya frequency function of order 2 (PF_2). However, it was shown by Schoenberg (1951) that

$$f \text{ is } PF_2 \iff f \text{ is logconcave on the support of } F,$$

so the two conditions are equivalent.

Further note that Ibragimov (1956) showed that, for a distribution function F with a density f,

$$f \text{ is strongly unimodal } \iff f \text{ is logconcave on the support of } F,$$

where a density is strongly unimodal if its convolution with all unimodal densities is unimodal. So, the condition of logconcavity of f can also be replaced by the condition of its strong unimodality. For more results on Pólya frequency functions see e.g. Marshall and Olkin (1979, Chapter 18) and Karlin (1968).

ACKNOWLEDGEMENTS

The authors thank Chunsheng Ma for pointing out the Ma (1998) and the Karlin (1992) references.

4 References

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB The Netherlands
e-mail: pvdlaan@win.tue.nl

Moerland 19
1151 BH Broek in Waterland
The Netherlands
e-mail: cve@xs4all.nl