

Demonic operators and monotype factors

Citation for published version (APA):
Backhouse, R. C., & Woude, van der, J. C. S. P. (1992). Demonic operators and monotype factors. (Computing
science notes; Vol. 9211). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 28. Nov. 2022

https://research.tue.nl/en/publications/1d63a3eb-52e0-433c-aec6-78c2a7ff10a0

Eindhoven University of Technology

Department of Mathematics and Computing Science

Demonic Operators and Monotype Factors

by

Roland Backhouse and Jaap van der Woude

Computing Science Note 92/11
Eindhoven, May 1992

92/11

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

'-

Demonic Operators and Monotype Factors

Roland Backhouse and Jaap van der Woude
Department of Mathematics and Computing Science,

Eindhoven University of Technology,
P.O. Box 513,

5600 MB· Eindhoven,
The Netherlands.

May 26,1992

Abstract

This paper tackles the problem of constructing a compact, point·
free proof of the associativity of demonic composition of binary rela­
tions and its distributivity through demonic choice. In order to achieve
this goal a definition of demoniC composition is proposed in which
angelic composition is restricted by means of a so-called "monotype
factor". Monotype factors are characterised by a Galois connection
similar to the Galois connection between composition and factorisa­
tion of binary relations. The identification of such a connection is
argued to be highly conducive to· the desired compactness of calcula·
tion.

Nothing delights a mathematician more than to discover that
two things, previously regarded as entirely distinct, are mathe­
maticaly identical. W. W. Sawyer

La mathematiqueest l'art qe donner Ie memenom it des choses
differentes. [J.j H. Poincare

The term "Galois connexion" was coined by Oystein Ore [20] almost fifty
years ago in order to describe a particularly simple and elegant relationship
between a pair of functions. Specifically, if A and B are two partially-ordered
sets and f E A ---> Band 9 E B --;. A are functions mapping the two sets
to each other then we say that f and 9 are Galois connected if and only if
for all a E A and b E B

(1)

The importance of the notion was recognised at a very early stage in math­
ematically-oriented computing science literature. As long ago as 1964 Hart­
manis and Stearns [12] developed an alternative, but entirely equivalent,
formulation of Galois connections called "pair algebras" which they applied
to a data-refinement problem - the state assignment problem in sequential
machines. 1 Seven years later, Conway [8] published a book on finite-state
machines in which a very important element was the chapter on so-called
"factor theory" and its subsequent application to the construction and anal­
ysis of so-called "biregulators". Conway did not refer to the work of Hartma­
nis and Stearns, nor to Galois connections, but there are clearly recognisable,
formally establishable, parallels between his "L-R factorisa.tions" of a regular
language and Hartmanis and Stearns~ "m-M decompositions" of a finite-state
machine.

Although both the textbook by Hartmanis and Stearns and Conway's
little monograph offer beautiful exa!llples of the economy and elegance of
abstract mathematics this aspect of their work seems not to have received
the recognition that it deserves: in the case of Conway his theory of fac­
tors seems to have been completely disregarded, the only reference to this

1 Although they did not use the term in tpe original paper describing their theory Hart­
manis and Stearns briefly acknowledge the' relevance of Galois connections in a footnote
in their textbook [13J in which they said: "For related mathematical concepts see the dis­
cussion of Galois connections between partially ordered sets in [7J." Simons [21J formally
establishes the equivalence between Galois connections and pair algebras.

2

chapter of his book of which we are aware being a paper [3] drawing a connec­
tion between factors and the failure-function method used in the well-known
Knuth-Morris-Pratt string-searching algorithm [16]; in the case of Hartma­
nis and Stearns, the fact that the state-assignment problem is an interesting
non-trivial example of data refinement seems to have escaped the attention
of all those working in this now blossoming area.

In recent years there has been a reawakening of interest in Galois connec­
tions in computing science journals and conference publications. Of particu­
lar note are the textbook on Continuous Lattices [11] in which a substantial
section is devoted to the topic, and floare and He's formulation of so-called
"weakest pre- and post-specifications" via Galois connections with relational
composition. (Their weakest pre- and post-specifications are the same as
Conway's left and right "factors" and Dilworth's [10] left and right "residu­
als".) Other recent references are [14, 18, 17].

