Operational conservativity with binding terms

Citation for published version (APA):

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Abstract

In a previous paper the approach to structural operational semantics using transition system specifications (TSSs) was extended to deal with variable binding operators. It was shown that in this setting a generalization of the transition rule format known as the panth format guarantees that bisimulation is a congruence for meaningful TSSs. In this paper, it is shown that certain syntactic criteria, originating from Fokkink and Verhoef, to determine whether a TSS is an operational conservative extension of another TSS are applicable in this setting as well. This result can for example be used to simplify proofs of axiomatic conservativity and completeness in cases where an existing process calculus is extended with new features.

Keywords: structural operational semantics, transition system specifications, operational conservative extension, variable binding operators, binding terms, panth format, bisimulation, congruence

1 Introduction

Transition system specifications (TSSs) are used in an approach to structural operational semantics (SOS) that considers transition systems where the states are the closed terms over a given signature. The notion of TSS was first introduced in [11]. The original TSSs define binary transition relations by means of transition rules with positive premises. The notion of TSS was generalized in [3], [9], [16] and [6] to TSSs that define unary and binary transition relations by means of transition rules with positive and negative premises.

In [13], we generalized it further to cover variable binding operators. The new TSSs can amongst other things deal with: the integration operator \int of real time ACP [1], the sum operator \sum of μCRL [10], and the recursion operator μ.

The work presented in this paper has been partly carried out while the author was at Eindhoven Embedded Systems Institute, Eindhoven University of Technology
of CSP [12] and CCS [14]. We found that the notions of bisimulation and panth format generalize naturally to the new TSSs, and moreover that in the new setting bisimulation is still a congruence for meaningful TSSs in panth format.

The notion of TSS was first generalized to cover variable binding operators in [7]. We chose in [13] to introduce an alternative extension that keeps the new TSSs more closely related to the original ones. In [7], no transition rule format is given that guarantees that bisimulation is a congruence. However, in that paper syntactic criteria are given to determine whether a TSS is an operational conservative extension of another TSS. In this paper, we show that those syntactic criteria are applicable in the new setting just as well.

The explanation of the meaning of TSSs given in this paper differs from the one given in [13]. The new explanation uses less model-theoretic notions and more proof-theoretic notions. In that way, it conveys a more intuitive understanding of the meaning of TSSs. We recently found that the generalized panth format given in [13] could be made somewhat less restrictive. In this paper, we present the new relaxed version of the format.

The TSSs introduced in [13] are TSSs that define transition relations on binding terms. Binding terms, first introduced in [15], are basically second-order terms of a restricted kind, suitable to deal with variable binding operators. As a result, binding terms are not meant to deal with general second-order operators. They do not support higher-order operators other than the second-order operators that can be regarded as variable binding operators. Consequently, the new TSSs are for example not intrinsically appropriate to provide higher-order process calculi with an operational semantics. Approaches to structural operational semantics for the higher-order case have, for example, been studied in [4] and [5].

The structure of this paper is as follows. Section 2 covers the preliminaries needed in the remainder of the paper. In Section 3, the basic approach to structural operational semantics using TSSs, which does not cover variable binding operators, is presented. The extension to deal with variable binding operators is introduced in Section 4. In Section 5, operational conservativity of TSSs is defined and syntactic criteria to determine whether a TSS is an operational conservative extension of another TSS are given which are applicable in the setting with variable binding operators.

2 Preliminaries

In this section, we briefly review the basic notions on which the material presented in this paper is founded and establish the notation and terminology used.

2.1 Signatures, terms and equations

We assume a set S of sorts (type symbols), a set O of operators (function symbols) and a set V of variables. Each operator $o \in O$ has a sequence of argument sorts $(s_1, \ldots, s_n) \in S^n$ and a result sort $s \in S$. Each variable $x \in V$ has a sort $s \in S$. It is assumed that the sets V and O are disjoint. We use
the notation \(o : s_1 \times \ldots \times s_n \rightarrow s \) to indicate that \(o \) is an operator of which the sequence of argument sorts is \((s_1, \ldots , s_n)\) and the result sort is \(s \). We use the notation \(x : s \) to indicate that \(x \) is a variable of which the sort is \(s \).

Constants are regarded as nullary operators, i.e. operators of which the sequence of argument sorts has length 0.

A (many-sorted) signature is a pair \(\Sigma = (S, O) \), with \(S \subseteq \mathcal{S} \) and \(O \subseteq \mathcal{O} \), such that for all \(o \in O \), if \(o : s_1 \times \ldots \times s_n \rightarrow s \), then \(s_1, \ldots , s_n, s \in S \).

Let \(\Sigma = (S, O) \) be a signature. Then the variable domain for \(\Sigma \), written \(\mathcal{V}_\Sigma \), is the set \(\{ x \in V \mid \exists s \in S \bullet x : s \} \).

Let \(\Sigma = (S, O) \) be a signature and \(X \subseteq \mathcal{V}_\Sigma \). For each \(s \in S \), there is a set \(T_\Sigma(X)_s \) of terms over \(\Sigma \) and \(X \) of sort \(s \). These sets are the smallest sets satisfying:

1. if \(x \in X \) and \(x : s \), then \(x \in T_\Sigma(X)_s \);
2. if \(o \in O \), \(o : s_1 \times \ldots \times s_n \rightarrow s \), and \(t_1 \in T_\Sigma(X)_{s_1}, \ldots , t_n \in T_\Sigma(X)_{s_n} \), then \(o(t_1, \ldots , t_n) \in T_\Sigma(X)_s \).

Nullary operators are used as terms: we write \(o \) for the term \(o() \). The set \(T_\Sigma(X) \) of terms over \(\Sigma \) and \(X \) is the set \(\bigcup \{ T_\Sigma(X)_s \mid s \in S \} \). For each \(t \in T_\Sigma(X) \), we write \(s(t) \) for the sort \(s \in S \) such that \(t \in T_\Sigma(X)_s \). We write \(T_\Sigma \) for the set \(T_\Sigma(V_\Sigma) \). The set \(T_\Sigma \) is called the set of terms over \(\Sigma \). A term over \(\Sigma \) is also called a \(\Sigma \)-term.

A term \(t \) is closed if it does not contain variables. We write \(CT_\Sigma \) for the set \(T_\Sigma(\emptyset) \) of closed \(\Sigma \)-terms of sort \(s \) and we write \(CT_\Sigma(X) \) for the set \(T_\Sigma(X) \) of closed \(\Sigma \)-terms.

A substitution of terms over \(\Sigma \) and \(X \) for variables in \(X \) is a sort-respecting function \(\sigma : X \rightarrow T_\Sigma(X) \). A substitution \(\sigma \) extends from variables to terms in the obvious way: \(\sigma(t) \) is the term obtained by simultaneously replacing in \(t \) all occurrences of variables \(x \) by \(\sigma(x) \). We usually write \(t\sigma \) for \(\sigma(t) \). We write \([t_1, \ldots , t_n, x_1, \ldots , x_n] \) for the substitution \(\sigma \) such that \(\sigma(x_1) = t_1, \ldots , \sigma(x_n) = t_n \) and \(\sigma(x) = x \) if \(x \notin \{ x_1, \ldots , x_n \} \). A substitution \(\sigma : X \rightarrow T_\Sigma(X) \) is closed if \(\sigma(x) \in CT_\Sigma \) for all \(x \in X \).

