Design of performance robustness for uncertain linear systems with state and control delays

Citation for published version (APA):

DOI:
10.1109/9.728876

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 12. Oct. 2023
Similarly, by solving the ARE’s in (42) and (43) in Corollaries 3.7, we have an output feedback controller \(\Sigma_c \) of the form (4) and (5) with

\[
A_c = \begin{bmatrix}
-23.9136 & 1.0316 & 1.0271 & 1.0169 \\
-21.1069 & 0 & 0 & 2.0000 \\
-53.4066 & 0 & -2.0000 & -3.0000 \\
36.2765 & -2.1497 & 1.1114 & -1.5931 \\
\end{bmatrix}
\]

\[
L = \begin{bmatrix}
21.9833 \\
24.1069 \\
52.4086 \\
-39.5770 \\
\end{bmatrix}
\]

\[
K = \begin{bmatrix}
-1.3005 & -1.1497 & -0.8886 & -0.5931 \\
\end{bmatrix}
\]

Both of these two controllers \(\Sigma_a \) and \(\Sigma_c \) can provide internal stability and guaranteed disturbance attenuation for the closed-loop system not only when both control channels are operational but also when any of these two control channels experiences an outage.

The design results are given in Table I. The two values of the closed-loop disturbance attenuation are computed for each of the two controllers. Namely:

- \(\alpha_a \): when there is no outage;
- \(\alpha_c \): when there is a controller failure.

The “Design \(\alpha \)” in Table I is the value of \(\alpha \) used in solving the two corresponding design equations.

The actual achievable values of \(\alpha \) (namely \(\alpha_a \) and \(\alpha_c \)) for the closed-loop system are all less than and quite close to the value of \(\alpha \) for which the design equations have solutions and the conditions in the Corollaries are satisfied. This indicates that degree of conservativeness in the design method is not very severe.

From Table I, it would seem that the actual system performance would be better when some controller failure occurs, contrary to the desirable property of graceful degradation of performance. This is so, however, because a controller failure (modeled as an actuator outage and/or sensor outage) effectively eliminates one column and/or one row of the closed-loop transfer function matrix. This is similar to an observation made in [3].

ACKNOWLEDGMENT

The authors wish to thank the reviewers for many useful suggestions on the initial manuscript of the present work.

REFERENCES

Design of Performance Robustness for Uncertain Linear Systems with State and Control Delays

J. S. Luo, P. P. J. van den Bosch, S. Weiland, and A. Goldenberge

Abstract—The linear systems considered in this paper are subject to uncertain perturbations of norm-bounded time-varying parameters and multiple time delays in system state and control. The time delays are uncertain, independent of each other, and allowed to be time-varying. The integral quadratic cost criterion is employed to measure system performance. Using solutions of Lyapunov and Riccati equations, a linear state feedback control law is proposed to stabilize the perturbed system and to guarantee an upper bound of system performance, which is applicable to arbitrary time delays.

Index Terms—Algebraic Riccati equation, delay effects, linear-quadratic control, Lyapunov matrix equation, robustness, stability, uncertain systems.

I. INTRODUCTION

The problem of stabilizing uncertain systems with time-varying and bounded parametric uncertainties has attracted a considerable amount of interest in recent years. Among different approaches, Lyapunov and Riccati equation descriptions of uncertainty are important ways to deal with the problem. Based on linear optimal control theory with quadratic cost criteria and using Lyapunov stability theory, many methods have been proposed for finding a linear state feedback law.
to stabilize uncertain systems. For example, sufficient conditions for quadratic stability of linear systems with time-varying structured uncertainties are formulated in [1] and [2]. For a class of norm-bounded time-varying uncertainties, the necessary and sufficient conditions are given in [3]–[5], involving both stability and performance robustness. A guaranteed cost control is proposed in [6]. In [7] a numerical method is given for constructing an optimal guaranteed cost control which minimizes the upper bound of the worst case performance for linear systems with structured uncertainties. In [8] an optimal guaranteed cost control is formulated for linear systems with a class of norm-bounded uncertainties. The results of [1]–[5] have been extended to time-delay systems [9]–[12]. However, the work in [9] focuses on the use of rank one decompositions of uncertainties. The work in [10] and [11] is limited to single time-delay systems. The matching condition for the time-delay system model used in [12] is restrictive, and the upper bound functions on uncertainty may be, in general, too conservative. In [14] a guaranteed cost control is proposed for linear systems with norm-bounded parametric uncertainty and with a single time delay in the states.