In our work on developing a relational theory of datatypes [1, 2, 4] we
have come to recognise the importance and ubiquity of Galois connections.
They abound particularly in the calculus of relations and their simple form
lends itself superbly to compact calculation. With some practice they are
very easy to spot, and their mastery is an indispensable precursor to the
mastery of the orders-of-magnitude more complex notion of an "adjunction"
in category theory.

This paper exploits a Galois connection that arises naturally in the study
of demonic composition and choice in order to prove certain algebraic prop­
erties of these operators. The proofs illustrate well, in our view, how early
recognition of a Galois connection can significantly shorten and simplify oth­
erwise complicated calculations. The main concern of the paper is not the
theorems that are proved - none of our results is in any way new - but with
the "ergonomics" of mathematical calculation - how to choose suitable no­
tation, and how to formulate definitions and calculation rules in such a way
that seemingly difficult calculations become straightforward. In this sense
the paper is a small contribution to a broad debate of central importance to
the further development of mathematical practice.

3

1 The Algebraic Framework

In order that the reader be able to follow our calculations a limited knowledge
of the axiomatic calculus of relations due to (among others) de Morgan,
Schroder and Tarski is needed. Full accounts appear in several monographs;
we will make do here with just a summary of precisely those properties we
need in our calculations.

We work within the context of an algebra (A, u, n, TT, .u,o, 1) consisting
of a set A on which are defined three binary operators U, nand 0. Further
the set A includes three (distinct) constants TT, .u and I. The set A is
assumed to be a complete, completely-distributive lattice under the opera­
tions U and n with top and bottom elements TT and .u, respectively. The
ordering relation on the elements will be denoted by ~ and its converse by
~. (Specifically, X ~ Y _ XUY = Y.) The set A also forms a monoid
under the "composition" operator 0. That is, 0 is associative and has unit I.
These two algebras are connected by the fact that composition distributes
universally, from both the left and the right, over U. (Composition does not,
however, distri bu te everywhere over n.)

An interpretation is that in whi<;h A is the set of binary relations over
some (anonymous) universe, U is set union, n is set intersection and 0 is
(angelic) relational composition. The top element TT is the universal relation,
the bottom element .u is the empty relation and the unit I is the identity
relation.

In order not to confuse meta-language with object-language we prefer to
refer to the elements of A as specs r~ther than relations.

The subset of A consisting of those elements below I are called the mono­
types. (They can be interpreted as partial identities, i.e. identities on subsets
of the universe.) Thus,by definition,

(2) monotype.A I ~ A

An important property of monotypes is that composition coincides with in­
tersection. That is, for all monotypes A and E,

(3) AoE AnE

This property can be formally derived in the calculus of relations but depends
on other axioms for which we have no further use in the paper.

4

We also assume additional properties that validate the introduction of
two so-called "domain operators", the left domain operator < and the right
domain operator >. Both are unary operators written as postfixes to their
arguments. The specific properties that we assume are as follows. First,
domains of specs are monotypes: For all specs R,

(4) monotype.R< and monotype.R>

(Note that the infix dot denotes function application and that unary opera­
tors always take precedence in our formulae over binary operators. Thus one
should parse "monotype.R<" as "monotype.(R<)".)

Second, the domain operators are defined by Galois connections between
the lattice of all specs and the sublattice of the monotypes: For all specs R
and monotypes A,

(5) A ::J R> TToA::J R

and

(6) A :;:;l R< AoTT:;:;lR

(In words, R> is the least monotype A such that TT 0 A :;:;l R, and dually for
R<.)

From these definitions it is clear that properties of one domain operator
can easily be dualised to properties of the other by reversing the order of
the arguments in a composition. We shall therefore only state additional
properties of the right domain operator and leave the reader to supply the
dual property of the left domain operator.

The first of these additional properties is that the closed elements of the
domain operators are precisely the monotypes.

(7) monotype.A A = A>

Next, R> is the least monotype A such that R 0 A = R: For all specs R
and all monotypes A,

(8) A :;:;l R> RoA = R

Finally, we have three properties for which we have no verbal summary:
For all specs Rand S,

(9) (R 0 S» (R> 0 S»

5

For all specs Sand monotypes A,

(10) (S 0 A» S> 0 A

For all specs Rand S,

(11) :J(A: monotype.A: R = So A) R=SoR>

The interpretation of the domain operators in the calculus of binary rela­
tions is that R> is the set of pairs (y, y) such that there exists an x with xRy.
Vice-versa, R< is the set of pairs (x, x) such that there exists a y with xRy.
With these interpretations all the above properties can be readily verified.
Compacter, axiomatic proofs can also be constructed but, with some excep­
tions, we have provided insufficient information about our axiom system to
permit the reader to complete this exercise. From now on, however, we pro­
ceed entirely axiomatically and do not refer to the relational interpretation
in any proofs.

