Minimizing total weighted completion time in a proportionate flow shop
Shakhlevich, N.V.; Hoogeveen, J.A.; Pinedo, M.L.

Published: 01/01/1996

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Minimizing total weighted completion time in a proportionate flow shop

Natalia Shakhlevich
Academy of Sciences of Belarus
Surganov Street 6, 220012 Minsk, Belarus

Han Hoogeveen
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Michael Pinedo
Department of Industrial Engineering and Operations Research
Columbia University
New York, NY 10027

January 16, 1996

Abstract

We study the special case of the m machine flow shop problem in which the processing time of each operation of job j is equal to p_j; this variant of the flow shop problem is known as the proportionate flow shop problem. We show that for any number of machines and for any regular performance criterion we can restrict our search for an optimal schedule to permutation schedules. Moreover, we show that the problem of minimizing total weighted completion time is solvable in $O(n^2)$ time.

Key Words and Phrases: flow shop scheduling, weighted completion time.
1 Introduction

In many manufacturing and assembly facilities a number of operations have to be done on every job. Often, these operations have to be done on all jobs in the same order, which implies that the jobs have to follow the same route through the machines. Such an environment is referred to as a flow shop. Mathematically, the flow shop model is described as follows. There are \(m \) machines \(M_i \) (\(i = 1, \ldots, m \)) that have to process \(n \) jobs \(J_j \) (\(j = 1, \ldots, n \)). The machines are continuously available from time zero onwards and can handle at most one job at a time. Each job \(J_j \) consists of a chain of \(m \) operations \(O_{ij} \) (\(i = 1, \ldots, m; j = 1, \ldots, n \)), which implies that the execution of \(O_{ij} \) cannot start before the execution of \(O_{i-1,j} \) has been completed, for \(i = 2, \ldots, m \). Operation \(O_{ij} \) has to be processed by \(M_i \), and its processing requires an uninterrupted period of length \(p_{ij} \), which, without loss of generality, we assume to be integral. We further assume that there is an unlimited buffer space in between two machines.

A schedule is defined as a set of completion times \(C_{ij} \) (\(i = 1, \ldots, m; j = 1, \ldots, n \)) that satisfy the constraints mentioned above. The completion time of job \(j \) is defined as \(C_j = C_{mj} \), for \(j = 1, \ldots, n \). Our objective is to minimize total weighted completion time, that is, we want to find a schedule with minimum \(\sum_{j=1}^{n} w_j C_j \) value, where \(w_j \) denotes the weight of job \(j \) (\(j = 1, \ldots, n \)), which, without loss of generality, we assume to be a positive integral number.

Garey, Johnson, and Sethi (1976) show that the problem of minimizing total completion time in a two-machine flow shop is already \(\mathcal{NP} \)-hard in the strong sense. Hence, it is very unlikely that there exists a polynomial algorithm for our general problem. Two special cases have been addressed in the literature. The first one concerns the case in which the matrix of processing times is dominant; Strusevich (1981; see also Tanaev, Sotskov, and Strusevich (1994)) and Van den Nouweland et al. (1992) show that this problem is solvable in \(O(nm + n^2) \) time. The second one deals with an ordered matrix of processing times, with the additional constraint that all weights are equal; Panwalker and Khan (1976) show this problem to be solvable in \(O(n \log n) \) time.

We consider the special case in which all operations belonging to job \(j \) (\(j = 1, \ldots, n \)) have processing time \(p_j \). Such a flow shop is in the literature often referred to as a proportionate flow shop, see Ow (1985) and Pinedo (1985, 1995). This special case can occur for instance when job \(j \) corresponds to a customer order with a quantity \(q_j \) associated with it. The processing time of this job on any one of the machines is always proportionate to the quantity \(q_j \). Actually, a more general (and possibly more appropriate) model would be the model where the processing time of job \(j \) on machine \(i \) is a function of the quantity \(q_j \) as well as the speed \(s_i \) of machine \(i \), i.e., \(p_{ij} = q_j/s_i \).

Pinedo observed that proportionate flow shop models in a number of cases are very similar to their single machine counterparts (see Pinedo (1995), page 103). Often, the rule that solves the single-machine scheduling problem needs only a very slight modification to be applicable to the corresponding proportionate flow shop. This is true with regard
to the following objectives:
- minimizing total completion time;
- minimizing maximum lateness;
- minimizing total tardiness;
- minimizing total number of tardy jobs.

However, with the total weighted completion time objective, the proportionate flow shop turns out to be quite different from the single machine scheduling problem with the same objective. In this paper, we show that this problem is solvable in $O(n^2)$ time.