Most of the work that has appeared in the literature concerning time-delay systems, such as the work presented in [9]–[12], contributed to stability robustness. In this paper a guaranteed cost control is proposed for linear uncertain systems which are subject to both norm-bounded, time-varying parametric uncertainty and multiple arbitrary time delays in system state and control. A linear feedback control law is given to guarantee not only quadratic stability, but also performance robustness in terms of a linear integral-quadratic cost criterion. Since a general uncertain time-delay system model is adopted in this paper, some interesting problems can be treated as special cases. The following notation is used throughout the paper: A' denotes the transpose of matrix A; for a real symmetric matrix we write $P > 0 (\geq 0)$ if P is positive definite (positive semidefinite); a norm $\|A\|$ stands for the spectral norm of matrix A, and I is the identity matrix of any dimension.

II. PROBLEM STATEMENT AND PRELIMINARIES
Consider the class of uncertain linear time-delay systems described by state-space equations of the form

$$
\begin{cases}
\dot{x}(t) = [A + \Delta A(t)]x(t) + [B + \Delta B(t)]u(t) + E\dot{x}(t - \tau_1(t)) + \Delta E(t)x(t - \tau_2(t)) + Du(t - \tau_3(t)) + \Delta D(t)u(t - \tau_4(t)) \\
x(t) = \phi(t),
\end{cases}
$$

(1)

where $x(t) \in \mathbb{R}^n$ is the state and $u(t) \in \mathbb{R}^m$ is the control, A, $E \in \mathbb{R}^{n \times n}$ and B, $D \in \mathbb{R}^{n \times m}$ are known real matrices. The real-valued functions $\Delta A(t)$, $\Delta E(t)$, $\Delta B(t)$, $\Delta D(t) \in \mathbb{R}^{n \times n}$ represent time-varying uncertainties. $\tau_i(t) (i = 1, \cdots, 4)$ are arbitrary differentiable functions satisfying

$$
0 \leq \tau_i(t) \leq d_i < \infty, \quad \dot{\tau}_i(t) \leq \xi_i, \quad i = 1, \cdots, 4
$$

(2)

for all $t > 0$. For simplicity and clarity of expression, henceforth the time-variation t for $\Delta A(t)$, $\Delta B(t)$, $\Delta D(t)$, $\Delta E(t)$, and $\tau_i(t) (i = 1, \cdots, 4)$ is dropped. ϕ is a continuous vector-valued function defined in $[-d, 0]$ with $d = \max\{d_i, i = 1, \cdots, 4\}$. The norm-bounded time-varying parametric uncertainties are described by

$$
\begin{cases}
\Delta A(t) = M_1 F_1(t)N_1, \\
\Delta B(t) = M_2 F_2(t)N_2, \\
\Delta E(t) = M_3 F_3(t)N_3, \\
\Delta D(t) = M_4 F_4(t)N_4
\end{cases}
$$

(3)

where $M_i \in \mathbb{R}^{n \times n} (i = 1, \cdots, 4), N_i \in \mathbb{R}^{n \times n} (i = 1, 3)$, or $N_i \in \mathbb{R}^{n \times m} (i = 2, 4)$ are known constant matrices, and $F_i(t) \in \mathbb{R}^{n \times n} (i = 1, \cdots, 4)$ are unknown matrix functions satisfying

$$
F_i(t)F_i(t)^T \leq I \quad \forall i = 1, \cdots, 4, \forall t > 0
$$

(4)

with the elements of $F_i(\cdot) (i = 1, \cdots, 4)$ being Lebesgue measurable.