This completes our brief introduction to the algebraic framework.

2 Defining Demonic Composition

Weakest precondition semantics [9J gives an axiomatic description of nonde­
terministic programs admitting several models. One of these is a relational
model with "non-standard" relational composition and union: the so-called
demonic composition and demonic choice (see e.g. [19, 6]). In this section
we motivate and then define demonic composition. In section 6 we define
demonic choice.

To motivate the definition of dej110nic composition let us briefly sum­
marise its operational interpretation in the relational model. We consider
some set X.L consisting of "program states" X augmented with a distin­
guished element .1 representing non-termination. A (non-deterministic) pro­
gram is a relation between elements of X.L and X that is total on X. (Note
that we use the functional-programming convention of having input on the
right and output on the left rather than the opposite way around as is con­
ventional in imperative programming.) The demonic composition R; S of
two relations Rand S is then the normal relational composition R 0 S of R
and S but excluding computations of S that can lead to non-termination.

6

This definition, with its implicit case analysis on .l, leads to ugly calcula­
tions. A slight abstraction leads to a nicer definition. Specifically, we forget
about the detailed structure of Xl. and define the demonic composition of R
and S to be the normal relational composition R 0 S but excluding compu­
tations of S beginning in states x such that states in Sx may lie outside the
right domain of R.

Interpreting this specification literally we are required to specify R; 5
formally via two clauses: The first clause states that it is "the usual compo­
sition" but with a restricted right domain. I.e.

(12) R; 5 = R 0 5 0 R&5

where

(13) monotype.(R&S)

Thus R&S is the "restriction" on the right domain.
The second clause states that the said restriction should include only those

states x such that R is defined on all the 5-results 5x. Replacing "states x"
by "monotypes B", we formulate this second clause as the requirement that
R&5 satisfy the specification:

(14) V(B: monotype.B: R&5 ;;;J B - R>;;;J (50 B)<)

In words, R&5 is the largest monotype B such that R> ;;;J (8 0 B)< .
The initial challenge we set ourselves in this paper is to construct an

axiomatic proof of the associativity qf demonic composition. (Later we con­
sider the additional challenge of showing that it distributes through demonic
choice.) In particular, we deny ourselves any appeal to extensionality proper­
ties based on the existence of "points" in the domains of specs. (An example
of an extensionality axiom that is independent of the axioms on which our
calculations are based is that the spec I is the union of all pairs (x, x) where
x ranges over the set of all "points".) This makes our task more difficult but
more rewarding in that the validity of the theorem we prove extends to more
models.

7

3 Preliminary Analysis

Before embarking on the task of proving that demonic composition is indeed
associative let us examine the more elementary consequences of its specifica­
tion.

The immediate question is whether there is a solution to the conjunction
of (13) and (14) viewed as equations in R&S. To see that this is indeed
the case - at a glance - we observe that both the functions < and So are
universally U-junctive, hence so is their composition and thus

(15) U (B: monotype.B A R> ;;;J (S 0 B)<: B)

solves (14). It also solves (13) since it is clearly a monotype. We may thus
conclude that the binary operator & does indeed exist.

Knowing this formula is however of little help in any calculations involving
R&S since the inevitable first step in any such calculation will be to return
to (14). More progress can be made if one is aware that being universally
U-junctive is equivalent to having a certain sort of adjoint. Note that the
requirement on R&S - for all monotypes B and all specs Rand S,

(16) R&S ;;;J B R> ;;;J (S 0 B)<

- is almost a Galois connection between the function (R R&S) and the
function (B (S 0 B)<). That it is not so can be solely attributed to the
occurrence of the right domain operator on the right side of (16).

We can dismiss this obstacle by noting that, for all monotypes A we have
A> = A and, in particular, (R»> = R>. Consequently,

(17) R&S = R>&S

where, for all monotypes A and B,

(18) A&S;;;J B A ;;;J (S 0 B)<

Property (17) tells us that the left operand of & may always, without loss of
generality, be assumed to be a monotype. Property (18) says that - with the
said assumption - the function &S is adjoint to the function (B (S 0 B)<).
I.e. in the lattice of monotypes there is a Galois connection between &S and
the composition of the two functions < and So.