Let \(\Sigma = (S, O) \) be a signature and \(X \subseteq \mathcal{V}_\Sigma \). Then the set \(\mathcal{E}_\Sigma(X) \) of equations over \(\Sigma \) and \(X \) is the smallest set satisfying:

if \(t_1, t_2 \in T_\Sigma(X)_s \) for some \(s \in S \), then \(t_1 = t_2 \in \mathcal{E}_\Sigma(X) \).

We write \(\mathcal{E}_\Sigma \) for the set \(\mathcal{E}_\Sigma(V_\Sigma) \). The set \(\mathcal{E}_\Sigma \) is called the set of equations over \(\Sigma \). An equation over \(\Sigma \) is also called a \(\Sigma \)-equation.

An equation \(e \) is closed if both terms occurring in it are closed. We write \(\mathcal{OE}_\Sigma \) for the set \(\mathcal{E}_\Sigma(\emptyset) \) of closed \(\Sigma \)-equations.
Let $E \subseteq \mathcal{E}_\Sigma(X)$ and $e \in \mathcal{E}_\Sigma(X)$. Then e is derivable from E, written $E \vdash e$, if it is justified by the following rules:

1. if $t_1 = t_2 \in E$, then $E \vdash t_1 = t_2$;
2. if $t \in \mathcal{T}_\Sigma(X)$, then $E \vdash t = t$;
3. if $E \vdash t_1 = t_2$, then $E \vdash t_2 = t_1$;
4. if $E \vdash t_1 = t_2$ and $E \vdash t_2 = t_3$, then $E \vdash t_1 = t_3$;
5. if $E \vdash t_1 = t_2$, $E \vdash t_1' = t_2'$, $x \in X$ and $x : s(t'_1)$, then $E \vdash t_1'[x/x] = t_2'[x/x]$.

2.2 Algebras

Let $\Sigma = (S, O)$ be a signature. Then an algebra A with signature Σ consists of:

1. for each $s \in S$, a non-empty set A_s, called the carrier of s;
2. for each $o \in O$, $o : s_1 \times \ldots \times s_n \rightarrow s$, a function $o^A : A_{s_1} \times \ldots \times A_{s_n} \rightarrow A_s$, called the interpretation of o.

An algebra with signature Σ is also called a Σ-algebra. Sometimes, we loosely write A for the set $\bigcup \{A_s \mid s \in S\}$.

Let A be an algebra with signature $\Sigma = (S, O)$ and $X \subseteq \mathcal{V}_\Sigma$. Then an assignment in A for variables in X is a sort-respecting function $\alpha : X \rightarrow A$. For every assignment $\alpha : X \rightarrow A$, $x \in X$, $x : s$, and $d \in A_s$ ($s \in S$), we write $\alpha(x \rightarrow d)$ for the assignment $\alpha' : X \rightarrow A$ such that $\alpha'(y) = \alpha(x)$ if $y \neq x$ and $\alpha'(x) = d$.

Let A be a Σ-algebra, $X \subseteq \mathcal{V}_\Sigma$, and $\alpha : X \rightarrow A$ an assignment in A for variables in X. Then the term evaluation function extending α is the sort-respecting function $\alpha^* : \mathcal{T}_\Sigma(X) \rightarrow A$ recursively defined by

1. $\alpha^*(x) = \alpha(x)$;
2. $\alpha^*(o(t_1, \ldots, t_n)) = o^A(\alpha^*(t_1), \ldots, \alpha^*(t_n))$.

Let A be a Σ-algebra, $X \subseteq \mathcal{V}_\Sigma$, and $t_1 = t_2 \in \mathcal{E}_\Sigma(X)$. Then $t_1 = t_2$ holds in A, written $A \models t_1 = t_2$, if $\alpha^*(t_1) = \alpha^*(t_2)$ for all assignments $\alpha : X \rightarrow A$.

Let $E \subseteq \mathcal{E}_\Sigma(X)$. Then A is a model of E, written $A \models E$, if $A \models e$ for all $e \in E$.

Let A be a Σ-algebra and E be a set of Σ-equations. Then E is a sound axiomatization of A for closed terms if for all $e \in \mathcal{E}_\Sigma$: $E \vdash e \Rightarrow A \models e$; and E is a complete axiomatization of A for closed terms if for all $e \in \mathcal{E}_\Sigma$: $E \vdash e \iff A \models e$.

Let $\Sigma = (S, O)$ be a signature and $X \subseteq \mathcal{V}_\Sigma$ such that for all $s \in S$, $\mathcal{T}_\Sigma(X)_s \neq \emptyset$. Then the algebra of terms over Σ and X, written $\mathcal{T}_\Sigma(X)$, is the Σ-algebra where

1. for each $s \in S$, the carrier of s is $\mathcal{T}_\Sigma(X)_s$;
2. for each $o \in O$, $o : s_1 \times \ldots \times s_n \rightarrow s$, the interpretation of o is the function $o^{\mathcal{T}_\Sigma(X)} : \mathcal{T}_\Sigma(X)_{s_1} \times \ldots \times \mathcal{T}_\Sigma(X)_{s_n} \rightarrow \mathcal{T}_\Sigma(X)_s$ such that for all $t_1 \in \mathcal{T}_\Sigma(X)_{s_1}$, \ldots, $t_n \in \mathcal{T}_\Sigma(X)_{s_n}$, $o^{\mathcal{T}_\Sigma(X)}(t_1, \ldots, t_n) = o(t_1, \ldots, t_n)$.

The algebra of closed terms over Σ, written \mathcal{CT}_Σ, is the algebra of terms over Σ and \emptyset.

Let \mathcal{A} be an algebra with signature $\Sigma = (S, O)$. Then a (sort-respecting) equivalence relation $\sim \subseteq \mathcal{A} \times \mathcal{A}$ is a congruence on \mathcal{A} if for each $o \in O$, $o : s_1 \times \ldots \times s_n \rightarrow s$, we have for all $a_1, a_1' \in \mathcal{A}_{s_1}, \ldots, a_n, a_n' \in \mathcal{A}_{s_n}$:

$$a_1 \sim a_1', \ldots, a_n \sim a_n' \Rightarrow o^A(a_1, \ldots, a_n) \sim o^A(a_1', \ldots, a_n').$$

Let \sim be an equivalence relation on a set A. Then we write $[a]_\sim$, where $a \in A$, for the equivalence class $\{a' \in A \mid a \sim a'\}$; and we write A/\sim for the quotient set $\{[a]_\sim \mid a \in A\}$.

