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MULTISETS OF APERIODIC CYCLES*

N. G. pE BRUIINT anp D. A. KLARNER?

Abstract. The basic result is that if A is a finite set then there are exactly |A|" multisets of aperiodic
cycles over A with total length x. This is shown by a counting technique but also by establishing an explicit
bijection from these multisets to words over A of length 7.

1. Notation. LetN={0, 1,---}and P={1, 2, - - -} be the sets of nonnegative and
positive integers respectively. Let A be a finite or countable set, and for each neP
let A" be the set of all n-tuples over A. An element x € A" is called an n-word or
sometimes just a word, and the length of x is defined to be Alx)=n. Also, it is
convenient to have an empty word A whose length is defined to be A(A) =0. Let A*
be the set of all words over A, then elements x, y € A* are concatenated to form a
new word xy € A* in the usual way. In particular, Ax =xA=x for all x e A*, Also,
for each keP, x € A*, x¥ is defined to be the concatenation of k copies of x. (That
is, x" =x, and " t=x.x" for all keP). If x, ye A* are such that y = xu for some
u € A*, we write x €y and say x is an initial word of y.

Suppose x€ A", neP, with x =x1 -+ + xp, x; €A for i = 1, -+, n. Then the word
Xgi1'* XuX1- e Xq is called the d-shift of x ford=1,---, n —1.If x isequal to a
d-shift of x, then x is called periodic; otherwise, x is called aperiodic. The empty word
is neither periodic, nor aperiodic. Suppose x is periodic and let d € P’ be the smallest
number such that x is equal to the d-shift of x. Then d is called the period of x and
we define 7(x) to be the initial word of x with length d. If x is aperiodic we define
m(x)=x. It is easy to check that m(x) is an aperiodic word for all x e A¥\{A}. Also,
if x is an n-word and 7 (x) is a d-word where n € P, then d divides n. Furthermore,
if k =n/d, then x = (7r(x))*. This motivates the definition of a k-fold word, namely, a
word having the form y* with y an aperiodic word. Let Pi(A) be the set of k-fold
words over A; in particular, P;(A) is the set of aperiodic words.

Now we define an equivalence relation on A*\{A}. Put x ~y just when x =y or
y is a d-shift of x for 1=d <A(x). An equivalence class is called a cycle over A, and
%(A) is defined to be the set of all cycles over A. If x € A*\{A}, let (x) be the cycle
which has x as an element. We will speak of a property common to all the words in
an equivalence class as a property of the cycle, and notation will be used in a similar
fashion even though this is a bit improper. For example, if x ~y, then A(x)= Ay).
So we speak of the length of (x) and write A{x) for it. Also, if x ~y, then x and y
have the same period, and 7 (x) ~ 7(y). So we speak of the period of (x), and write
m{(x)={(m(x)). If x is a k-fold word, (x) is called a k-fold cycle. Let A (A) be the set
of k-fold cycles over A, k €P. If x is aperiodic, we say (x) is aperiodic. Let of(A)=
sf1(A) be the set of aperiodic cycles over A. Thus, {#/1(A), A,(A), - - -} is a partition
of €(A) into disjoint sets.

A finite multiset on a set X is a mapping f from X into N such that the size of
f, which is defined to be w(f)=Y.cxf(x), is finite. In this paper we shall just say
multiset instead of “finite multiset”. Let #(A) and #;(A) be the set of all multisets
on €(A) and (A) respectively for all k € P. For f in #((A) or in M (A) we introduce
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360 N. G. DE BRUIIN AND D. A. KLARNER

a measure «(f) called the length total of £, that is different from the size w(f). Instead
of just counting the elements of the multiset, we give each element C a weight that
equals A (C). So the length total of f € M(A) is defined to be k (f) =Y. cewga FIC)A(C),
and « (f) for f € M (A) is defined similarly as a sum over A (A). If k(f)=n, we call f
an n-multiset for all n e N,

2. Statement of results. The heart of our results is a bijection between the set
of n-multisets over &/(A) and the set of n-words over A. That is, every multiset of
aperiodic cycles whose lengths total n corresponds to a word of length n, and
conversely. We will use this bijection to prove a weighted version. Let w be a product
weight on A*. That is, w is a mapping of A* into some sort of commutative algebra,
and one of the most important properties of w is that wixy)=w(x)w(y) for all
x,y€ A*. This means w(xy* " x,)=w(x1) - wix,) for all x,e A, i=1, -, n For
our purposes, w must possess some other properties which guarantee that certain
infinite sums and products are themselves weights. These extra assumptions will
become evident later, but will not be explicitly stated. Since x ~y implies w (x)=w(y),
we speak of the weight of a cycle Ce € (A) and write w(C)=w(x) for all xe C.