Definition 1: The uncertain time-delay system (1)–(4) is quadratically stabilizable independent of delay if there exists a static linear feedback control $u(t) = Kx(t)$, a matrix $P > 0$, a constant $\theta > 0$, and positive semidefinite matrices $R_i \in \mathbb{R}^{n \times n} (i = 1, \cdots, 4)$ such that

$$
V(x, t) = x'(t)Px(t) + \int_{-\tau_1}^{t} x'(s)R_1x(s)ds \\
+ \int_{-\tau_2}^{t} x'(s)R_2x(s)ds + \int_{-\tau_3}^{t} x'(s)R_3x(s)ds \\
+ \int_{-\tau_4}^{t} x'(s)R_4x(s)ds
$$

(5)

satisfies

$$
\frac{V(x, t)}{dt} \leq -\theta \|x(t)\|^2
$$

(6)

along solutions $x(t)$ of (1)–(4), $u = Kx(t)$ for any admissible parametric uncertainties [13, p. 87]. The resulting closed-loop system is called quadratically stable. If such a function exists, then V is called a quadratic Lyapunov function for the uncertain system (1)–(4) and $u = Kx(t)$ is a stabilizing control law.

III. MAIN RESULTS

Theorem 1: Let the uncertain time-delay system be described by (1)–(4). Suppose that there exist positive definite matrices $Q \in \mathbb{R}^{n \times n}$, $R \in \mathbb{R}^{m \times m}$ and constants $\mu_i > 0, i = 1, \cdots, 6$ such that the following Riccati equation:

$$
P A + A'P - PB\tilde{R}^{-1} B'P + \tilde{Q} + PHP = 0
$$

(7)

has a solution $P > 0$, where in (7)

$$
\tilde{Q} = Q + \frac{N_1'N_1}{\mu_1} + \frac{I_n}{\mu_3(1 - \xi_1)} + \frac{N_2'N_2}{\mu_2} + \frac{I_n}{\mu_4(1 - \xi_2)},
$$

$$
\tilde{R} = R + \frac{N_3'N_3}{\mu_5(1 - \xi_3)} + \frac{I_n}{\mu_6(1 - \xi_3)},
$$

$$
H = \mu_1 M_1' + \mu_2 M_2' M_2 + \mu_3 E E' + \mu_4 M_3 M_3' + \mu_5 D D' + \mu_6 M_4 M_4'
$$

(8)

Then:

1) (1)–(4) is quadratically stabilizable independent of delay.

2) A guaranteed cost control of linear state feedback $u = Kx$ is given by

$$
K = -\tilde{R}^{-1} B'P
$$

(11)

which guarantees that the system performance in terms of the linear integral-quadratic cost criterion

$$
J = \int_0^{\infty} x'(t)Q x(t) + u'(t)R u(t)dt
$$

(12)

is upper bounded by

$$
J \leq \phi' \left(0 \right) P \phi \left(0 \right) + \frac{1}{\mu_3(1 - \xi_1)} \int_{-\xi_1}^{\xi_1} \phi'(t)\phi(t)dt \\
+ \frac{1}{\mu_4(1 - \xi_2)} \int_{-\xi_2}^{\xi_2} \phi'(t)N_2'N_2 \phi(t)dt \\
+ \frac{1}{\mu_5(1 - \xi_3)} \int_{-\xi_3}^{\xi_3} \phi'(t)K'K \phi(t)dt \\
+ \frac{1}{\mu_6(1 - \xi_3)} \int_{-\xi_3}^{\xi_3} \phi'(t)K'N_4'N_4 K \phi(t)dt.
$$

(13)
Proof: Let $Q > 0$, $R > 0$ and constants $\mu_i > 0$, $i = 1, \cdots, 6$ be given such that (7) has a positive definite solution P. Define K as in (11), let $R_i \in \mathbb{R}^{n \times n}$ ($i = 1, \cdots, 4$) be given by
\begin{equation}
R_i = \frac{1}{\mu_3 (1 - \xi_i)} I_n,
\end{equation}

\begin{equation}
R_5 = \frac{1}{\mu_5 (1 - \xi_5)} K' K,
\end{equation}

\begin{equation}
R_6 = \frac{1}{\mu_6 (1 - \xi_6)} K' N_i N_i K
\end{equation}

and let
\begin{equation}
\theta = \lambda_{\min}(Q + K' RK).
\end{equation}

Then $R_i > 0$, $i = 1, \cdots, 4$, $\theta > 0$ (as $Q > 0$) and \hat{R} is invertible (as $R > 0$). Now consider the derivative of $V(x, t)$ as defined in (5). With (2) it follows that $-(1 - \tau_i) \leq -(1 - \xi_i) < 0$, $i = 1, 4$. Consequently
\begin{equation}
\dot{V}(x, t) \leq x'(t) \left[PA + A' P + PBK + K' B' P + \sum_{i=1}^{4} R_i \right] x(t) \\
+ 2x'(t) P \Delta A x(t) + 2x'(t) P \Delta B K x(t) \\
+ 2x'(t) P \Delta E x(t) \\
+ 2x'(t) P D K x(t - \tau_5) + 2x'(t) P D K x(t - \tau_5)
\end{equation}