Let \mathcal{A} be an algebra with signature $\Sigma = (S, O)$ and $\sim \subseteq \mathcal{A} \times \mathcal{A}$ be a congruence on \mathcal{A}. Then the quotient algebra of \mathcal{A} by \sim is the Σ-algebra where

1. for each $s \in S$, the carrier of s is \mathcal{A}_s/\sim;
2. for each $o \in O$, $o : s_1 \times \ldots \times s_n \rightarrow s$, the interpretation of o is the function $o^A/\sim : \mathcal{A}_{s_1}/\sim \times \ldots \times \mathcal{A}_{s_n}/\sim \rightarrow \mathcal{A}_s/\sim$ such that for all $a_1 \in \mathcal{A}_{s_1}, \ldots, a_n \in \mathcal{A}_{s_n}$, $o^A/\sim([a_1]_\sim, \ldots, [a_n]_\sim) = [o^A(a_1, \ldots, a_n)]_\sim$.

3 The basic approach

In this section, we introduce the approach to structural operational semantics using TSSs that define unary and binary transition relations by means of transition rules with positive and negative premises. In this approach, developed in [11], [3], [9], [16] and [6], variable binding operators are not covered.

3.1 Transition system specifications

The main constituent of a transition system specification is a collection of transition rules defining certain transition relations. Each transition rule is made up of transition formulas. We will define transition formulas and transition rules over a signature and a domain of transition predicates. Therefore, we first define the notion of domain of transition predicates. Roughly speaking, a domain of transition predicates consists of unary and binary predicates (relation symbols), each predicate being given a sequence of argument sorts.

Let $\Sigma = (S, O)$ be a signature. Then a domain of transition predicates on Σ-terms is a set $H \subseteq \mathcal{P}$ such that for all $p \in H$, if $p : s_1 \times \ldots \times s_n$, then $s_1, \ldots, s_n \in S$ and $n = 1$ or 2.

Next, we define the notions of positive and negative transition formula. We also introduce the notion of denial of a transition formula and make the notion of closed transition formula precise.
Let Π be a domain of transition predicates on Σ-terms. Then the set $\mathcal{F}_{\Sigma,\Pi}^+$ of positive transition formulas over Σ and Π and the set $\mathcal{F}_{\Sigma,\Pi}^-$ of negative transition formulas over Σ and Π are the smallest sets satisfying:

- if $p \in \Pi$, $p : s_1 \times \ldots \times s_n$, and $t_1 \in \mathcal{T}_{\Sigma s_1}, \ldots, t_n \in \mathcal{T}_{\Sigma s_n}$,
 then $p(t_1, \ldots, t_n) \in \mathcal{F}_{\Sigma,\Pi}^+$;
- if $p \in \Pi$, $p : s_1 \times \ldots \times s_n$, and $t_1 \in \mathcal{T}_{\Sigma s_1}, \ldots, t_n \in \mathcal{T}_{\Sigma s_n}$,
 then $\neg p(t_1, \ldots, t_n) \in \mathcal{F}_{\Sigma,\Pi}^-$

$(1 \leq n \leq 2)$. We use in general postfix notation for unary predicates and infix notation for binary predicates. We write $\mathcal{F}_{\Sigma,\Pi}$ for $\mathcal{F}_{\Sigma,\Pi}^+ \cup \mathcal{F}_{\Sigma,\Pi}^-$. For $\phi \in \mathcal{F}_{\Sigma,\Pi}$, $\overline{\phi}$, the denial of ϕ, is defined as follows:

$$p(t_1, \ldots, t_m) = \neg p(t_1, \ldots, t_m), \quad \neg p(t_1, \ldots, t_m) = p(t_1, \ldots, t_m).$$

A positive or negative transition formula ϕ is closed if all terms occurring in it are closed. We write $\mathcal{CF}_{\Sigma,\Pi}^+$ for $\{ \phi \in \mathcal{F}_{\Sigma,\Pi}^+ | \phi \text{ is closed} \}$ and $\mathcal{CF}_{\Sigma,\Pi}^-$ for $\{ \phi \in \mathcal{F}_{\Sigma,\Pi}^- | \phi \text{ is closed} \}$. Furthermore, we write $\mathcal{CF}_{\Sigma,\Pi}$ for $\mathcal{CF}_{\Sigma,\Pi}^+ \cup \mathcal{CF}_{\Sigma,\Pi}^-$. In the following definition, the notion of transition rule is defined. The notions of substitution instance and closed substitution instance of a transition rule are also introduced.

Let Π be a domain of transition predicates on Σ-terms. Then the set $\mathcal{R}_{\Sigma,\Pi}$ of transition rules over Σ and Π is the smallest set satisfying:

- if $\Phi \subseteq \mathcal{F}_{\Sigma,\Pi}$ and $\psi \in \mathcal{F}_{\Sigma,\Pi}^+$, then $\frac{\Phi}{\psi} \in \mathcal{R}_{\Sigma,\Pi}$.

Let $r = \frac{\Phi}{\psi}$ be a transition rule. Then the transition formulas in Φ are the premises of r and the transition formula ψ is the conclusion of r. A transition rule r is closed if all formulas occurring in it are closed. Substitution extends from terms to formulas and rules as expected. For every substitution $\sigma: \mathcal{V}_{\Sigma} \rightarrow \mathcal{T}_{\Sigma}$ and transition rule r, the transition rule $\sigma(r)$ is a substitution instance of r. If σ is a closed substitution, the transition rule $\sigma(r)$ is a closed substitution instance of r.

We are now ready to define the notion of transition system specification.

A transition system specification (TSS) is a triple $P = (\Sigma, \Pi, R)$, where

1. Σ is a signature;
2. Π is a domain of transition predicates on Σ-terms;
3. $R \subseteq \mathcal{R}_{\Sigma,\Pi}$.

We write $\mathcal{si}(R)$ for the set of all substitution instances of $r \in R$ and $\mathcal{csi}(R)$ for the set of all closed substitution instances of $r \in R$.
Example 3.1 We consider the signature $\Sigma_C = (\{C\}, \{0_C, s_C\})$, where $0_C : \rightarrow C$ and $s_C : C \rightarrow C$, and the transition predicate domain $\Pi_C = \{\text{inc}_C, \text{dec}_C\}$, where $\text{inc}_C : C \times C$ and $\text{dec}_C : C \times C$. The signature Σ_C introduces terms intended to be used as expressions for counters. A counter can freely be incremented, but it can only be decremented once for each time it has been incremented. The idea is that the term 0_C represents a counter that cannot be decremented and that the term $s_C(t)$, where $t \in \mathcal{CT}_{\Sigma_C}$, represents a counter that can be decremented once more than the counter represented by t. This operational behaviour of counters is modeled by the TTS $P_C = (\Sigma_C, \Pi_C, R_C)$, where R_C consists of the following transition rules:

$\begin{array}{c}
\frac{\text{inc}}{x \xrightarrow{\text{inc}} s_C(x)} \\
\frac{y \xrightarrow{\text{inc}} x}{x \xrightarrow{\text{dec}} y}
\end{array}$

An example of a closed substitution instance of a transition rule from R_C is

$\frac{0_C \xrightarrow{\text{inc}} s_C(0_C)}{s_C(0_C) \xrightarrow{\text{dec}} 0_C}$

It is obtained from the second transition rule by means of a closed substitution σ such that $\sigma(x) = s_C(0_C)$ and $\sigma(y) = 0_C$.