This paper is organized as follows. In Section 2, we show that the optimal schedule is a permutation schedule, that is, a schedule in which each machine processes the jobs in the same order. In Section 3, we provide a further characterization of the optimal schedule. In Section 4, we show that the problem is solvable in $O(n^2)$ time. In the last section, we draw some conclusions.

2 Optimality of permutation schedules

In this section, we show that any schedule with minimum total weighted completion time value must be a permutation schedule. Moreover, we show that, for any regular objective function, we can restrict ourselves to permutation schedules, where an objective function is called regular if an increase in the completion times cannot decrease the value of the objective function.

Let σ denote any schedule, and for ease of exposition, suppose that the jobs are numbered according to the order in which they are executed by the last machine in σ. It is easily checked that, if the processing order of the jobs is the same on each machine, then

$$C_j(\sigma) = \sum_{i=1}^{j} p_i + (m - 1) \max(p_1, \ldots, p_j) \quad \forall \ j = 1, \ldots, n.$$

We use this observation in the next lemma in which we show that there is an optimal schedule that is a permutation schedule.

Lemma 1 Let σ be any schedule in which the last machine executes the jobs in the order J_1, \ldots, J_n. Then

$$C_j(\sigma) \geq \sum_{i=1}^{j} p_i + (m - 1) \max(p_1, \ldots, p_j) \quad \forall \ j = 1, \ldots, n.$$
Proof. We will show that no such schedule σ can exist with

$$C_j(\sigma) < \sum_{i=1}^{j} p_i + (m - 1) \max(p_1, \ldots, p_j)$$

for any j. We will first show this for the jobs J_j ($j = 1, \ldots, n$) with processing times larger than the processing times of all preceding jobs, that is, $p_j > \max(p_1, \ldots, p_{j-1})$. Let J_j be any such job. Since σ is a feasible schedule, the execution of the operations of J_j takes $m p_j$ time. We have to show that the total time that elapses between the completion of J_j at machine M_{h-1} and the start of J_j at machine M_h ($h = 1, \ldots, m$) amounts to at least $\sum_{i=1}^{j-1} p_i$; for reasons of consistency, we assume that J_j is completed at time zero by machine M_0.

Consider the transit from machine M_{h-1} to M_h for any $h \geq 1$. Let $I(h)$ denote the set of jobs that pass job j between these two machines. Since σ is a feasible schedule, the execution of any job from $I(h)$ by M_{h-1} cannot start until J_j is completed by M_{h-1}, and the execution of J_j by M_h cannot start before the last job in $I(h)$ is completed. Hence, if $I(h) \neq \emptyset$, then more than $\sum_{i \in I(h)} p_i$ time elapses between the start of J_j on M_h and the completion of J_j on M_{h-1}. Let $I(1)$ define the set of jobs that precede J_j on M_1; hence, the time that elapses between the start of job j on M_1 and the completion of job j on M_0 is exactly equal to $\sum_{i \in I(1)} p_i$. Since the jobs J_1, \ldots, J_{j-1} precede J_j on M_m, we have that

$$I(1) \cup \ldots \cup I(m) \supseteq \{J_1, \ldots, J_{j-1}\},$$

and hence

$$\sum_{h=1}^{m} \sum_{J_i \in I(h)} p_i \geq \sum_{i=1}^{j-1} p_i,$$

where the equality sign is attained only when $I(h) = \emptyset$ for $h = 2, \ldots, m$.

We complete the proof by showing the desired result for the remaining jobs J_j, which have $p_j \leq \max(p_1, \ldots, p_{j-1})$. Consider any such job J_j; let J_g be the smallest indexed job with processing time equal to $\max(p_1, \ldots, p_j)$. Because of the job-sequence on M_m, we have that

$$C_j(\sigma) - C_g(\sigma) \geq \sum_{i=g+1}^{j} p_i.$$

As we have just proven that

$$C_g(\sigma) \geq \sum_{i=1}^{g} p_i + (m - 1)p_g,$$

we obtain that

$$C_j(\sigma) \geq \sum_{i=1}^{j} p_i + (m - 1) \max(p_1, \ldots, p_j).$$

\square
Corollary 1 If the objective function is regular, then there exists a permutation schedule that is optimal. If the objective is to minimize total weighted completion time and all processing times and weights are positive, then the optimal schedule is a permutation schedule.