Since for any $\alpha > 0$ and real vectors y and z we have
\begin{equation}
\left[\sqrt{\alpha} y - \frac{1}{\sqrt{\alpha}} z \right] \left[\sqrt{\alpha} y - \frac{1}{\sqrt{\alpha}} z \right] \geq 0
\end{equation}

it follows that
\begin{equation}
2y' z \leq \alpha y' y + \frac{1}{\alpha} z' z.
\end{equation}

Applying (3), (4), and (18) to the terms on the right-hand side of (17) with appropriate choices for μ_i, $y(t)$, and $z(t)$, the following inequalities are obtained:
\begin{equation}
2x'(t) P \Delta A x(t)
\leq x'(t) \left[\mu_1 P M_1 M_1' P + \frac{1}{\mu_1} N_i N_i' \right] x(t)
\end{equation}

\begin{equation}
2x'(t) P \Delta B K x(t)
\leq x'(t) \left[\mu_2 P M_2 M_2' P + \frac{1}{\mu_2} K' N_2 N_2 K \right] x(t)
\end{equation}

\begin{equation}
2x'(t) P \Delta E x(t - \tau_1)
\leq x'(t) \left[\mu_3 P M_3 M_3' P \right] x(t - \tau_1)
\end{equation}

\begin{equation}
2x'(t) P \Delta D K x(t - \tau_2)
\leq \mu_4 x'(t) P M_4 M_4' P x(t) + \frac{1}{\mu_4} x'(t - \tau_2) N_i N_i x(t - \tau_2)
\end{equation}

\begin{equation}
2x'(t) P \Delta D K x(t - \tau_4)
\leq \mu_5 x'(t) P M_5 M_5' P x(t) + \frac{1}{\mu_5} x'(t - \tau_4) K' N_i N_i K x(t - \tau_4)
\end{equation}

\begin{equation}
2x'(t) P \Delta D K x(t - \tau_6)
\end{equation}

Taking (19)–(24) into consideration and using $\xi_i - 1 < 0$, (17) yields
\begin{equation}
\dot{V}(x, t) \leq x'(t) \left[PA + A' P + PBK + K' B' P + \sum_{i=1}^{4} R_i \right] x(t) \\
+ 2x'(t) P \Delta A x(t) + 2x'(t) P \Delta B K x(t) \\
+ 2x'(t) P \Delta E x(t) \\
+ 2x'(t) P D K x(t - \tau_5) + 2x'(t) P D K x(t - \tau_5)
\end{equation}

which can be rewritten as
\begin{equation}
\dot{V}(x, t) \leq x'(t) \left[PA + A' P - PB \hat{R}^{-1} B' P + \hat{Q} + \hat{P} H P \right] x(t) \\
- x'(t) \left[Q + K' RK \right] x(t) + x'(t) \left[\hat{R}^{-1} B' P + K' \right] \cdot \hat{R} \left[\hat{R}^{-1} B' P + K' \right] x(t)
\end{equation}

which yields that
\begin{equation}
\dot{V}(x, t) \leq -x'(t) (Q + K' RK) x(t).
\end{equation}

It follows
\begin{equation}
\dot{V}(x, t) \leq -\theta \|x(t)\|^2.
\end{equation}

Therefore, the uncertain time-delay system described by (1)–(4) is quadratically stabilizable independent of delay. Secondly, we prove which is (13). This completes the proof.
It can be seen from Theorem 1 that quadratic stability is independent of the size of time delays and that the integral-quadratic measure (12) of system performance is related with the size of time delays as well as with the system initial function \(\phi(t) \), \(t \in [-d, 0] \). For any given \(\phi(t), t \in [-d, 0] \) the system performance can be evaluated quantitatively using (13). However, due to the existence of parametric uncertainties and uncertain time delays, in general \(\phi(t), t \in [-d, 0] \) cannot be known precisely. Some simple upper bound functions on system performance are obtained from (13) with different assumptions on \(\phi(t), t \in [-d, 0] \). For example, suppose that