3.2 Proofs from TTSs

In the following definition, we introduce a general notion of proof from a TSS by allowing to prove transition rules. The proof of a transition rule $\Phi \vdash \psi$ corresponds to the proof of the transition formula ψ under the assumptions Φ.

Let $P = (\Sigma, \Pi, R)$ be a TSS. Then a proof of a transition rule $\Phi \vdash \psi$ from P is a well-founded, upwardly branching tree of which the nodes are labelled by formulas in $\mathcal{F}_{\Sigma, \Pi}$, such that

1. the root is labelled by ψ;
2. if a node is labelled by ψ' and Φ' is the set of labels of the nodes directly above this node, then
 \[\text{either } \psi' \in \Phi \text{ and } \Phi' = \emptyset \text{ or } \frac{\Phi'}{\psi} \in \text{si}(R).\]

A transition rule r is provable from P, written $P \vdash r$, if there exists a proof of r from P. A positive transition formula ϕ is provable from P, written $P \vdash \phi$, if there exists a proof of $\frac{\emptyset}{\phi}$ from P.

In the following definition, we introduce the notion of well-supported proof from a TSS. It incorporates a form of negation as failure.

Let $P = (\Sigma, \Pi, R)$ be a TSS. Then a well-supported proof of a closed transition formula ψ from P is like a proof of $\frac{\emptyset}{\psi}$ from P, but admitting under 2 additionally
ψ' is negative and for all sets \(N \subseteq \mathcal{CF}_{\Sigma, II} \) such that
\[
P \vdash \frac{\psi'}{\overline{\phi'}} \text{ there exists a } \phi' \in \Phi' \text{ such that } \overline{\phi'} \in N.
\]

A closed transition formula \(\phi \) is \textit{ws-provable} from \(P \), written \(P \vdash_{ws} \psi \), if there exists a well-supported proof of \(\phi \) from \(P \).

In a well-supported proof, it is allowed to infer the denial of a closed positive transition formula \(\phi \), if it is manifestly impossible to infer \(\phi \) because every conceivable proof of \(\phi \) involves a negative premise of which the denial has already been proved. This fits in with the idea that the only closed positive transition formulas that hold in the intended model of a TSS are those inferable from the transition rules under assumption of closed negative transition formulas that do not lead to inconsistencies. However, in case this principle is applied, it is not precluded that there still exists a closed positive transition formula of which it is not possible to establish whether it holds in the intended model or not.

Therefore, we also introduce the notion of complete TSS.

Let \(P = (\Sigma, II, R) \) be a TSS. Then \(P \) is \textit{complete} if for all \(\phi \in \mathcal{CF}_{\Sigma, II} \), either \(P \vdash_{ws} \phi \) or \(P \vdash_{ws} \overline{\phi} \).

Only complete TSSs are considered to be meaningful in this paper. This choice is dictated by the observation that in virtually all applications of TSSs, it is essential that it can be established for every closed positive transition formula whether it holds in the intended model or not. It is, for example, the case with transition rule formats guaranteeing that bisimulation is a congruence and syntactic criteria to determine operational conservativity.

3.3 Models of TSSs

The models of a TSS are known as transition systems. We define transition systems with respect to a signature and a domain of transition predicates.

Let \(II \) be a domain of transition predicates on \(\Sigma \)-terms. A transition system \(TS \) for \(\Sigma \) and \(II \) consists of:

for each \(p \in II \), \(p : s_1 \times \ldots \times s_n \), a relation \(p^{TS} \subseteq \mathcal{CT}_{\Sigma s_1} \times \ldots \times \mathcal{CT}_{\Sigma s_n} \), called the \textit{interpretation} of \(p \).

So transition predicates are interpreted as relations on sets of closed terms.

The following definition makes precise what it means for a closed transition formula to hold in a transition system.

Let \(TS \) be a transition system for signature \(\Sigma \) and domain of transition predicates \(II \). For \(\phi \in \mathcal{CF}_{\Sigma, II} \), \(\phi \) \textit{holds in} \(TS \), written \(TS \models \phi \), is defined as follows:

1. \(TS \models p(t_1, \ldots, t_n) \) if \((t_1, \ldots, t_n) \in p^{TS}\).
2. \(TS \models \neg p(t_1, \ldots, t_n) \) if \((t_1, \ldots, t_n) \notin p^{TS} \).

For \(\Phi \subseteq \mathcal{CF}_{\Sigma, II} \), we write \(TS \models \Phi \) to indicate that \(TS \models \phi \) for all \(\phi \in \Phi \).
A transition system \mathcal{TS} for Σ and Π corresponds to the set $F \subseteq CF_{\Sigma,\Pi}^+$ such that, for all $p(t_1, \ldots, t_n) \in CF_{\Sigma,\Pi}^+$, $p(t_1, \ldots, t_n) \in F \iff \mathcal{TS} \models p(t_1, \ldots, t_n)$.

Hence, in the light of the last definition, a transition relation on Σ-terms can be regarded as a set of closed positive transition formulas over Σ and Π. Therefore, closed positive transition formulas are sometimes loosely called transitions. This correspondence also clarifies the value attached in Section 3.2 to TSSs being complete.

Now, we can make precise what it means for a transition system to be a model of a TSS and what it means for a transition system to be well-supported by a TSS.

Let $P = (\Sigma, \Pi, R)$ be a TSS and \mathcal{TS} be a transition system for Σ and Π. Then \mathcal{TS} is a model of P, written $\mathcal{TS} \models P$, if for all $\psi \in CF_{\Sigma,\Pi}^+$:

$$\mathcal{TS} \models \psi \iff \exists \Phi \psi \in csi(R) \bullet \mathcal{TS} \models \Phi,$$

and \mathcal{TS} is well-supported by P if for all $\psi \in CF_{\Sigma,\Pi}^+$:

$$\mathcal{TS} \models \psi \Rightarrow \exists \Phi \subseteq CF_{\Sigma,\Pi}^+ \bullet P \vdash \Phi \psi \land \mathcal{TS} \models \Phi.$$

If \mathcal{TS} is a model of P that is well-supported by P, we say that \mathcal{TS} is a well-supported model of P. For $\phi \in CF_{\Sigma,\Pi}$, we write $P \models_{ws} \phi$ to indicate that $\mathcal{TS} \models \phi$ for all well-supported models \mathcal{TS} of P.