Hence, we can deduce the completion times when we know the sequence in which the last machine executes the jobs. Filling in

\[C_j = \sum_{i=1}^{j} p_i + (m - 1) \max(p_1, \ldots, p_j), \]

we obtain that

\[\sum_{j=1}^{n} w_j C_j = \sum_{j=1}^{n} \sum_{i=1}^{j} w_j p_i + (m - 1) \sum_{j=1}^{n} w_j \max(p_1, \ldots, p_j). \]

The first component is exactly equal to the total weighted completion time of \(\sigma \) on a single-machine; this term is minimized by scheduling the jobs in weighted shortest processing time (WSPT) order, that is, in order of nonincreasing \(w_j/p_j \) ratio (Smith, 1956). The second component is minimized by scheduling the jobs in order of nondecreasing processing times. This suggests that if for two jobs \(j \) and \(k \) both \(w_j/p_j \geq w_k/p_k \) and \(p_j \leq p_k \), then \(J_j \) should precede \(J_k \) in an optimal schedule. In the next section, we show that this intuitive dominance rule holds indeed.

3 Characterization of an optimal schedule

We start with some definitions to facilitate wording. We define \(f(\sigma) \) as the cost of schedule \(\sigma \), that is, \(f(\sigma) = \sum_{j=1}^{n} w_j C_j(\sigma) \). Furthermore, we introduce the concept of a new-max job, which is defined as a job with a processing time that exceeds the processing times of all its predecessors in the schedule.

Lemma 2 Let \(J_j \) and \(J_k \) be two jobs for which both \(w_j/p_j \geq w_k/p_k \) and \(p_j \leq p_k \). There exists an optimal schedule in which job \(j \) precedes job \(k \). If \(w_j/p_j > w_k/p_k \), then \(J_j \) precedes \(J_k \) in any optimal schedule.

Proof. Our proof is based upon presenting another optimal schedule that satisfies the conditions of the lemma. Let \(\sigma \) be an optimal schedule that does not satisfy the dominance rule. Hence, we can identify two jobs \(j \) and \(k \) that satisfy the terms of the dominance rule, whereas \(J_j \) succeeds \(J_k \); \(\sigma \) has the form \((\pi_1, k, \pi_2, j, \pi_3) \), where \(\pi_i \) \((i = 1, 2, 3)\) are the corresponding subschedules of \(\sigma \). We specify two alternative schedules \(\sigma_1 \) and \(\sigma_2 \) in which \(J_j \) precedes \(J_k \) and show that one of them is optimal too. Schedule \(\sigma_1 \) is obtained by inserting job \(j \) immediately in front of job \(k \); \(\sigma_2 \) is obtained by inserting job \(k \) immediately
after job j. Hence, $\sigma_1 = (\pi_1, j, k, \pi_2, \pi_3)$ and $\sigma_2 = (\pi_1, \pi_2, j, k, \pi_3)$; in both cases, the completion times of the jobs in $\pi_1 \cup \pi_3$ remain unchanged. We compute upper bounds on $f(\sigma) - f(\sigma_1)$ and $f(\sigma) - f(\sigma_2)$ and show that at least one of these has to be nonnegative.

We first compare σ and σ_1. Moving J_j forward to obtain σ_1 from σ does not change the new-max job faced by job k and the jobs in π_2, as $p_k \geq p_j$. The new-max job faced by J_j may change; let J_o and J_β be the new-max jobs faced by J_j in σ and σ_1, respectively. Hence, the completion times of job k and the jobs in π_2 increase by p_j, whereas the completion time of J_j is decreased by $(p_k + p(\pi_2) + (m-1)(p_o - p_\beta))$, where $p(\pi_2)$ denotes the total processing time of the jobs in π_2; similarly, $w(\pi_2)$ denotes the total weight of the jobs in π_2. Filling this in, we obtain

$$f(\sigma) - f(\sigma_1) = w_j[p_k + p(\pi_2) + (m-1)(p_o - p_\beta)] - p_j(w_k + w(\pi_2)) \equiv \Delta_1.$$

Postponing J_j to obtain σ_2 from σ does not change the size of the processing time of the new-max job faced by job j and the jobs in π_2; hence, p_k is a lower bound on the decrease of the completion times for these jobs. In σ, job k either faces J_β as a new-max job, or it is a new-max job itself. In σ_2, job k faces J_o as a new-max job; J_k and J_o can be the same. Hence, the completion time of job k is increased by no more than $p_j + p(\pi_2) + (m-1)(p_o - p_\beta)$. Filling this in, we obtain

$$f(\sigma) - f(\sigma_2) \leq p_k(w_j + w(\pi_2)) - w_k[p_j + p(\pi_2) + (m-1)(p_o - p_\beta)] \equiv \Delta_2.$$

We now show that at least one of Δ_1 and Δ_2 is nonnegative. Suppose to the contrary that $\Delta_1 < 0$ and $\Delta_2 < 0$. Hence, then also $\Delta \equiv w_k \Delta_1 + w_j \Delta_2 < 0$. Working things out yields (the terms with $(m-1)$ and $p(\pi_2)$ cancel out):

$$\Delta = w_j w_k p_k - p_j w_k(w_j + w(\pi_2)) + w_j p_k(w_j + w(\pi_2)) - w_j w_k p_j =$$

$$[w_j + w_k + w(\pi_2)](w_j p_k - w_k p_j) \geq 0,$$

as $w_j/p_j \geq w_k/p_k$. This contradiction shows that, either at least one of Δ_1 and Δ_2 is positive, or $\Delta_1 = \Delta_2 = 0$; this last case can occur only if $w_j/p_j = w_k/p_k$. By this, we have shown the second part of the lemma.