Finally we define a weight function W on M(A) and M, (A) in terms of w. For
all fe #M{A) we put

() w(p= T w(EC).

Ce€(A)
The weight of f € #;(A) is defined similarly as a product over #x(A), k € P. Note that
since {f1(A), #2(A), - -} is a partition of €(A), a multiset fe#(A) is completely
determined by its restrictions to the blocks of this partition. Let fi be the restriction
of f to s (A) for all k €P. Then it is easy to see that

@ W= I Wk,

and furthermore,

3) S wH=1 T W
feMM(A) k=1 fireti(A)

Finally, we will prove that for all k € P

4) Y WH= ¥ (W)
fetli(A) geli(A)
Here we are dealing with multisets of k-fold cycles. Recall that there is a natural
bijection 7 between & (A) and 1 (A). Say (x) € 4 (A), then {7 (x)) is the correspond-
ing element in &/1(A). Going the other way, {y)e s£1(A) corresponds to (yk yin ol (A).
Thus, g € #1(A) corresponds to f € 4 (A) where g{x) = f(x*) for all (x) e &f1(A); also,
W(f)=(W(g))" for all k eP.
We will prove in subsequent sections that

[eo)

) S wip= 3 ww=% (I w)

fetl1(A) xeA* n=0

n

However, an immediate consequence of (5) is that

o o]

©) > wit=3 (% (w(@)") -
cA

fedl1(A) n=0 \a
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This follows just by replacing w with the kth power of w in the definition of the
weight of fe#1(A) so that W is replaced with the kth power of W. Combining (3),
(4), and (6) gives

™ s wp=11 3 (£ @)

feM(A) k=1 n=0 \acA

However, we still have to prove (5); this is done combinatorially in § 4 and algebraically
in §5.

3. Some motivation. The inspiration for this paper was a formula due to Read
[8] which expresses f(n), the number of endomorphism patterns on an z-set, in terms
of t(1), -+ -, t(n), where t(k) is the number of isomorphism classes of rooted trees
with n points. The formula is most elegantly expressed in terms of the two generat-
ing functions involved, Let F(z)=1+f(1)z +f(2)22+~ -+, and let T(z)=¢t(1)z+
£(2)z>+- « -. Then Read’s formula is

© 1
(8) F(z) kl;ll 1_T(2k)-
Read’s derivation of (8) was based on a formula due to Harary [6] who used Pélya’s
fundamental enumeration theorem to find an algorithm for computing the number of
endomorphism patterns with n vertices.

An endomorphism on a set of n points can be described by means of a collection
of cycles where each point of each cycle is the root of a tree. The idea that gave rise
to the present paper is the discovery that the separate factors in (1) allow simple
interpretations. The factor (1— T(z))" is related to the cycles on which the set of
trees does not show any periodicity, and in general the factor (1— T(z"))™" is related
to the cycles on which the set of trees has the exact period m/k (where m is the
number of points on the cycle). A description of how endomorphisms are related to
cycles with trees is given in § 6.

A quite simple observation is that the counting argument (presented in its simplest
form in § 5) does not make use of the fact that the objects growing on the cycles are
trees. We can replace the trees by the elements of any arbitrary finite or countable
set A. This gives rise to the problem formulation presented in § 2.

4. The bijection. Our objective in this section is to construct a bijection )
between the set of n-words over A and the set of n-multisets of aperiodic cycles over
A represented in a certain normal form. Also, () preserves weights. That is, if x
corresponds to multiset f, then w(x) = W(f). Since

Zoro=(Zw@),

we can sum this over all » e N and use the bijection Q to get (5).

The basis of Q is an algorithm which factors an n-word into its corresponding
n-multiset expressed in normal form. The algorithm and normal form both depend
on an arbitrary linear order imposed on A. So we suppose the countable set A is
ordered linearly by =, and extend = to the lexicographical order on A¥* in the usual
way. That is, for all x, ye A*, x =y means x C y or there exist u,r,s € A* andp,g€ A
with p <gq such that x = upr, y = ugs.
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We should not be trapped into thinking that for u, v, x € A¥, the inequality u <v
always implies ux <vx. The implication is correct, however, if A (u)=A(v). We shall
use this repeatedly.