The definition of model expresses that a transition system is a model of a TSS if it obeys the transition rules of the TSS. The definition of well-supportedness expresses that a transition system is well-supported by a TSS if each of its transitions is justified by the transition rules of the TSS and this justification is founded, i.e. it does not make use of the transition itself. We have that \vdash_{ws} is sound for all well-supported models of a TSS, i.e. $P \vdash_{ws} \psi \Rightarrow P \models_{ws} \psi$.

Suppose that $P = (\Sigma, \Pi, R)$ is a complete TSS and \mathcal{TS} is a transition system for Σ and Π. The notion of well-supported proof is defined such that \mathcal{TS} is well-supported by P iff for all $\psi \in CF_{\Sigma,\Pi}^+$, $\mathcal{TS} \models \psi \Rightarrow P \vdash_{ws} \psi$. From this and the soundness result for \vdash_{ws}, it follows that a complete TSS has a unique well-supported model. Its transitions are exactly the ones justified by a well-supported proof.

Let $P = (\Sigma, \Pi, R)$ be a complete TSS. Then the intended model of P, written \mathcal{TS}_P, is the unique well-supported model of P. \mathcal{TS}_P is also called the transition system associated with P.

Notice that every TSS without negative premises is complete. Besides, for TSSs without negative premises, \vdash and \vdash_{ws} coincide on closed transition formulas.

Example 3.2 We consider again the TSS P_C of Example 3.1. The intended model \mathcal{TS}_P has $\{(t, s_c(t)) \mid t \in CT_{\Sigma_C}\}$ and $\{(s_c(t), t) \mid t \in CT_{\Sigma_C}\}$ as interpretations of the transition predicates inc, and dec, respectively.
3.4 Bisimulation and the panth format

Bisimulation is a frequently used equivalence to abstract from irrelevant details of operational semantics. We define bisimulation with respect to a TSS.

Let $P = (\Sigma, \Pi, R)$ be a TSS. Then a bisimulation B based on P is a sort-respecting symmetric binary relation $B \subseteq \mathcal{CT}_\Sigma \times \mathcal{CT}_\Sigma$ such that:

1. if $B(t_1, t'_1)$ and $\mathcal{TS}_P \models p(t_1, t_2)$, then $\exists t'_2 \cdot \mathcal{TS}_P \models p(t'_1, t'_2)$ and $B(t_2, t'_2)$;
2. if $B(t_1, t'_1)$ and $\mathcal{TS}_P \models p(t_1)$, then $\mathcal{TS}_P \models p(t'_1)$.

Two closed Σ-terms t and t' are bisimilar in P, written $t \leftrightarrow_P t'$, if there exists a bisimulation B such that $B(t, t')$.

The transition rule format known as the panth format guarantees that bisimulation is a congruence.

Let $P = (\Sigma, \Pi, R)$ be a TSS. Then a transition rule $r \in R$ is in panth format if it satisfies:

1. the second argument of each premise of r that has the form $p(t_1, t_2)$ is a variable;
2. the second argument of each premise of r that has the form $\neg p(t_1, t_2)$ is a closed term;
3. the first argument of the conclusion of r has the form $o(x_1, \ldots, x_n)$;
4. the variables that occur as second argument of a premise that has the form $p(t_1, t_2)$ or in the first argument of the conclusion are mutually distinct.

The TSS P is in panth format if each transition rule $r \in R$ is in panth format.

Theorem 3.1 (Congruence) Let P be a TSS in panth format. Then \leftrightarrow_P is a congruence on the algebra of closed terms over Σ.

Consider a TSS $P = (\Sigma, \Pi, R)$ in panth format. Then it is certain that we can construct $\mathcal{CT}_\Sigma/\leftrightarrow_P$, the quotient algebra of the algebra of closed terms over Σ by bisimulation equivalence. If this Σ-algebra is intended to be a model of some set of Σ-equations, then this algebra is usually called its bisimulation model.

4 Variable binding operators

The generalization of the relevant notions – such as signature, term, equation, algebra, transition rule, bisimulation and panth format – needed to deal with variable binding operators is rather straightforward. Additional rules to derive equations ensue from it.

4.1 Signatures, terms, equations and algebras

For clearness' sake, we now call the elements of S base sorts. To begin with, we need other sorts, which are built up from base sorts. If $S \subseteq S$ and $s_1, \ldots, s_n, s \in S$, then S has sorts $S, S

\ldots$
S, then $s_1, \ldots, s_n.s$ is a binding sort over S. We write $\mathcal{B}(S)$ for the union of S and the set of all binding sorts over S. The carrier of a base sort s consists of objects which are called ordinary objects. The carrier of a binding sort $s_1, \ldots, s_n.s$ consists of functions from the cartesian product of the carriers of the base sorts s_1, \ldots, s_n to the carrier of the base sort s. Binding sorts are used for variable binding in arguments of operators. Argument sorts of operators may be binding sorts; result sorts must be base sorts. Suppose that $o : s_1 \times \ldots \times s_n \rightarrow s$. If $\tilde{s}_i = s_{i1}, \ldots, s_{in}.s_i \ (1 \leq i \leq n)$, then o binds n_i variables, of base sorts s_{i1}, \ldots, s_{in}, in the i^{th} argument. Otherwise, i.e. if $\tilde{s}_i \not\in S$, it does not bind any variable in the i^{th} argument. Sorts of variables may also be binding sorts.

A binding signature is now a pair $\Sigma = (S, O)$, with $S \subseteq S$ and $O \subseteq O$, such that for all $o \in O$, if $o : s_1 \times \ldots \times s_n \rightarrow s$, then $\tilde{s}_1, \ldots, \tilde{s}_n, s \in \mathcal{B}(S)$.

For a binding signature Σ, the variable domain V_Σ is the set $\{x \in V \mid \exists s \in \mathcal{B}(S). x : s\}$.

Let $\Sigma = (S, O)$ be a binding signature and $X \subseteq V_\Sigma$. For each $s \in \mathcal{B}(S)$, there is a set $T_\Sigma(X)_s$ of binding terms over Σ and X of sort s. These sets are the smallest sets satisfying:

1. if $x \in X$ and $x : s$ with $s \in S$, then $x \in T_\Sigma(X)_s$;
2. if $x \in X, x : s_1, \ldots, s_n.s$, and $t_1 \in T(X)_{s_1}, \ldots, t_n \in T(X)_{s_n}$, then $x(t_1, \ldots, t_n) \in T(X)_s$;
3. if $x_1, \ldots, x_n \in X$ and mutually distinct, $x_1 : s_1, \ldots, x_n : s_n$, and $t \in T(X)_s$, with $s_1, \ldots, s_n, s \in S$, then $x_1, \ldots, x_n, t \in T(X)_{s_1}, \ldots, s_n,s$;
4. if $o \in O, o : s_1 \times \ldots \times s_n \rightarrow s$, and $t_1 \in T(X)_{s_1}, \ldots, t_n \in T(X)_{s_n}$, then $o(t_1, \ldots, t_n) \in T(X)_s$.