8

4 Monotype Factors

The recognition of a Galois connection is a very crucial observation and
unleashes a welcome gush of properties. In this case the gush becomes a
minor flood if one is already familiar with the Galois connection between
composition and "factors" in the calculus of relations. (The term "factor"
is that coined by Conway [8] in his study of regular languages. Elsewhere
the terms "residual" [7] and "weakest pre-/post-specification" [15] are used
for the same concept.) Specifically, right factors are defined by the Galois
connection

(19) S\R ;;;J T R;;;J SoT

Comparing the right sides of (18) and (19) we see that they are almost
identical but for the additional application of the right domain operator. To
facilitate exploitation of the similarity it pays to rewrite the left side of (18)
so that the arguments A and S appear in the same order as Rand S in (19).
Let us therefore introduce the binary operator \ defined by

(20) S\A = A&S

for all monotypes A and specs S. Then, substituting in (18), S\A is com­
pletely characterised by the Galois connection

(21) S\A ;;;J B A;;;J (SoB)<

We call S\ A a monotype factor.
Using the well-documented properties of spec factors as a guide one

quickly establishes a number of properties of monotype factors. Some of
these are listed in the table overleaf alongside the corresponding properties
of spec factors. (Several of these properties are predicted purely from the
fact that one has a Galois connection, in particular all the cancellation prop­
erties. The second junctivity property, both for monotype and spec factors,
combines properties of composition with the defining Galois connections, and ,
the two properties labelled "miscellaneous" are peculiar to composition and
monotypes.)

Note that, in order to keep our formulae compact, a shorthand for quan­
tified expressions has been exploited in the table. Specifically, if V is some
bag of values all of the same type a;,d f is a function on elements of that

9

type then f. V denotes the bag obtained by applying f to each element of
that bag. Moreover, if V is some bag and EEl is some idempotent, associative,
and commutative operator we write EElV for EEl(v : v E V : v). An example of
this shorthand is the first junctivity property. Spelt out in full the property
reads:

n(A: AEA: S\A) S\ n (A: A E A: A)

This convention will be used in several places in the text.
At this point we are faced with a predicament. Equation (12) introduced

the notation R&S but now we have another notation for the same quan­
tity, namely S\ R>. Should we continue our calculations using the original
notation or should we switch to the new form?

For us there is no doubt that the latter is the better choice. The notation
R&S was purely ad hoc, invented on the spur of the moment in order to fulfill
an initial goal. The notation S\ A, however, is deliberately chosen in order
to suggest an analogy with division in ordinary arithmetic. In particular, the
order of the arguments in S\ A is designed to facilitate the use of the can­
cellation properties in table 1 (specificallY, the arguments that are cancelled
should be adjacent to each other), which from experience with calculations
with Galois connections are very useful.

Fortunately, very little rewriting is required. It suffices to rewrite the
definition of demonic composition:

(22) R;S = RoSoS\R>

where

(23) monotype.(S\R»

Several of the properties in table 4 can be reformulated in ways that prove
to be particularly valuable to our specific aims. The first is the cancellation
property

(24) A::::J (S 0 S\A)<

which, in view of (8), has the equivalent formulation:

(25) A 0 S 0 S\A S 0 S\A

10

Monotype Factors Spec Factors

Definition
{ S \ E monotype <-- monotype S\ E spec <-- spec

S \A;;) B == A;;) (SoB)< S\R ;;) T == R;;) SoT

Junctivity Properties { n(S \A) = S \(nA) n(S \R) = S \(nR)
n(s \A) = (US)\A n(S \R) = (US)\R

{I=S\I TT=S\TT
Constants I=l.l\A TT=l.l\R

1\ A = A I\R=R

1 A ~ (8
0 SIAI< R ;;) So S\R

Cancellation Properties
S\(SoB)<;;)B S\(S 0 T);;) T
S\A = S\(SoS\A)< S\R = S\(S 0 S\R)
(SoS\(SoB)<)< = (SoB)< SoS\(SoR) = SoR

Miscellaneous { T\(S\A) = (S 0 T)\A T\(S\R) = (S 0 T)\R
AoA\B = AoB AoA\R = AoR

Note: R, Sand T denote arbitrary specs, A and B denote monotypes, S
and R denote arbitrary sets of specs, and A denotes an arbitrary set of
monotypes.

