Recovering lines with fixed linear probes

de Berg, M.T.; Bose, P.; Bremner, D.; Evans, W.S.; Narayanan, L.

Published in:
Proceedings 10th Canadian Conference on Computational Geometry (CCCG'98, Montreal, Quebec, Canada, August 10-12, 1998), Electronic proceedings

Published: 01/01/1998

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Recovering lines with fixed linear probes

EXTENDED ABSTRACT

Mark de Berg Jit Bose David Bremner* William Evans Lata Narayanan

1 Introduction

Suppose the only access we have to an arrangement of n input lines is to “probe” the arrangement with horizontal lines. A probe returns the set of probe points which are the intersections of the probe’s horizontal line (the probe line) with all input lines. We assume that none of the input lines is horizontal, so a probe line intersects every input line. Our goal is to reconstruct the set of input lines using a small number of probes.

Aoki, Imai, Imai, and Rappaport [1] observed that if one is allowed to place the probe lines after seeing the results of previous probes, then the number of probes required is at most three.

This paper addresses the problem of fixed probes; in our setting the locations of the probes must be chosen before the input is examined. We show that for each natural number n there is a set of $n + 1$ probe lines that will serve to determine any arrangement of n input lines and that $n + 1$ are sometimes necessary. We further obtain asymptotically tight upper and lower bounds on the maximum number of input lines that are compatible with k probes each of which reports at most n probe points. A line is compatible with a set of probes if every intersection of the line with a probe line occurs at a probe point. We give an algorithm to reconstruct an arrangement of n lines that runs in $O(n^2 \log^2 n)$. A randomized version runs in time $O(n^2 \log n)$.

2 Intersection Probes

Let $L \cap H = \{ l \cap h \mid l \in L, h \in H \}$. If L is a set of (hidden) non-horizontal lines and H is a set of (known) horizontal probe lines, we want to determine L given just $L \cap H$. A natural question is how many probe lines are necessary to determine an arrangement in this way.

Proposition 1 Let L_1 and L_2 be sets of n non-horizontal lines, and H a set of $n + 1$ horizontal lines. If $H \cap L_1 = H \cap L_2$ then $L_1 = L_2$.

Proof omitted.
Proof. Consider a set \(L \) of \(N \) non-horizontal lines and a set \(H \) of \(k \) horizontal probe lines with at most \(n \leq N \) probe points on each; there are \(N + k \leq 2N \) lines in total and at most \(nk \) points. If all lines are to be compatible with all probes then by Proposition 3 we must have

\[
Nk \leq \sum \deg(v) \leq c \left(N^{2/3} (nk)^{2/3} + N + nk \right)
\]

\[
N(k - c) \leq cn^{2/3} (nk)^{2/3} + cnk
\]

\[
N^{1/3} \leq \frac{c(nk)^{2/3}}{k - c} + \frac{cnk}{(k - c)N^{2/3}}
\]

We know that \(N \geq n \), so

\[
N \in O(n^2 / k + n)
\]

We now present algorithms to compute \(L \) from \(L \cap H \) for sufficiently large \(H \). In order that the number of input lines need not be known in advance, we assume that the probe points are presented grouped by line. If this is not the case, then an additional \(O(nk) \) preprocessing needs to be done for an \((n, k) \) probe set.

Theorem 5 Let \(L \) be a set of \(n \) non-horizontal lines and \(H = \{ h_1, \ldots, h_k \} \) be a set of horizontal lines such that \(n < k \). Given \(L \cap H \) grouped by probe line, we can compute \(L \) in time \(O(n^2 \log^2 n) \).

Proof omitted.

Theorem 6 Let \(L \) be a set of \(n \) non-horizontal lines and \(H = \{ h_1, \ldots, h_k \} \) be a set of horizontal lines such that \(n < k \). Given \(H \cup L \) grouped by probe line, we can compute \(L \) in expected time \(O(n^2 \log n) \).

Proof. Initially form the set \(L_0 \) of \(N_0 \leq n^2 \) candidate lines obtained by joining every probe point on \(h_1 \) with every probe point on \(h_2 \). Let \(H_0 = H \setminus \{ h_1, h_2 \} \).

At each step \(i \geq 1 \), we have a set \(L_{i-1} \) of \(N_{i-1} \) candidate lines and a set \(H_{i-1} \) of at least \(n - i \) unprocessed probe lines. Choose a probe line \(h \) from the set \(H_{i-1} \) at random. Let \(H_i = H_{i-1} \setminus \{ h \} \). Let \(L_i \) be the candidate lines from \(L_{i-1} \) that are compatible with \(h \). Form \(L_i \); that is testing each of the \(N_{i-1} \) candidate lines in \(L_{i-1} \) to see if it is eliminated, requires \(O(N_{i-1} \log n) \) time. By Proposition 1, we know we can stop when \(N_i < i \).

We can divide the running of this incremental algorithm into two stages according to whether or not the following is satisfied:

\[
i \leq \frac{n}{2} \quad \text{and} \quad N_i > c_1 n
\]

for some constant \(c_1 \). In stage 2, when (1) is not satisfied, we know from Theorem 4 that \(|L_i| \in O(n) \). Both stages together take time at most

\[
c_{2} \sum_{i=0}^{n/2} N_i \log n + O(n^2 \log n)
\]

where the \(N_i \) are random variables. We will bound the expected running time of the algorithm by obtaining a bound on \(\mathbb{E}N_i \).

Lemma 1 For \(0 \leq i \leq n/2 \), \(\mathbb{E}N_i \leq c_3 n^{1+(2/3)i} \)

Proof omitted.

The expected running time \(T(n) \) of the algorithm is then bounded as follows

\[
T(n) \leq c_{2} \sum_{i=0}^{n/2} c_{3} n^{1+(2/3)i} \log n + O(n^2 \log n)
\]

We claim that

\[
(2) \quad T(n) \in O(n^2 \log n)
\]

To see that (2) holds, note that for \(x \geq 8 \), \(x/2 \geq x^{2/3} \). Thus

\[
\sum_{i=0}^{n/2} n^{(2/3)i} \leq 4n + \sum_{i=0}^{n/2} 2^{-i}n \leq 6n
\]

which suffices to prove the claim, and the theorem.

Acknowledgments

This research came out of a workshop on Computational Tomography organized by Godfried Toussaint. The authors are grateful to Godfried Toussaint for organizing the workshop, and to the Bellairs Research Institute of McGill University for hosting it.

References