Rule 2 shows that variables of binding sorts have arguments. Notice that binding terms formed by application of rule 3 serve only as argument of operators. Binding terms of which the sort is a base sort are ordinary terms.

In case of binding terms, the notion of closed term must be generalized. An occurrence of a variable x in a binding term t is bound if the occurrence is in a subterm of the form $x_1, \ldots, x_n.t'$ with $x \in \{x_1, \ldots, x_n\}$; otherwise it is free. If x has at least one bound occurrence in t, it is called a bound variable of t. If x has at least one free occurrence in t, it is called a free variable of t. A binding term t is closed if it is a binding term without free variables. We still write CT_Σ for the set of closed binding terms.

The extension of a substitution σ from variables to binding terms differs in two ways from the extension of a substitution from variables to ordinary terms. First of all, only free occurrences of variables are replaced and bound variables are renamed if needed to avoid free occurrences of variables in the replacing terms becoming bound. Secondly, if $\sigma(x) = x_1, \ldots, x_n.t$, a term of the form $x(t_1, \ldots, t_n)$ is replaced as a whole by the term $t[\sigma(t_1), \ldots, \sigma(t_n)/x_1, \ldots, x_n]$. Substitution is only defined up to change of bound variables. This is justified because binding terms that can be obtained from each other by change of bound variables are not distinguished semantically.

In case of binding signatures, the definition of the notion of equation has to
be adapted to include equations of which both sides are terms of a binding sort. Two additional rules are available to derive such equations:

1. if $x_1, \ldots, x_n \cdot t \in T_S(X)$, $y_1, \ldots, y_n \in X$ and mutually distinct, and $y_1 : s(x_1), \ldots, y_n : s(x_n)$, then $E \vdash x_1, \ldots, x_n \cdot t = y_1, \ldots, y_n / x_1, \ldots, x_n$;
2. if $E \vdash t_1 = t_2$, $s(t_1) \in S$, $x_1, \ldots, x_n \in X$ and $s(x_1), \ldots, s(x_n) \in S$, then $E \vdash x_1, \ldots, x_n \cdot t_1 = x_1, \ldots, x_n \cdot t_2$.

In case of binding signatures, an algebra differs in two ways from an ordinary algebra. Firstly, there are also carriers for the binding sorts, as explained above. That is, the algebra with signature $\Sigma = (S, O)$ consists of:

1. for each $s \in B(S)$, a non-empty set A_s, called the carrier of s, such that if $s \in B(S) - S$, $s = s_1, \ldots, s_n \cdot s$, then $A_s \subseteq A_{s_1} \times \ldots \times A_{s_n} \rightarrow A_s$;
2. for each $o \in O$, $o : s_1 \times \ldots \times s_n \rightarrow s$, a function $o^A : A_{s_1} \times \ldots \times A_{s_n} \rightarrow A_s$, called the interpretation of o.

Secondly, the algebra must satisfy the restriction that each assignment α can be extended to a term evaluation function such that:

1. $\alpha^*(x) = \alpha(x)$;
2. $\alpha^*(x(t_1, \ldots, t_n)) = \alpha(x)(\alpha^*(t_1), \ldots, \alpha^*(t_n))$;
3. $\alpha^*(x_1, \ldots, x_n \cdot t)$ is the $f \in A_{s(x_1), \ldots, s(x_n) \cdot s(t)}$ such that, for all $d_1 \in A_{s(x_1)}$, \ldots, $d_n \in A_{s(x_n)}$, $f(d_1, \ldots, d_n) = (\alpha(x_1 \rightarrow d_1) \ldots (x_n \rightarrow d_n))^t(t)$;
4. $\alpha^*(o(t_1, \ldots, t_n)) = o^A(\alpha^*(t_1), \ldots, \alpha^*(t_n))$.

The restriction concerning term evaluation is automatically satisfied by ordinary algebras. Frequently used ways to construct algebras, such as the term algebra construction and the quotient algebra construction, still work in the presence of variable binding operators. For a formal treatment of algebras in the presence of variable binding operators, the reader is referred to [13].

Henceforth, we usually say signature and term instead of binding signature and binding term, respectively, if it is clear that the latter are meant.

Example 4.1 In CCS [14], the operator μ is used to define processes recursively. For example, the expression $\mu x . ax$ denotes the solution of the equation $x = ax$, i.e. the process that will keep on performing action a forever. The operator μ is in essence a unary variable binding operator that binds one variable in its argument. In the current setting, $\mu x \cdot t$ becomes simply an abbreviation for $\mu(x \cdot t)$.

4.2 Transition systems, bisimulation and the panth format

In this subsection, we only consider transition predicates that do not bind variables in their arguments. In [13], we consider transition predicates that may bind variables in their second argument. That yields a slightly weaker congruence result: if transition predicates that bind variables in their second argument
are used, the congruence result is limited to TSSs that are well-founded (see [13] for details).

In case of binding signatures, a transition system differs in one way from an ordinary transition system: terms are identified if they can be obtained from each other by change of bound variables. This is formalized as follows. First of all, we introduce \approx, the least (sort-respecting) congruence on terms that includes the equivalence induced by change of bound variables. Next, we adapt the definition of the notion of transition system such that transition predicates are interpreted as relations on equivalence classes of closed terms with respect to \approx. That is, a transition system for signature Σ and domain of transition predicates Π consists of:

for each $p \in \Pi$, $p : s_1 \times \ldots \times s_n$, a relation $p^{TS} \subseteq CT_{\Sigma_{s_1}}/\approx \times \ldots \times CT_{\Sigma_{s_n}}/\approx$.

For closed transition formulas ϕ, ϕ holds in TS, still written $TS \models \phi$, is now defined as follows:

1. $TS \models p(t_1, \ldots, t_n)$ if $([t_1]_{\approx}, \ldots, [t_n]_{\approx}) \in p^{TS}$,
2. $TS \models \neg p(t_1, \ldots, t_n)$ if $([t_1]_{\approx}, \ldots, [t_n]_{\approx}) \notin p^{TS}$.

The definitions of the notions of TSS, model of a TSS, well-supported model of a TSS, complete TSS and TSS in panth format do not have to be adapted. A bisimulation based on a TSS $P = (\Sigma, \Pi, R)$ must have the following additional properties:

3. if $t \approx t'$, then $B(t, t')$;
4. if $B(x_1, \ldots, x_n \cdot t . y_1, \ldots, y_n \cdot t')$, then $\forall t_1 \in CT_{\Sigma_{s(x_1)}} \ldots, t_n \in CT_{\Sigma_{s(x_n)}} \bullet B(t[t_1, \ldots, t_n/x_1, \ldots, x_n], t'[t_1, \ldots, t_n/y_1, \ldots, y_n])$.