What remains to be shown is that through this interchange argument we can obtain an optimal schedule that satisfies the dominance rule even in case of jobs with equal weight to processing time ratios. Hence, we have to indicate an order in which the interchanges should be applied such that we do not end in a cycle.

We have already shown that in each optimal schedule the only jobs that are not scheduled according to the order imposed by the dominance rule have equal weight to processing time ratio. Let Q_j be the set containing all jobs J_i with weight to processing time ratio equal to w_j/p_j, and suppose that the jobs in Q_j are not in order of nondecreasing processing times. Let \tilde{Q}_j denote the sequence in which the jobs in Q_j appear in the schedule. Let g be the first position in which \tilde{Q}_j and the shortest processing time
order differ; suppose that J_k and J_l occupy position g in both sequences. We apply our interchange argument to the jobs k and l; this either yields a schedule with smaller cost, or a schedule with equal cost in which J_l is inserted immediately before J_k. If we continue with this schedule and proceed in the same manner, then we will end up with a schedule that satisfies the dominance rule stated in Lemma 2.

We can characterize the form of an optimal schedule even further. To that end, we first introduce some notation that will be used throughout the paper. Recall that the jobs have been renumbered according to the processing order in σ and that job j is a new-max job in σ if and only if $p_j > \max(p_1, \ldots, p_{j-1})$, for $j = 1, \ldots, n$. We partition σ on basis of these new-max jobs. Let J_{c_1}, \ldots, J_{c_r} be the new-max jobs in σ. Then σ is partitioned into r so-called segments, the ith of which contains J_{c_i} and all jobs between J_{c_i} and $J_{c_{i+1}}$, where we define $J_{c_{r+1}}$ to be J_n. We say that the ith segment belongs to job c_i. Hence, if J_j and J_{j+1} are part of the same segment in σ, then $C_{j+1} = C_j + p_{j+1}$, as both jobs face the same new-max job.

Lemma 3 In any optimal schedule the jobs in the same segment, including the new-max job, are in order of nonincreasing w_j/p_j ratio.

Proof. Let Q be the set of jobs in the segment and let J_q be the new-max job. Application of the dominance rule of Lemma 2 shows that each job j in the segment must have $w_j/p_j \leq w_q/p_q$. Moreover, if $w_j/p_j = w_q/p_q$, then p_j must be equal to p_q, as we would gain by interchanging J_j and J_q otherwise. Since all jobs $j \in Q$ face the same new-max job,

$$C_j = C_q + \sum_{i=q+1}^{j} p_i.$$

Hence,

$$\sum_{j \in Q} w_j C_j = C_q \sum_{j \in Q} w_j + \sum_{j \in Q} w_j \sum_{i=q+1}^{j} p_i.$$

The first term is a constant, and the second term is minimized by scheduling the jobs in Q in WSPT order, as has been shown by Smith (1956).

4 Finding an optimal schedule in $O(n^2)$ time

We are now ready to state our $O(n^2)$ algorithm that minimizes total weighted completion time. This algorithm first orders the jobs according to WSPT and then constructs a schedule progressively taking each time a job from the WSPT sequence and inserting it in the partial schedule in such a way that the incremental cost is minimized. We refer to this algorithm as the WSPT with Minimum Cost Insertion WSPT-MCI algorithm.
Algorithm WSPT-MCI

Step 1. Reindex the jobs in WSPT order, settling ties according to nondecreasing processing times. Let σ_1 be the sequence consisting of J_1; set $j \leftarrow 2$.

Step 2. Derive σ_j from σ_{j-1} by inserting J_j in σ_{j-1} such that the cost increase is minimum; if there are several possibilities, then choose the one in which J_j is inserted latest. Set $j \leftarrow j + 1$.

Step 3. If $j \leq n$, then go to Step 2.

Step 4. Determine an optimal permutation schedule by scheduling the jobs in order of occurrence in σ_n.