Table 1: Monotype Factors versus Spec Factors

The second is that the monotype transformer S\ is universally n-junctive.
Since, however, for monotypes the n operator coincides with composition
the monotype transformer S\ is universally composition-junctive and, more
particularly, for all monotypes A and B,

(26) S\(A 0 B) S\A 0 S\B

Finally, the two properties labelled "miscellaneous" can be usefully combined
into one giving:

(27) A 0 (S 0 A)\B A 0 S\B

for all monotypes A and B, and all specs S.
We conclude this section with one obvious consequence of (22) - at least

obvious to the experienced "speculist" - which crops up so frequently in our
calculations that we presume to anticipate its usefulness. Specifically:

(28) R;S = RoSo(R;S»

The property is just an instance of (11).

5 The Proof of Associativity

Now let us turn to the task in hand - proving that demonic composition is
associative. We consider the two terms R; (S; T) and (R; S); T, and expand
each using (22) very cautiously in order not to allow the formulae to grow
too big. First, we obtain

R; (S; T)
{ definition: (22) }

R 0 (S; T) 0 (S; T)\R>
{ definition: (22) }

R 0 SoT 0 T\S> 0 (S;T)\R>

(Note that the outermost occurrence of ";" has been expanded first. Ex­
panding the innermost occurrence leads to a larger formula.)

This is a pleasing result becauses it expresses R; (S; T) in terms of a
restriction on the right domain of R 0 SoT. Now for the other term:

12

(R; S); T
{ definition: (22) }

(R; S) 0 T 0 T\(R; S»
{ Applying (22) for a second time would introduce an

undesirable restriction on the left domain of T, not on
the right. We search around for something more suitable.
Aiming for (25) we apply (28) }

R 0 S 0 (R; S» 0 T 0 T\(R; S»
= { cancellation: (25), A, S := (R; S», T }

R 0 SoT 0 T\(R; S»

Thus (R; S) ; T has also been expressed in terms of a restriction on the right
domain of R 0 SoT and we can infer that

(29) R· (S· T) - (R· S) . T " - , ,
T\S> 0 (S; T)\R> = T\(R; S»

The antecedent of (29) is established in two steps. First, we calculate that

T\S> 0 (S; T)\R>
{ definition: (22) }

T\S> 0 (SoToT\S»\R>
{ cancellation: (27)

with A := T\S> , S:= SoT, B:= R>}
T\S> 0 (SoT)\R>

= { (SoT)\A = T\(S\A), junctivity: (26) }
T\(S>oS\R»

Now comparing the above with (29) we see that it suffices to prove

(30) (R; S» = S> 0 S\R>

This task is completed as follows:

=
(R; S»

{ definition: (22) }
(R 0 S 0 S\R»>

{ domains: (9) }
(R> 0 S 0 S\R»>

13

{ cancellation: (25) }
(S 0 S\R»>

= { domains: (10), S\R> is a monotype }
S> 0 S\R>

6 Demonic Choice

The benefit of the little theory we have developed begins to pay dividends
when we extend our problem further to the investigation of whether demonic
composition distributes through demonic choice (to be defined shortly).

In this section we prove that demonic composition distributes both from
the left and from the right over an arbitrary choice of specs. This is more
general than the results of Berghammer [5] and van der Woude [22] both
of whom only proved distributivity through a finite, non-empty choice of
specs. Unlike in the previous section we are very brief in our discussion of
the calculations. Hopefully by now the calculations speak for themselves!

For an arbitrary set S of specs define the demonic choice oS by

(31) oS uSo n(s»

The motivation for this definition is that, in the relational model of weakest­
precondition semantics discussed earlier, oS excludes all computations that
may lead to non-termination.

Observe that

(32) oS U (S 0 n (S»)

and, for non-empty S,

(33) (OS» n (S»

Property (32) is just universal distributivity of composition over cup. Prop­
erty (33) has a simple proof.