A word x € A* is called normal if A(x)=1, or if A(x)>1 and x is less than
all its d-shifts for d=1, - -+, A(x)—1. If x is aperiodic, then x and all its d-shifts
(d=1, -+, A(x)—1) are distinct.

Let N(A) be the set of normal words over A. Thus, every aperiodic cycle contains
exactly one normal word, and every normal word x gives rise to an aperiodic cycle
x. The sequence of normal words (c1, - * *, ¢x) is defined to be the normal form v(f)
of a multiset f over s£(A) just when ¢1 ="+ Zc¢i, k(f)=A(c1)+- - -+A(ck), and for
each c € N(A) the number of i (1=i=k) with ¢; =c equals f(c). Roughly speaking,
normal words replace aperiodic cycles, and f is represented as a decreasing list of
words after this replacement. For example, suppose A ={a, b, ¢, - -} witha <b<c <

., and define f to be 0 for all aperiodic cycles over A except that f{a)=3, f(b)=1,

f(ab) 2, and f{abach)=1. This means «(f)=3+1+4+5=13, and since b, abacb,
""ab, a are all normal and in decreasing order, ¥(f)= (b, abacb “ab, ab, a, a, a). TE will
turn out that the word corresponding to f in this case is ) Y(f) = babacbababaaa.

Let x € A* with x # A, let o(x) be the longest normal initial word of x, and let
7(x) be the rest of x after o(x) has been deleted. Create a sequence (}(x) of normal
words as follows. Define Q(x)= (x) for all normal words x, and define Q(x) = (o (x),
Q(7(x))) for all other nonempty words. (Delete extra parentheses according to the
rules (4, (v))=(u, v).)

If Qx)=(x1, "+, xn) then x =x; - * * x,. We shall show in Lemmas 3 and 4 that
the converse is true if x4, * * *, x, are all normal and x; = - - 2 x,.

LEMMA 1. Suppose x, y € A*, y is normal, x # A and x <y. Then xy <yx.

Proof. By definition of x <y, there are two cases. In the first case, we have y = xt
with re A*, t# A. Then xt<fx because y is normal, so xy = xxt<xtx =yx. In the
second case, we have x =upr, y =uqs with u,r,s€ A*, p,q€ A, and p<gq. Then
xy = upry < ugsx = yx because p <gq. This completes the proof. 0

The next result is a generalization of this one.

LEMMA 2. Suppose X, y1, "+, Yy €A*, y1, *++, ye normal, and x =y1, "+ *, Y.
Then xy; -« ye=y1*** YixX.

Proof. Using the previous lemma we have

9 XV Y= YiXya YR EY1YaX Y=t EY1Y2 o YiXe

That is, the ith inequality holds because x = y; and because y; normal implies xy; = y:x
fori=1, -, k. This completes the proof. 0

LEMMA 3. Suppose xq, **, xn € A*, x1, *++, x4 are normal, and x,Z* * + Zxp.
Let x=x1+ x5 Then Q(x)=(x1,* -+, xn). That is, every n-multiset over s{(A) in
normal form is the image under Q of some element of A™.

Proof. Ttisenough toshow that o (x) = x, because then Q(x) = (x1, - -, x,) follows
by a simple induction. Since x; is normal, we certainly have x; <o (x). Suppose
o(x)=x1 - xxu where u S xp4; forsome k=1,---,h—1,and u #A. Then x4, - * -,
Xk = Xr+1=x, and x4, * + +, X are normal by hypothesis, O ux1 -+ + - Xx =x1** * X1 by
Lemma 2. This means x; * + * xx# is not normal. Thus, o(u) < x;, so o(u)=x,. This
completes the proof. il

LEMMA 4. Suppose x € A*, x # A, Q(x)=(x1,* "+, x¢). Then x1 =+ + - Z xp.

Proof. It can be assumed without loss of generality that k =2. If k =1, there is
nothing to prove. If the theorem is true for k =2, then for k =3 one can use the fact
that Q(x)= (x4, * * -, x) implies Q(x1x;41) = (x; x;41) for i=1, - -+, k —1 to conclude
that x;=x; . fori=1, -+, k—1;thatis, x1 =+ - - Z x.



MULTISETS OF APERIODIC CYCLES 363

We will show that if x; and x, are normal words, and if Q(x1x,) = (x1, x2), then
%1 = x,. This will be done by induction on the length of x1x;. Actually we shall prove
for n = 2 the following statement: for every linearly ordered set A, and for every pair
x1, X of normal words over A with A (x1x2) = n, Q(x1, x2) = (X1, X2), we have x; = x,.
If n =2 this statement is true. Next we assume n > 2.