Because of Lemma 2, we know that we should not insert J_j before any job i with processing time $p_i \leq p_j$. Moreover, we know from Lemma 3 that we must insert it immediately before a new-max job. Therefore, we can determine the cost of inserting J_j in constant time for each of the j possible positions. Hence, Step 2 takes $O(n)$ time per iteration, which implies that Algorithm WSPT-MCI can be made to run in $O(n^2)$ time.

Note that Algorithm WSPT-MCI is only guaranteed to determine an optimal solution if the jobs are added in WSPT order; it is possible to find an instance for which a greedy algorithm like Algorithm WSPT-MCI finds a non-optimal solution if the jobs are added in another order.

Theorem 1 Algorithm WSPT-MCI yields an optimal schedule.

Proof. We prove Theorem 1 by showing that there exists an optimal schedule in which the first j ($j = 1, \ldots, n$) jobs appear in the same order as in the sequence σ_j.

The above statement is certainly true for $j = 1$. Let s^* be an optimal schedule that satisfies Lemmas 2 and 3 in which the jobs J_1, \ldots, J_{j-1} are scheduled according to the order in σ_{j-1}; we further assume that jobs with equal processing time and weight are scheduled in order of increasing index. We will show that, if necessary, we can modify s^* without increasing the cost such that the processing order of the jobs J_1, \ldots, J_j in s^* matches σ_j, such that Lemmas 2 and 3 hold, and such that equal jobs are scheduled in order of increasing index. Our proof is based on a case-by-case analysis. We distinguish between the characteristics of the possible insertion spots for J_j. We consider the following three cases:

(i) J_j is a new-max job in σ_j;

(ii) J_j is not a new-max in σ_j and J_j precedes some job in $\{J_1, \ldots, J_{j-1}\}$ in s^* that it succeeds in σ_j;

(iii) J_j is not a new-max in σ_j and J_j succeeds some job in $\{J_1, \ldots, J_{j-1}\}$ in s^* that it precedes in σ_j.
Proof of (i). If \(J_j \) is a new-max job in \(\sigma_j \), then all jobs preceding \(J_j \) in \(\sigma_j \) have smaller processing time and, because of Lemma 2, all jobs succeeding \(J_j \) have larger processing time; note that in this case no job in \(\{ J_1, \ldots, J_{j-1} \} \) with processing time equal to \(p_j \) can exist, since it should have preceded \(J_j \) then. Since \(s^* \) satisfies Lemma 2, \(J_j \) does not precede any job with smaller processing time that is also present in \(\sigma_j \). What remains to be shown is that in \(s^* \) \(J_j \) precedes the jobs in \(\sigma_{j-1} \) with processing time larger than \(p_j \), or that \(s^* \) can be modified that way without increasing the cost of the schedule. Suppose to the contrary that lower-indexed job \(q \) with \(p_q > p_j \) precedes \(J_j \) in \(s^* \); if there are more such jobs, then we choose \(J_q \) to be the first one in \(s^* \). The schedule \(s^* \) has then the form \((\pi_A, \pi_B, q, \pi_C, J, \pi_D)\). If we remove all jobs \(J_{j+1}, \ldots, J_n \) from \(s^* \), then we obtain the sequence \(\sigma^* = (\pi_a, \pi_b, q, \pi_c, J, \pi_d) \). Note that \(\sigma_j \) has the form \((\pi_a, j, \pi_b, q, \pi_c, \pi_d)\), since all jobs \(J_1, \ldots, J_{j-1} \) appear in the same order in \(s^* \) as in \(\sigma_{j-1} \) and \(\sigma_j \) is obtained by inserting \(J_j \) in \(\sigma_{j-1} \). We will show that the schedule \(s = (\pi_A, J, \pi_B, q, \pi_C, \pi_D) \), where \(J_j \) is inserted immediately before the first job in \(\pi_b \), has cost no more than \(s^* \). Note that all jobs in \(\pi_b \) have processing time larger than \(p_j \). Hence, \(s \) satisfies Lemmas 2 and 3, as \(J_j \) is moved forward and inserted immediately before a larger job.

To show that \(f(s^*) - f(s) \geq 0 \), we first compute \(f(\sigma^*) - f(\sigma_j) \). Since all jobs in \(\pi_b \) have processing time larger than \(p_j \), all jobs except for \(J_j \) face the same new-max job in \(s \) as in \(s^* \). Let \(J_o \) be the new-max job faced by \(J_j \) in \(\sigma^* \); \(J_j \) is a new-max job itself in \(\sigma_j \). Hence,

\[
f(\sigma^*) - f(\sigma_j) = w_j [p(\pi_b) + p_q + p(\pi_c) + (m - 1)(p_o - p_j)] - p_j [w(\pi_b) + w_q + w(\pi_c)].
\]