=

(OS»
{ (31), (10) }

(US» 0 n (S»
{ For monotype A, Ao is positively n-distributive }

14

n((US» 0 S»
{ > is monotonic, A 0 B

n(s»
AnB }

Theorem 34 R ; oS = O(R; S)

Proof If S is empty the theorem is trivially true (since both left and right
sides evaluate to .il). In the case of non-empty S we begin by expanding
both sides using the definitions of demonic composition and choice.

and

R; oS
= { definition: (22) }

R 0 oS 0 (OS)\R>
{ definition: (31), and (33) }

R 0 uS 0 (OS» 0 (OS)\R>

O(R ; S)
{ (32) }

U((R ; S) 0 n ((R ; S»»)
= { (28) }

U(S: SES: R 0 S 0 (R; S» 0 n((R; S»))
{ > is monotonic, A 0 B = An B,. S is non-empty}

U(S: S E S: R 0 Son ((R ; S»»)
{ composition is universally U-junctive }

R 0 uS 0 n ((R ; S»)

In this way both R ; oS and O(R ; S) have been expressed as restrictions
on the right domain of R 0 U S and it suffices to prove that these domain
restrictions are equal. Now,

n((R ; S»)
{ notational convention }

n(S: S E S: (R ; S»)
{ (30), (3) }

n(S: SES: S>nS\R»
{ calculus }

n(s» n n (S\R»

15

=

o

{ junctivity of \ R>, see table }
n(s» n (US)\R>

{ (33). S is non-empty, (3) }
(OS» 0 (US)\R>

{ (27) }
(OS» 0 (US 0 (DS»)\R>

{ (33), (31) • S is non-empty }
(OS» 0 (DS)\R>

Theorem 35 oS ; R = D(S; R)

Proof Again we note that the theorem is trivially true for empty set S.
For non-empty S the same strategy is repeated. First,

and

OS; R
{ definition: (22) }

oS 0 R 0 R\(DS»
{ (33), (31) • S is non-empty }

uS 0 (OS» 0 R 0 R\(DS»
{ cancellation: (25) }

uS 0 R 0 R\(DS»

D(S ; R)
{ (32) }

U((S;R)o n((S;R»))
{ (28) }

U(5: 5 E S: 5 0 R 0 (5 ; R» 0 n ((S ; R»))
{ > is monotonic, (3) }

U(5:5ES:5o R 0 n((S; R»»)
{ universal distributivity of composition over cup }

uS 0 Ron ((S ; R»)

Now we compare the two domain restrictions:

16

=

Since

n((s ; R»)
{ (30) }

n(R> 0 R\(S»)
{ monotypes distribute through non-empty cap }

R> 0 n (R\(S»)
{ junctivity of \, see table }

R> 0 R\ n (S»
{ (33) • S is non-empty }

R> 0 R\(DS»

R 0 R\(DS»
{ R

R 0 R> 0

the theorem follows.

R 0 R> }
R\(DS»

o

7 Discussion

Our concern here has not been to establish a mathematical theorem ~ that
demonic composition is associative and distributes through demonic choice
has been known for a long time2 ~ but with economy and elegance of calcu­
lation. The exercise was prompted by discontent with our own and others'
proofs using the axiomatic relational calculus. A useful by-product (and pos­
sibly the main contribution) of the exercise has been to identify the notion
of monotype factor.

Performing this exercise has taught us some valuable lessons in efficient
and economical calculation and we feel it is worthwhile to pass on some of
those lessons to the reader. In order to make the discussion more concrete
we briefly summarise aspects of the proofs given earlier by van der Woude
[22] and Berghammer [5].

2Although we don't know for how long. Moreover, as remarked earlier, the theorems
presented here are more general than the standard theorems in computing science texts
since we do not exploit extensionality. It is thus not clear to us whether the specific
theorems are indeed well-known.

17

Both van der Woude and Berghammer based their calulations on explicit,
closed formulae for R; S. Specifically, van der Woude defined

(36) R;S (RoS) n (TIoR)/Su

(Su being the converse of S) whilst Berghammer worked with the formula

(37) R; S

(This latter formula was published earlier by Berghammer and Zierer [6].)
It is well-known that U/V - .(.U 0 Vu) so it is clear that these two
formula are equivalent. The equivalence of (36) to our own definition of
R; S is left as an exercise. (It should become clear after our discussion of
monotypes versus vectors below.)