Let ay, a- be the initial elements of x1, x, respectively. Then because x; is normal,
every element of x; is not less than a; for i =1, 2. Also, a1 = a,, for if a1 <a, we will
show that x,a, is normal, contradicting the assumption that o(x1x) = x;. To show
that x;a, is normal if a1 < a,, we have to show that x,a, is exceeded by all its shifts.
First, x1a,<a,x; because a;<d,. If A(x1)=1 this shows that x1a, is normal. Next,
suppose x;=uv with u#A, v#A. Then uv <vu because x; is normal. Hence,
uva, < vua,. But the initial element of u is a1, so ua, < a,u. Hence, uva, <vua, < vau.
This shows x;a» is normal, a contradiction, so a; = a,.

If a1 > a,, we have x;>x, and we are done.

Finally we get to the hardest case: a;=a>=a. Then a is the smallest element in
x1x,. Thus, we can put x;=au; - * * Ay, X2=avy - - - av; where the u’s and v’s are
words either empty or with every element greater than a.

Let A, be the set of all p e A with p >a. Then words with every element greater
than a are elements of A¥, and so is the empty word. The combinations ax with
x e A¥, will be called syllables. The au, ** -, aux, avi, * -+, av; mentioned in the
previous paragraph are syllables.

Let us use the letter B for the set of all syllables. If b1, b,€ B we write b1 <b;
if and only if this inequality holds in A* (elements of B are words over A). By
lexicographic order, this inequality is extended to elements of B* (the set of words
over B).

There is a natural injection from words over B to words over A. For example,
if auy, -+ -, auy are syllables, then (auq)(auy) - - - (auy) is a word over B, and it is
mapped onto auiau, - - * aug, which is a word over A. This injection is easily seen to
preserve lexicographic order: (auy) - - - (au) <(avi) - - - (av;) in B* if and only if
auy - - aug <avy -+ av; in A*. And it preserves normality: (au,) - - (auy) is normal
in B* if and only if au; - - - auy is normal in A%,

Now let x1=au; - - - au and x, = avy - - - av; be normal in A*, with A(x1x2)=n
and Q(x1x2) = (x1, x2). Thenin B* the words y; = (au,) - - - (au)and y» = (aui) - - * (avy)
are normal, with Q(y1y2) = (y1, 2). But A(y1y2) is less than n (the case that all syllables
in x1x» have length 1 is easily dismissed because n >2). So by the induction hypothesis
we have y; = y,. Since the injection preserves order, we conclude x; = x,. This com-
pletes the proof. a

The foregoing lemmas lead to the following.

THEOREM 1. Every x € A" corresponds to exactly one n-multiset f over s{(A) such
that Q(x) = v(f). Furthermore w(x) = W(f).

This concludes our combinatorial proof of (5). To illustrate the bijection, consider
all words over A ={a, b, ¢} with a <b <c which have two as, one b and one c. These
words together with their Q-factorizations are:

x O(x) x Q(x)

aabc (aabc)  baac (b, aac)
aach (aach)  baca (b, ac,a)
abac (abac) bcaa (bc,a,a)
abca (abc,a) caab (c,aab)
acab (ac,ab) caba (c,ab,a)
acha {(acb,a) abaa (c, b,a,a)
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We have listed the words in this illustration in lexicographical order. It might be
noticed that if each Q(x) is viewed as a word over N (A), then the list of (-factorizations
is also in lexicographical order. An explanation for this is given by the following results.

LEMMA S. Letx,ye A* withx=y. Then c(x) = o (y).

Proof. If x =y, there are two cases to consider. In the first case, we have y = xt
for some t € A*. Then o(x) = o(xt) = o (y), so o(x) = o(y). In the second case we have
x=upr, y=ugs, u,r,s € A*, p,ge A, and p<q. If u=A, then p =o(x), gco(y), so
o(x)<o(y). I u#A,theneithero(x)cu,orup co(x).lffo(x) Sy, thenolx)=o(u) =
a(y) since u €y, s0 o(x)=a(y). If up < o(x), we will show uq is normal, so ug < o (y),
and we have o (x) <o (y). To see that up < o(x) implies ug normal, suppose o (x) = upt,
te A*. Let u=uu, with uq #A, then uiupt <u,ptu; because upt is normal. We
finally show that replacing pr by ¢ preserves this inequality. We write uqu; = vrw
where v, w e A*, re A and A (v) = A (u). Since ujuspt < urptu, we have vrwpt < upiu;.
We consider the two cases v <u, and v = u, separately. If v <u, then vrwq <u»qu;
(because of A(v)=A(uy)), s0 uiusq <uxqu.. If v =u, we have r=p, and therefore
r<gq, whence vrwq < u>qu, SO again uiu»q <uqu,. This means that uq is normal,

and our proof is complete. 0

THEOREM 2. Suppose x <y. Then Q(x)<Q(y).