Now we compute \(f(s^*) - f(s) \). Due to the choice of moving \(J_j \) forward to the position immediately before the first job from \(\pi_b \) in \(s^* \), no job except for \(J_j \) will face another new-max job. Because of Lemma 2, no job in \(\pi_A \setminus \pi_o \) and \(\pi_C \setminus \pi_c \) can have processing time larger than \(p_j \). Hence, \(J_j \) again faces \(J_o \) as its new-max job in \(s^* \) and is a new-max job itself in \(s \). Therefore,

\[
f(s^*) - f(s) = w_j [p(\pi_B) + p_q + p(\pi_C) + (m - 1)(p_o - p_j)] - p_j [w(\pi_B) + w_q + w(\pi_C)] =
\]

\[
f(\sigma^*) - f(\sigma_j) + w_j [p(\pi_B \setminus \pi_b) + p(\pi_C \setminus \pi_c)] - p_j [w(\pi_B \setminus \pi_b) + w(\pi_C \setminus \pi_c)].
\]

Since \(\sigma_j \) and \(\sigma^* \) both can be obtained by inserting \(J_j \) in the sequence \(\sigma_{j-1} \), we have that \(f(\sigma^*) - f(\sigma_j) \geq 0 \), as \(\sigma_j \) is selected as the one with minimal cost. Since each \(J_l \in (\pi_B \setminus \pi_b) \cup (\pi_C \setminus \pi_c) \) has \(w_l/p_l \leq w_j/p_j \), the sum of the second and third term is nonnegative as well.

If \(J_j \) is not a new-max job in \(\sigma_j \), then it must be inserted in \(\sigma_{j-1} \) as the last job in the segment belonging to some new-max job \(J_q \); let \(\pi_d \) denote the other jobs in the segment belonging to \(J_q \) in \(\sigma_j \). We have to show that, if necessary, we can modify \(s^* \) to a schedule \(s \) in which \(J_j \) occupies this position too. Depending on the position of \(J_j \) in \(s^* \), we distinguish between the cases (ii) and (iii).
Proof of (ii). First suppose that J_j is scheduled before J_q in s^*. By assumption, we have that the order in which J_1, \ldots, J_{j-1} occur in s^* is the same as in σ_{j-1}. This assumption, in combination with Lemma 2, implies that in s^* J_q and the jobs in π_d are scheduled consecutively. Hence, s^* has the form $(\pi_A, j, \pi_{B_1}, \pi_{b_1}, \pi_{B_2}, \ldots, \pi_{b_h}, \pi_{B_{b+1}}, q, \pi_{d_1}, \pi_E)$. We use π_{B_i} and π_{b_i} to distinguish between subsets of the sets $\{J_{j+1}, \ldots, J_n\}$ and $\{J_1, \ldots, J_{j-1}\}$; the sets π_{B_1} and $\pi_{B_{b+1}}$ can be empty. Define μ_0 as the sequence of the jobs J_1, \ldots, J_j obtained by removing the jobs J_{j+1}, \ldots, J_n from s^*; $\mu_0 = (\pi_a, j, \pi_{b_1}, \ldots, \pi_{b_h}, q, \pi_{d}, \pi_e)$. Define μ_i $(i = 1, \ldots, h)$ as the sequence of the jobs J_1, \ldots, J_j obtained by inserting J_j in σ_{j-1} between π_{b_i} and π_{b_i+1}, that is,

$$\mu_i = (\pi_a, \pi_{b_1}, \ldots, \pi_{b_i}, j, \pi_{b_{i+1}}, \ldots, \pi_{b_h}, q, \pi_{d}, \pi_e), \forall i = 1, \ldots, h.$$

Note that all sequences μ_i $(i = 0, \ldots, h)$ are obtained by inserting J_j in σ_{j-1}; hence, $f(\sigma_j) - f(\mu_i) \leq 0$ for $i = 0, \ldots, h$, where σ_j has the form $(\pi_a, \pi_{b_1}, \ldots, \pi_{b_h}, q, \pi_{d}, \pi_e)$. Let s be the schedule obtained from s^* by shifting J_j and the jobs in π_{B_i} $(i = 1, \ldots, h + 1)$ to immediately after the last job in π_d, that is,

$$s = (\pi_A, \pi_{b_1}, \ldots, \pi_{b_h}, q, \pi_{d}, j, \pi_{B_1}, \ldots, \pi_{B_{b+1}}, \pi_E).$$

We will show that the cost of s is no more than the cost of s^*, that s satisfies Lemmas 2 and 3, and that in s all equal jobs are executed in order of increasing index.