With these adaptations, Theorem 3.1, the congruence theorem, goes through in the presence of variable binding operators. However, that theorem goes even through in case we relax the panth format as follows. A transition rule $r \in R$ is in generalized panth format if it satisfies:

1. the second argument of each premise of r that has the form $p(t_1, t_2)$ has one of the following forms:

 x or $x(t_1', \ldots, t_n')$

 where each t_i' (1 ≤ i ≤ n) is a closed term;
2. the second argument of each premise of r that has the form $\neg p(t_1, t_2)$ is a closed term;
3. the first argument of the conclusion of r has one of the following forms:

 x or $x(u_1, \ldots, u_n)$ or $o(u_1, \ldots, u_n)$

 where each u_i (1 ≤ i ≤ n) has the form y or $x_1, \ldots, x_n \cdot y(x_1, \ldots, x_n)$;
4. the variables that occur as a free variable in the second argument of a premise or the first argument of the conclusion are mutually distinct.
Example 4.2 We consider again the recursion operator μ from Example 4.1. The transition rules anticipated for this operator include for each action α the following transition rule concerning a transition predicate $\alpha \to$ capturing “is capable of first performing action α and then proceeding as”:

$$z(\mu x. z(x)) \xrightarrow{\alpha} x'$$

This transition rule is in generalized panth format.

5 Conservative extensions

Frequently, bisimulation models, and their axiomatizations, seem to extend other bisimulation models, and their axiomatizations, smoothly. If the bisimulation models extend in a certain way, proofs of axiomatic conservativity and completeness can be simplified. This kind of extension is conveyed by the notion of operational conservativity. First, we will define what an operational conservative extension of a TSS is and give syntactic criteria to determine whether a TSS is an operational conservative extension of another TSS. After that, we will define what an axiomatic conservative extension of a set of equations is and give results explaining the relationship between operational conservativity, axiomatic conservativity and completeness.

5.1 Operational conservativity

First the notions of sum of signatures and sum of TSSs are introduced.

Let $\Sigma = (S, O)$ and $\Sigma' = (S', O')$ be signatures and $P = (\Sigma, \Pi, R)$ and $P' = (\Sigma', \Pi', R')$ be TSSs. Then the sum of Σ and Σ', written $\Sigma \oplus \Sigma'$, is the signature $(S \cup S', O \cup O')$ and the sum of P and P', written $P \oplus P'$, is the TSS $(\Sigma \oplus \Sigma', \Pi \cup \Pi', R \cup R')$.

Next we make precise what an operational conservative extension of a TSS is.

Let $P = (\Sigma, \Pi, R)$ and $P' = (\Sigma', \Pi', R')$ be TSSs. Then $P \oplus P'$ is an operational conservative extension of P if $P \oplus P'$ is a complete TSS and for all $\phi \in CF_{\Sigma \oplus \Sigma', \Pi \cup \Pi'}$ such that the first argument of ϕ is a Σ-term we have $TS_P \models \phi \iff TS_{P \oplus P'} \models \phi$.

Suppose that $P = (\Sigma, \Pi, R)$ and $P' = (\Sigma', \Pi', R')$ are TSSs and that $P \oplus P'$ is complete. It follows from Proposition 29 of [8] that $P \oplus P'$ is an operational conservative extension of P iff for all $N \subseteq CF_{\Sigma \oplus \Sigma', \Pi \cup \Pi'}$ and for all $\psi \in CF_{\Sigma \oplus \Sigma', \Pi \cup \Pi'}$ such that the first argument of ψ is a Σ-term we have $P \vdash N \psi \iff P \oplus P' \vdash N \psi$. This characterization of operational conservativity is used in [7] as its definition. It follows immediately from the definition given in this paper that $\iff_P \subseteq \iff_{P \oplus P'}$ if $P \oplus P'$ is an operational conservative extension of P, whereas it would be non-trivial to prove this from the definition used in [7].
Next, we will introduce the notion of source-dependency of a transition rule. After that, source-dependency is used in formulating a sufficient condition for a TSS to be an operational conservative extension of another TSS. In the definition of source-dependency and the following theorem, an occurrence of a variable in a (binding) term t is called firmly free if the occurrence is free and not in one of the terms t_1, \ldots, t_n of a subterm of the form $x(t_1, \ldots, t_n)$. Besides, a term t is called firmly fresh for a signature Σ, if there is an occurrence of a subterm t' with $t' \not\in T_\Sigma$ in t (possibly t itself) that is not in one of the terms t_1, \ldots, t_n of a subterm of the form $x(t_1, \ldots, t_n)$.

Let r be a transition rule. Then the set of source-dependent variables in r, written $sd(r)$, is the smallest set satisfying:

1. if x occurs firmly free in the first argument of the conclusion of r, then $x \in sd(r)$;
2. if $p(t, t')$ is a premise of r, for all variables x' that occur free in t we have $x' \in sd(r)$, and y occurs firmly free in t', then $y \in sd(r)$.

The transition rule r is source-dependent if for all variables x that occur free in r we have $x \in sd(r)$.

Notice that, because of the way in which substitution works for terms of the form $x(t_1, \ldots, t_n)$, substitution instances of a term may contain no trace of certain occurrences of subterms of the term. Firmly free occurrences of variables and firmly fresh terms are without this vanishing character. The following theorem does not go through if firmly free is replaced by free or firmly fresh is replaced by fresh anywhere in the definition of source-dependency or in the theorem itself.

Theorem 5.1 (Operational Conservativity) Let $P = (\Sigma, \Pi, R)$ and $P' = (\Sigma', \Pi', R')$ be TSSs. Let, for each $r \in R'$, $\rho(r)$ be r with the premises restricted to those premises of which the first (and possibly only) argument is a Σ-term. Then $P \oplus P'$ is an operational conservative extension of P if the following conditions are satisfied:

1. for each $r \in R$, r is source-dependent;
2. for each $r \in R'$, either the first argument of the conclusion of r is firmly fresh for Σ or there exists a premise $p(t, t')$ or $p(t)$ of r such that:

 (a) t is a Σ-term;
 (b) for each variable x that occurs free in t we have that $x \in sd(\rho(r))$;
 (c) either t' is firmly fresh for Σ or $p \not\in \Pi$.

Proof Theorem 3.20 from [7] is the counterpart of Theorem 5.1 in a different setting for variable binding operators. The essential differences are in the details of the structure of terms and the details of substitution. The proof presented in [7] makes use of Lemmas 3.5, 3.9 and 3.13 from that paper. It is only through those lemmas that the proof depends on the details of the structure of terms and the details of substitution. Adapted to the notations and terminology used in this paper, the lemmas concerned are as follows:
1. for \(t \in T_{\Sigma \oplus \Sigma}' \), if \(t \) is firmly fresh for \(\Sigma \), then \(\sigma(t) \notin T_{\Sigma} \);
2. for \(t \in T_{\Sigma} \), if \(\sigma(x) \in T_{\Sigma} \) for all free variables \(x \) of \(t \), then \(\sigma(t) \in T_{\Sigma} \);
3. for \(t \in T_{\Sigma} \), if \(\sigma(t) \in T_{\Sigma} \) then \(\sigma(x) \in T_{\Sigma} \) for all free variables \(x \) of \(t \) with at least one firmly free occurrence.