1) if \(d_i = 0, i = 1, \ldots, 4 \), then (13) becomes

\[
J \leq \phi'(0)P \phi(0)
\]

(32)

2) if \(\phi(t) = c \), for all \(t \in [-d, 0] \) then (13) yields

\[
J \leq \phi'(0)P \phi(0) + \frac{d_1}{\mu_3(1-\xi_1)} + \frac{d_2N_3^2N_3}{\mu_4(1-\xi_2)} + \frac{d_3K'K}{\mu_5(1-\xi_3)} + \frac{d_4N_3^2K}{\mu_6(1-\xi_4)}
\]

(33)

3) if \(d_1 = d_2 = d_3 = d_4 = d \), \(\| \phi(t) \| \leq \gamma \) for all \(t \in [-d, 0] \) then (13) reads

\[
J \leq \gamma^2 \left\{ \frac{1}{\mu_3(1-\xi_1)} + \frac{N_3^2N_3}{\mu_4(1-\xi_2)} + \frac{K'K}{\mu_5(1-\xi_3)} + \frac{K'N_3^2K}{\mu_6(1-\xi_4)} \right\}
\]

(34)

4) if \(d_1 = d_2 = d_3 = d_4 = d \), \(\phi(0) \) and \(\psi = \int_{-d}^{0} \phi'(t)\phi(t)dt \) are available then (13) yields

\[
J \leq \phi'(0)P \phi(0) + \psi \left\{ \frac{1}{\mu_3(1-\xi_1)} + \frac{N_3^2N_3}{\mu_4(1-\xi_2)} + \frac{K'K}{\mu_5(1-\xi_3)} + \frac{K'N_3^2K}{\mu_6(1-\xi_4)} \right\}
\]

(35)

5) with the upper bound \(\| \phi(t) \| \leq \gamma \), for all \(t \in [-d, 0] \), (13) gives

\[
J \leq \gamma^2 \left\{ \frac{1}{\mu_3(1-\xi_1)} + \frac{N_3^2N_3^2}{\mu_4(1-\xi_2)} + \frac{K'K^2}{\mu_5(1-\xi_3)} + \frac{K'N_3^2K}{\mu_6(1-\xi_4)} \right\}
\]

(36)

Obviously, the matrices \(P \) and \(K \) satisfy (7) and (11) and the upper bound functions of (13) and (32)–(36) are dependent on the choices of the design parameters \(\mu_i (i = 1, \ldots, 6) \). As \(J \geq 0 \), the minimum of upper bound functions on \(J \) in terms of optimal \(\mu_i (i = 1, \ldots, 6) \) exists. Therefore, in each specific application a feasible numerical optimization program can be employed to get the optimal \(\mu_i (i = 1, \ldots, 6) \) which minimize the upper bound of \(J \) given by (13) or minimize a suitable upper bound function given by (32)–(36) for any given pair of \(Q \) and \(R \) matrices.

Remark 1: For simplicity, the design parameters \(\mu_i (i = 1, \ldots, 6) \) could be reduced to a single parameter \(\mu \). However, note that if the uncertain time-delay system is quadratically stabilizable for a set \(\mu \), there may not exist a suitable solution \(P \) for Riccati equation (7) with (8)–(10) in which one common \(\mu \) is used to replace \(\mu_i (i = 1, \ldots, 6) \).

Remark 2: A numerical optimization program could be utilized to find appropriate values for \(\mu_i, i = 1, \ldots, 6 \), to reduce the performance upper bound.

Remark 3: The main result is valid for nonnegatively bounded time delays whose derivatives satisfy an upper bound. It is interesting to note that the rate of changes in the time delays is not bounded from below.

IV. Conclusion

A guaranteed cost control law with linear state feedback is formulated to stabilize uncertain linear continuous-time systems which are subject to norm-bounded time-varying parameter uncertainties and time-varying delays in the state and control. The gain of the controller is obtained from the solution of an algebraic Riccati equation. The system performance in terms of integral-quadratic cost criteria is guaranteed to be less than an upper bound.

REFERENCES