To show $f(s) - f(s^*) \leq 0$, we first need to compute $f(\sigma_j) - f(\mu_i)$, for $i = 0, \ldots, h$. We start with revealing the situation concerning the new-max jobs. In s^*, all jobs in π_{b_q} $(g = 1, \ldots, h)$ succeed J_j, whereas all these jobs have index smaller than j. As s^* satisfies Lemma 2 and all equal jobs are executed in order of increasing index in s^*, all jobs in π_{b_q} $(g = 1, \ldots, h)$ must have processing time larger than p_j. Hence, all jobs in π_{b_q} $(g = 1, \ldots, h)$ face the same new-max job in s as in s^*. Job j and the jobs in π_{B_q} $(g = 1, \ldots, h + 1)$ have J_q as its new-max job in s, as J_q is a new-max job in σ_j and s^* satisfies Lemma 2. Let \tilde{p}_i denote the processing time of the new-max job faced by J_j in μ_i. Taking all this into account, we obtain that

$$f(\sigma_j) - f(\mu_i) = w_j \left[\sum_{g=i+1}^{h} p(\pi_{b_g}) + p_q + p(\pi_d) + (m - 1)(p_q - \tilde{p}_i) \right] -$$

$$p_j \left[\sum_{g=i+1}^{h} w(\pi_{b_g}) + w_q + w(\pi_d) \right], \forall i = 0, \ldots, h.$$

Since s^* satisfies Lemma 2, the new-max job faced by J_j in s^* is a job in π_a or J_j is a new-max job itself. Hence, the new-max job faced by J_j in s^* is the same one J_j faces in μ_0; this job has processing time \tilde{p}_0. Similarly, the jobs in π_{B_i} $(i = 1, \ldots, h + 1)$ have, either the same new-max job in s^* as J_j faces in μ_{i-1}, or a job with larger processing time.
from among the jobs in \(\pi_{B_i} \); hence, the processing time of the new-max job faced by the jobs in \(\pi_{B_i} \) is at least equal to \(\tilde{p}_{i-1} \). Taking this into account, we obtain

\[
f(s) - f(s^*) \leq \\
\sum_{g=1}^{h} w_j \left[p(\pi_{\theta_g}) + p + p(\pi_d) + (m - 1)(p_q - \tilde{p}_0) \right] - \sum_{g=1}^{h} w(\pi_{\theta_g}) + w_q + w(\pi_d) + \\
\sum_{g=1}^{h} w(\pi_{B_i}) \left[p(\pi_{\theta_g}) + p + p(\pi_d) + (m - 1)(p_q - \tilde{p}_0) \right] - p(\pi_{B_i}) \left[\sum_{g=1}^{h} w(\pi_{\theta_g}) + w_q + w(\pi_d) \right] + \\
\ldots + \\
\sum_{g=1}^{h} w(\pi_{B_h}) \left[p(\pi_{\theta_g}) + p + p(\pi_d) + (m - 1)(p_q - \tilde{p}_0) \right] - p(\pi_{B_h}) \left[w(\pi_{\theta_g}) + w_q + w(\pi_d) \right] + \\
\sum_{g=1}^{h} w(\pi_{B_{h+1}}) \left[p_q + p(\pi_d) + (m - 1)(p_q - \tilde{p}_0) \right] - p(\pi_{B_{h+1}}) \left[w_q + w(\pi_d) \right] \equiv \\
f(\sigma_j) - f(\mu_0) + \Delta_1 + \ldots + \Delta_{h+1},
\]

where \(\Delta_i \) (\(i = 1, \ldots, h + 1 \)) is the part concerning \(\pi_{B_i} \). As we want to show that \(f(s) - f(s^*) \leq 0 \), it is sufficient to prove that \(\Delta_i \leq 0 \), as we already know that \(f(\sigma_j) - f(\mu_0) \leq 0 \). To show that \(\Delta_i \leq 0 \), we prove that \(\sum_{g=1}^{h} w(\pi_{B_i}) [f(\sigma_j) - f(\mu_{i-1})] - w_j \Delta_i \geq 0 \) for \(i = 1, \ldots, h + 1 \). We have

\[
w(\pi_{B_i}) [f(\sigma_j) - f(\mu_{i-1})] - w_j \Delta_i = \\
w(\pi_{B_i}) [\sum_{r=1}^{h} p(\pi_{\theta_r}) + p + p(\pi_d) + (m - 1)(p_q - \tilde{p}_{i-1})] - \\
p_j [\sum_{r=1}^{h} w(\pi_{\theta_r}) + w_q + w(\pi_d)] - \\
w_j [w(\pi_{B_i}) \sum_{r=1}^{h} p(\pi_{\theta_r}) + p + p(\pi_d) + (m - 1)(p_q - \tilde{p}_{i-1})] + \\
p(\pi_{B_i}) \sum_{r=1}^{h} w(\pi_{\theta_r}) + w_q + w(\pi_d) = \\
[\sum_{r=1}^{h} w(\pi_{\theta_r}) + w_q + w(\pi_d)] [w_j p(\pi_{B_i}) - p_j w(\pi_{B_i})] \geq 0,
\]