The proofs of these lemmas are straightforward by structural induction on \(t \).

For completeness, we mention the subordinate differences between Theorem 3.20 from [7] and Theorem 5.1 from this paper. The distinction between formal and actual variables, formal and actual terms, formal and actual substitutions and formal and actual transition rules is irrelevant in Theorem 5.1. Besides, parametrized transition relations are not covered. The variables in \(FV(t) \) are the free variables of \(t \) and the variables in \(EV(t) \) are the free variables of \(t \) that have a firmly free occurrence. Fresh terms are called firmly fresh terms. Notice further that Theorem 5.1 is not as refined: it does not take into account the special position of sorts for which there are no (firmly) fresh terms.

Example 5.1 We consider a fragment of CCS without restriction, relabeling, and recursion. CCS assumes a set \(N \) of names. The set \(A \) of actions is defined by \(A = N \cup N' \cup \{\tau\} \), where \(N' = \{\overline{a} \mid a \in N\} \). Elements \(\overline{a} \in N' \) are called co-names and \(\tau \) is called the silent step. The signature of the TSS for this fragment of CCS consists of the sort \(P \) of processes, the inaction constant \(0 : \rightarrow P \), an action prefix operator \(\alpha : P \rightarrow P \) for each action \(\alpha \in A \), the choice operator \(+ : P \times P \rightarrow P \), and the composition operator \(: P \times P \rightarrow P \). The transition predicate domain consists of a binary transition predicate \(\alpha \rightarrow : P \times P \) for each \(\alpha \in A \). The transition rules are the ones given below (\(\alpha \in A, a \in N \)):

\[
\begin{array}{c}
\alpha x \xrightarrow{\alpha} x \\
x \xrightarrow{\alpha} x' \\
\frac{y \xrightarrow{\alpha} y'}{x + y \xrightarrow{\alpha} x' + y'}
\end{array}
\]

We can extend this fragment of CCS with the recursion operator \(\mu : P \rightarrow P \). This requires the addition of the transition rules for this operator given in Example 4.2. This addition satisfies the conditions of Theorem 5.1. Consequently, the extension with the recursion operator is an operational conservative extension.

5.2 Axiomatic conservativity and completeness

First we make precise what an axiomatic conservative extension of a TSS is.

Let \(\Sigma \) and \(\Sigma' \) be signatures. Let \(E \) be a set of equations over \(\Sigma \) and \(E'' \) be a set of equations over \(\Sigma \oplus \Sigma' \) such that \(E \subseteq E'' \). Then \(E'' \) is an **axiomatic conservative extension** of \(E \) (for closed terms) if for all \(e \in CE \) we have \(E \vdash e \Leftrightarrow E'' \vdash e \).

The following two theorems suggest how operational conservativity of extensions can be used in completeness proofs.
Theorem 5.2 (Axiomatic Conservativity) Let $P = (\Sigma, \Pi, R)$ and $P' = (\Sigma', \Pi', R')$ be TSSs. Let E be a set of equations over Σ and E'' be a set of equations over $\Sigma \oplus \Sigma'$ such that $E \subseteq E''$. Then E'' is an axiomatic conservative extension of E if the following conditions are satisfied:

1. $P \oplus P'$ is an operational conservative extension of P;
2. E is a complete axiomatization of $\text{CT}_{\Sigma}/\Sigma_P$;
3. E'' is a sound axiomatization of $\text{CT}_{\Sigma \oplus \Sigma'}/\Sigma_{P \oplus P'}$.

Proof Suppose that $E'' \vdash t_1 = t_2$ for $t_1, t_2 \in \text{CT}_{\Sigma}$. Soundness of E'' implies $t_1 \Sigma_{P \oplus P'} t_2$. Operational conservativity of $P \oplus P'$ implies $t_1 \Sigma_{P'} t_2$. Completeness of E implies $E \vdash t_1 = t_2$. The other direction is trivial.

Theorem 5.3 (Complete Axiomatization) Let $P = (\Sigma, \Pi, R)$ and $P' = (\Sigma', \Pi', R')$ be TSSs. Let E be a set of equations over Σ and E'' be a set of equations over $\Sigma \oplus \Sigma'$ such that $E \subseteq E''$. Then E'' is a complete axiomatization of $\text{CT}_{\Sigma \oplus \Sigma'}/\Sigma_{P \oplus P'}$ if the conditions of Theorem 5.2 as well as the following condition are satisfied:

4. for each $t \in \text{CT}_{\Sigma \oplus \Sigma'}$, there exists a $t' \in \text{CT}_{\Sigma}$ such that $E'' \vdash t = t'$.

Proof Suppose that $t_1 \Sigma_{P \oplus P'} t_2$ for $t_1, t_2 \in \text{CT}_{\Sigma \oplus \Sigma'}$. Because of condition 4, there exist $u_1, u_2 \in \text{CT}_{\Sigma}$ such that $E'' \vdash t_1 = u_1$ and $E'' \vdash t_2 = u_2$. Soundness of E'' implies $t_1 \Sigma_{P \oplus P'} u_1$ and $t_2 \Sigma_{P \oplus P'} u_2$. Together with $t_1 \Sigma_{P \oplus P'} t_2$, we have $u_1 \Sigma_{P \oplus P'} u_2$. Operational conservativity of $P \oplus P'$ implies $u_1 \Sigma_{P'} u_2$. Completeness of E implies $E \vdash u_1 = u_2$. Because $E \subseteq E''$, also $E'' \vdash u_1 = u_2$. Together with $E'' \vdash t_1 = u_1$ and $E'' \vdash t_2 = u_2$, we have $E'' \vdash t_1 = t_2$.

6 Concluding remarks

Theorem 5.1 does not take into account the special position of sorts for which there are no firmly fresh terms. Such a refinement of the theorem will not pose any problem, but it will clutter up the definition of source-dependency and the formulation of the operational conservativity theorem.

In various applications of TSSs, it is impractical and unnecessary to provide the terms of certain sorts with an operational semantics because there exists a fully established semantics for them. We call such sorts given sorts. The sort that represents the time domain in process calculi with timing, usually \mathbb{N} or \mathbb{R}^+, is a typical example of a given sort. Clearly, given sorts are sorts for which there are no firmly fresh terms. Distinguishing such given sorts produces several effects. First of all, the generalized panth format can be relaxed. It also allows for transition predicates parametrized by terms of given sorts. These matters are further discussed in [13]. It is easy to see that Theorem 5.1 can be generalized to cover parametrized transition predicates.

Axiomatic conservative extensions of theories are smooth extensions. Generalizations of theories are smooth extensions of a broader kind. Roughly speaking, a theory is a generalization of another theory if there exists a translation of the
terms of the latter theory to terms of the former theory such that what be derived from the latter theory before translation can also be derived after translation. It would be interesting to devise an operational counterpart of generalization and to find simple syntactic criteria for it as well. This is a topic for future research.

REFERENCES