There are two main differences between the calculations given here and
those of van der Woude and Berghammer. The first is that they both failed
to spot and exploit the Galois connection underlying the definition of de­
monic composition. Its identification and the use of the factor notation to
encourage the application of the cancellation rules streamlines the calcula­
tions considerably. The second is that the device used by van der Woude
and Berghammer to restrict the domain of a spec is not composition with a
monotype but, instead, intersection with a so-called (right) "vector". Let us
explain this latter difference because it is also of fundamental importance.

Suppose 1[J is a set and X is some subset of 1[J. Then there are two
possibilities for representing X as a binary relation over 1[J. The choice
made in this paper is to represent X as the monotype Xm where, for all
x, y E 1[J, x Xm Y _ X = Y 1\ x E X. The choice made by Bergham­
mer is to represent X by the so-called "vector" Xv where for all x, Y E 1[J,

x Xv Y - Y EX. Recall that the defining characteristic of a monotype A
is that I ;:;:l A. The defining characteristic of a vector V is that V = TI 0 V.

It is clear from the above that there is a (1-1) correspondence between
monotypes and vectors. Specifically, we have, for all monotypes A and all
vectors V,

(38) (TI 0 A» A and TI 0 V> V

In addition we recall that the right domain operator was defined via a Galois
connection between monotypes and vectors - see (5).

18

This close correspondence between monotypes and vectors makes the
choice of which to use as representation of sets a particularly difficult one.
Alternatively, one might argue that it doesn't make any difference which
one chooses since calculations with monotypes can easily be converted into
calculations with vectors and vice-versa! There is, however, one overriding
argument why one should prefer monotypes to vectors and that is the dom­
inant role of composition in programming applications. Let us explain.

A pattern of reasoning that appears repeatedly above can be summarised
by the following schema:

P o Q
{ reason why P - R 0 A for monotype A }

R o A 0 Q
= { reason why A o Q = s }

R 0 S

Note that this calculation involves a silent use of the associativity of compo­
sition in the middle step. (Typically in our calculations the first step involved
the expansion of the definition of demonic composition.)

The same calculation can be performed using vectors. Specifically, let V
denote TT 0 A. Then the restriction R 0 A on the right domain of R can
equally be expressed as R n V and the restriction A 0 Q on the left
domain of Q can be expressed by Q n V u • The proof fragment becomes

poQ
{ reason why P - RnV for vector V }

(RnV) 0 Q
{ For all X, Y, Z,

(X n TT 0 Y) 0 Z = X 0 (Y u 0 TT n Z)
X,Y,Z := R,V,Q }

R 0 (Q n Vu)
- { reason why Q n Vu = S }

R o S

The invisible middle step - associativity of composition - has now been
replaced by the application of a complicated and far-from-obvious calculation
rule. Taking the step in a practical calculation (i.e. one in which R, V and/or
Q are non-trivial expressions) becomes a non-trivial intellectual feat. (The

19

rule can be made less complicated by splitting it into two simpler rules -
see [6, theorem 2.1] - but that only makes the applicability of the step less
obvious.)

The conclusion we would draw is that there is a substantial design el­
ement, having far-reaching consequences on ease of calculation, involved in
the construction of a calculus. The choice of representation of basic concepts
- here illustrated by the dichotomy between monotypes and vectors - is
one such factor. The choice of notation that encourages instant recognition
of calculational rules - here illustrated by the choice of the notation R\ S
to encourage recognition of the applicability of the cancellation rules - is a
second factor. Last but not least, recognition of fundamental mathematical
concepts and their formulation in the form of elegant calculational rules -
here illustrated par excellence by the notion of a Galois connection - is a
third factor in that design process.

References

[1] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voer­
mans, and J. van der Woude. Polynomial relators. To appear: Pro­
ceedings of the 2nd Conference on Algebraic Methodology and Software
Technology, May 22-25, 1991.

[2] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der
Woude. Relational catamorphisms. In Moller B., editor, Proceedings of
the IFIP TC2/WG2.1 Working Conference on Constructing Programs,
pages 287-318. Elsevier Science Publishers B.V., 1991.

[3] R.C. Backhouse and R.K. Lutz. Factor graphs, failure functions and
bi-trees. In A. Salomaa and M. Steinby, editors, Fourth Colloquium on
A utomata, Languages and Programming, pages 61-75. Springer-Verlag,
LNCS 52, July 1977.

[4] R.C. Backhouse, T.S. Voermans, and J. van der Woude. A relational
theory of datatypes. In preparation: copies of draft available on request,
September 1991.