since each job \(k \) in \(\pi_{B_i} \) has \(w_k / p_k \leq w_j / p_j \).
If $\Delta_i < 0$ for some $i \in \{1, \ldots, h+1\}$, then we obtain $f(s) - f(s^*) < 0$, which contradicts the supposed optimality of s^*. Hence, we are done unless all J_k in $\{\pi_{B_i} \cup \ldots \cup \pi_{B_{h+1}}\}$ have $w_k/p_k = w_j/p_j$. Suppose this is the case; as s^* satisfies Lemma 2, we therefore must have $p_k \geq p_j$ for all J_k in $\{\pi_{B_i} \cup \ldots \cup \pi_{B_{h+1}}\}$. From this observation it follows that s satisfies Lemmas 2 and 3 and that all equal jobs are processed in order of nondecreasing index in s. This settles the proof for the case that J_j is scheduled before J_q in s^*.

Proof of (iii). In a similar fashion, we deal with the case that in s^* J_j is scheduled not only after J_q but after some other jobs from $\{J_1, \ldots, J_{j-1}\}$ that J_j is not supposed to succeed as well. Let s^* have the form $(\pi_A, q, \pi_d, \pi_E, j, \pi_G)$, where (q, π_d, j) is the segment belonging to J_q in σ_j (the proof that J_q is a new-max job in s^* and that the first part of the segment belonging to J_q has this form is similar to the proof given in the analysis of the previous case). Let σ^* be the sequence of the jobs J_1, \ldots, J_j obtained by removing the other jobs from s^*; $\sigma^* = (\pi_a, q, \pi_d, \pi_e, j, \pi_g)$. We have that $\sigma_j = (\pi_a, q, \pi_d, j, \pi_e, \pi_g)$, and we will show that $s = (\pi_A, q, \pi_d, j, \pi_E, \pi_G)$ is a schedule with the desired properties. Before starting our computations, we look at the situation concerning the new-max jobs in s^* compared to s and σ^* compared to σ_j. Since $p_j \leq p_q$ and J_j succeeds J_q in each schedule under consideration, nothing changes with respect to the new-max status of any job except for J_j. Since s^* satisfies Lemma 2, the new-max job faced by J_j in s^*, say J_0, is a job from the set $\{J_1, \ldots, J_{j-1}\}$; hence, J_j has J_0 as new-max job in both s^* and σ^*. In both σ_j and s, J_j has J_q as new-max job. Taking this into account, we obtain

$$f(\sigma^*) - f(\sigma_j) = w_j[p(\pi_e) + (m - 1)(p_a - p_q)] - p_jw(\pi_e).$$

Since both sequences can be obtained by inserting J_j in σ_{j-1} and σ_j is selected by Algorithm WSPT-MCI, whereas J_j is inserted into an earlier spot in σ_j than in σ^*, we have $f(\sigma^*) - f(\sigma_j) > 0$. We further have

$$f(s^*) - f(s) = w_j[p(\pi_E) + (m - 1)(p_a - p_q)] - p_jw(\pi_E) =$$

$$f(\sigma^*) - f(\sigma_j) + w_jp(\pi_E|\pi_e) - p_jw(\pi_E|\pi_e) > 0,$$

since $f(\sigma^*) - f(\sigma_j) > 0$ and $w_j/p_j \geq w_i/p_i$ for each job $i \in (\pi(E)|\pi(e))$. This clearly contradicts the supposed optimality of s^*.

On basis of induction, we know that Algorithm WSPT-MCI determines an optimal schedule. \qed

5 Conclusions

We have presented an algorithm that solves the problem under consideration in $O(n^2)$ time for an arbitrary number of machines. In case of a single machine, the problem is solved through the WSPT rule, which runs in $O(n \log n)$ time. When the number of
machines is very large, then the optimal rule is SPT, which is again very easy. (In this extreme case the weights do not have any effect on the optimal schedule.) One interesting question concerns the determination of a lower bound on the number of machines such that the SPT rule is guaranteed to yield an optimal solution. A far more interesting problem, however, is what we can do for the special case of the flow shop problem with processing times $p_{ij} = p_j/s_i$.

Acknowledgements

Part of this research was conducted when the first author visited Eindhoven University of Technology, which visit was made possible by a grant from Nuffic. The first and second author were supported by a grant from INTAS project nr. 93-257.

References