Proof. This is proved by induction on A (x). The case A (x)=1 is trivial. Suppose
the theorem is true for all x € A* with A(x)<n for some n=2. Let x, ye A™* with
x <y, A(x)=n. We know from the previous lemma that o(x)=o(y). If o(x)=0c(y),
then 7(x) < 7(y), and A (7(x)) <A (x), so Q(7(x)) <Q(7(y)) by the induction hypothesis.
Hence, Q(x)=(o(x), Qr(x))) <(o(x), Qr(y)) = Qy). If c(x)<o(y), then Q(x)=
(o (x), QUr(xN) < (e (), Q(r(y))) = Q(y). This completes the proof. 0

As an application of Theorem 2, we mention that if v and w are normal words
over A, and if v <w, then v" <w for all n €P. For if v and w are viewed as single
letters, and v <w, then v - - - v is lexicographically less than w.

We state without proof another curious property. Let € (x) be the longest normal
terminal word of x for all x€ A*, and let 6(x) be the rest of x after £(x) has been
deleted. Define Q'(x), a factorization of x into normal words, as follows. First,
Q/(x) = (x) if x is normal. Otherwise if x is not empty, '(x) = (Q'(6(x)), (x)), and
extra parentheses are deleted as in the definition of ). The surprise is that Q(x) = '(x)!

5. Algebraic proof of (5). Recall that P1(A) is the set of aperiodic words over
A, and that &/ (A) is the set of aperiodic cycles over A. Every aperiodic cycle of length
n can give rise to n distinct aperiodic words (which are obtained by breaking the cycle
open at one of the n possible places).

Because of the definition of W and w in § 2 we have

(10) >y wH=_% I mwen:
fetli(A) Ced(A) k=0
We shall use the identity

(11) k§02k=exp{k§1 %k}

Applying this with z = w(C), (10) becomes

@ 3 wip= 1 e o

o
Fed1(A) Ces(A) k
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We shall prove the identity

oo o0 1
Loy w@y=% = 5 wo.
m=1M yeaA™

k=1 Kk cesa)

(13)

The left-hand side can be written as

o«

(14) I L
k=1n=1KN xecPi(A)
Alx)y=n

18

4
1

since each aperiodic cycle C with length n corresponds to exactly n elements of P1(A).
Taking terms with the same value of kxr together, we transform (14) into

© 1
(15) Y =% ¥ (w)ymn
m=1M nlm x/\e(i’);(zAn)

Every word y with length m can be written uniquely as y =x™", where n is a
divisor of m and x is aperiodic. Conversely, if n divides m and if x € P;(A), A(x) =n,

then x™” € A™. Therefore we can write (15) as the right-hand side of (13), just noting
that (w(x))™" = w(x™"). This proves (13).
Since
(16) £ wi=( T w@)
yeA” acA

we find that application of the exponential function to the right-hand side of (13)
leads to
k

L (L w)
k=0 \acA
(cf. (11)), whence (12) and (13) lead to (5).
As a generalization of (13) we mention, with an extra parameter s,

L 5 )" w(y)
G (A (0)S yeatua W)Y

(17) »
k=1

The case s =0 is (13), but the case s = —1 looks pretty as well.

6. Some examples. Let us return to the problem we described in § 3. Let D be
an n-set, n € P, let S(D) be the set (and group) of all permutations of D, and let D”
be the set of all mappings of D into D. Elements of D” are called endomorphisms
of D. The (directed) graph of fe D has vertex set D and edge set {(d, f(d)): d € D}.
Elements f, g D are defined to be equivalent if the graph of f is isomorphic to the
graph of g. This means there exists yeS(D) such that {(yd, y/(d)):deD}=
{(d, g(d): d e DY={(vd, gy(d): d € D}, that is, yf = gy, which is the same as yfy ' =g.
An equivalence class in D” is called an endomorphism pattern of D, and f(n) is defined
to be the number of these patterns for any n-set D. Next, ¢(n) is defined to be the
number of isomorphic classes of rooted trees with vertex set any n-set V, n € P, Such
a class is called a rooted tree pattern. Diagrams representing rooted tree patterns having
fewer than six vertices are shown in Fig. 1. Diagrams representing endomorphism
patterns of an n-set for n =1, 2, 3 are shown in Fig. 2. Also, Fig. 3 indicates how an
endomorphism pattern might be viewed as a multiset of cycles of rooted tree patterns.
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FIG. 3. An endomorphism pattern viewed as a multiset of rooted tree cycles.