20

[5] R. Berghammer. Relational specification of data types and programs.
Bericht Nr. 9109, Universitiit der Bundeswehr Munchen, Fakultiit fur
Informatik, September 1991.

[6] R. Berghammer and H. Zierer. Relational algebraic semantics of deter­
ministic and nondeterministic programs. Theoretical Computer Science,
43:123-147, 1986.

[7] Garrett Birkhoff. Lattice Theory, volume 25 of American Mathemati­
cal Society Colloquium Publications. American Mathematical Society,
Providence, Rhode Island, 3rd edition, 1948.

[8] J .H. Conway. Regular algebra and finite machines. Chapman and Hall,
London, 1971.

[9] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Se­
mantics. Springer-Verlag, Berlin, 1990.

[10] R.P. Dilworth. Non-commutative residuated lattices. Transactions of
the American Mathematical Society, 46:426-444, 1939.

[11] G. Gierz, K. H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and
D. S. Scott. A Compendium of Continuous Lattices. Springer-Verlag,
1980.

[12] J. Hartmanis and R.E. Stearns. Pair algebras and their application to
automata theory. Information and Control, 7(4):485-507, 1964.

[13] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential
Machines. Prentice-Hall, 1966.

[14] Horst Herrlich and Miroslav Husek. Galois connections. In Austin
Melton, editor, Mathematical Foundations of Programming Semantics,
LNCS 239, pages 122-134. Springer-Verlag, 1985.

[15] C.A.R. Hoare and Jifeng He. The weakest prespecification. Fundamenta
Informaticae, 9:51-84, 217-252, 1986.

[16] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in
strings. SIAM Journal of Computing, 6:325-350, 1977.

21

[17] J. M. McDill, A. C. Melton, and G. E. Strecker. A category of Galois
connections. In David H. Pitt, Axel Poigne, and David E. Rydeheard,
editors, Category Theory and Computer Science, LNCS 283, pages 290-
300. Springer-Verlag, 1987.

[18] A. C. Melton, D. A. Schmidt, and G. E. Strecker. Galois connections
and computer science applications. In David H. Pitt, Axel Poigne, and
David E. Rydeheard, editors, Category Theory and Computer Science,
LNCS 283, pages 299-312. Springer-Verlag, 1987.

[19] Thanh Tung Nguyen. A relational model of nondeterministic programs.
International J. of Foundations of Computer Science, 2(2):101-131,
June 1991.

[20] Oystein Ore. Galois connexions. Transactions of the American Mathe­
matical Society, 55:493-513, 1944.

[21] Martin Simons. Galois connections and paIr algebras. Unpublished
draft, December 1991.

[22]
I

Jaap van der Woude. Free style specwrestling: Demonic compositi n
and choice. In Lambert Meertens, CWI, Liber Amicorum, 1966-19 1.
Stichting Mathematisch Centrum, Amsterdam, January 1991.

Acknowledgement
.

Thanks go to Huub ten Eikelder and Wim Feijen for comments on an earrer
draft of this report. Thanks also to the continuing interest and enthusia
of members of the Eindhoven speculist club.

22

In this series appeared:

89/1 E.Zs.Lepoeter-Moloar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89(7 P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 AT.M.Aerts
K.M. van Hee

89113 AT.M.Aerts
K.M. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89/15 J.S.C.P. van
der Woude

89/16 AT.M.Aerts
K.M. van Hee

89/17 M.J. van Diepen
K.M. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category rheoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

j "

90/1 W.P.de Roever-
H.Barringer-
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. BIZOzowski
J.C. Ebergen

90/6 A.l.l.M. Marcelis

90n A.l.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E. v .d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
O. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
O.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. IS.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,tben ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation Model for OOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

91/31 H. ten Eike1der

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H. W.v .d.Eijnde

92/05 J.P.H. W. v .d.Eijnde

92/06 J.C.M. Baeten
I.A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warsha1l/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
PME. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. V oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy. p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages.
p. 31.

An Algebra for Process Creation, p. 29.

	Abstract
	1. The Algebraic Framework
	2. Defining Demonic Composition
	3. Preliminary Analysis
	4. Monotype Factors
	5. The Proof of Associativity
	6. Demonic Choice
	7. Discussion
	References
	Acknowledgement