Read’s formula (8) tells us how to compute f(n), the number of endomorphism
patterns on an n-set, in terms of the rooted tree numbers. However, the bijection
described in § 4 tells how to encode such a pattern as a sequence of words over the
set of trees. The kth word in the sequence corresponds to the k-fold cycles of trees.
For example, the endomorphism pattern in Fig. 3 is encoded as (6,2,7), 4, 14),(1, 1),
(A, A, A, - - +). To decode a sequence of words (x1, x2,* - *), apply Q to x; for k=
1,2, - to get Q(x;) = (X1, X2, - * *); then xy; is used to form a k -fold cycle of rooted
trees (x ;). We use as a convention that x, is replaced by A if there are no k-fold cycles.

Our generalization of Read’s formula allows us to enumerate other kinds of
endomorphism patterns with equal ease. For example, suppose we are only interested
in those fe D” with |f~'(d)|=h; that is, every d € D is the image under f of at most
h other elements of D, h € P. When h = 1, these endomorphisms are the permutations
of D, and the patterns correspond to partitions of » if D is an n-set. For any £ €P,
endomorphisms f such that | FHd)|=h give rise to patterns whose encoding as trees
involves a special sort of rooted tree. Namely, the in-degree of the root vertex is at
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most & —1, and the in-degrees of all other vertices are at most . When % =1, there
is only one tree like this, namely, the rooted tree with one vertex. In this case we
would take T(z)=z in (8) to get

o0 o0
n
(18) Y fm)z"=1I %
n=0 k=1 1 —Z
which is the generating function for the number of partitions of n, as expected. When

h =2, the form of T is in part
T(z)=z+2°+2°+22*+32°+62°+112" +232°+462°+982"%+- - .

We note that T(z)=z(1+5(z)), where S(z) is the generating function for the rooted
trees in which all vertices have degree =2. By Pélya’s method (see [7]) we have

S(z)=z(1+S(z)+38(z>) +5(8(2))),
and therefore
T(z)=z +3(T(z*)+(T(2))").
Using (8) with this new generating function T we get
F(2)=1+2z+32"+62>+152*+312°+752°+ 1647’
+3882%+8872°+20922'0+48842" +115992'2 + 2744321
+655092" +1564272"°+3752632 "%+ - -.

Thus, there are exactly 887 endomorphism patterns on a 9-set, involving f€ D" such
that |f'(d)|=2 for all d € D.

We close with some comments on the several papers which have dealt with the
computation of f(n). Fisher (1942) [4] seems to be first, and the same article with
some corrections and additions appears in [5] (1950). In his 1950 reprinting of his
earlier paper, Fisher adds a note indicating that he was unaware of Pélya’s enumeration
method. Nevertheless, Fisher’s method produces results which run parallel to what
one would get using Pdlya’s method. Davis (1953) [3] was aware of Pélya’s method,
but he elected to give an explicit formula for f(n) using “Burnside’s lemma” which
is now properly renamed the Cauchy-Frobenius theorem. (See de Bruijn [1].) Harary
(1959) [6] touched on the problem of computing F(z) in his enumeration of patterns
of functional digraphs, and he used Pdlya’s method. Read (1959) [8] obtained (8) by
simplifying a formula given in Harary’s paper. Finally, de Bruijn (1972) [2] investigated
endomorphism patterns using the group action p(y)f = vfy~', finding new proofs for
older results.

Note added in proof. We are indebted to D. Foata for pointing out that Theorem
1 was known in the context of the theory of free Lie algebras. The oldest reference
seems to be to A. 1. SirSov, Subalgebras of free Lie algebras, Mat. Sbornik N.S. 33
(75) (1953) pp. 441-452. For related results see G. Viennot, Algébres de Lie libres
et monoides libres, Lecture Notes in Mathematics 691, Springer-Verlag, Berlin, Heidel-
berg, New York, 1978.
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