Labile triangulo-trititanium(II) and -trivanadium(II) clusters

Citation for published version (APA):

DOI:
10.1021/ic00019a001

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication
Communications

Labile trianquilo-Trittitanium(II) and -Trivanadium(II) Clusters

Triangular trinuclear clusters have stimulated considerable theoretical interest1 and produced elegant synthetic chemistry,2-4 since they can be regarded as the basic building blocks of many high-nuclearity polyhedral clusters. A cluster compound contains, by definition, a network of metal-metal bonds that define the coordination polyhedron. However, theoretical work has demonstrated that in trianquilo clusters the presence of at least three bridging ligands is a very important factor for the stability of the M3 skeleton.1 Therefore, the obvious conclusion important to synthetic chemists is that M-M bonds can be rather weak in these species.

We have now prepared cationic trianquilo-trittitanium(II) and -trivanadium(II) clusters with the dual purpose of (i) making an entry into the nonexistent cluster chemistry of divalent vanadium and titanium and possibly (ii) testing the ability of these divalent metals to form M-M bonds [debated in the case of V(II)5 and extremely rare in the case of Ti(II)6]. The choice of trans-(TMEDA)2MCl2 (M = Ti,7 VI,7 TiMEDA = N,N,N',N'-tetramethylethlenediamine) as starting materials was determined by their versatility in disproportionation, ligand replacement and with NaNPb2 and VCl3(THF)3, able to selectively abstract one chlorine atom, proceeds instantaneously at room temperature, leading to the formation of the trimetallacetic (TMEDA)3MCl3+ (M = Ti, V).10 The lower stability of trans-(TMEDA)2VCl2 with respect to the vanadium analogue has so far prevented the preparation of a wider series of titanium derivatives. It is noteworthy that while the same trimetallacetic frame has been obtained in the case of vanadium upon treatment with TiCl3(THF)3 and YCl3(THF)3,6 reaction with other salts [ZnCl2(THF)2, AlCl3(THF)2] capable of forming complex di-

Scheme 1

with NaNPb2 and VCl3(THF)3, able to selectively abstract one chlorine atom, proceeds instantaneously at room temperature, leading to the formation of the trimetallacetic (TMEDA)3MCl3+ (M = Ti, V).10 The lower stability of trans-(TMEDA)2VCl2 with respect to the vanadium analogue has so far prevented the preparation of a wider series of titanium derivatives. It is noteworthy that while the same trimetallacetic frame has been obtained in the case of vanadium upon treatment with TiCl3(THF)3 and YCl3(THF)3,6 reaction with other salts [ZnCl2(THF)2, AlCl3(THF)2] capable of forming complex di-
The reaction with NaNPh2 appears to be of a straightforward nature. However, the formation of the dimetallic anion and consequent formation of a mixed-valence species suggests that the reaction proceeds via a complicated disproportionation mechanism involving the formation of zerovalent species.

The structures of 1 and 3 have been determined by X-ray analysis.13 The trinuclear structure of the [M3Cl6(TMEDA)3] cation is basically the same in the Ti and V derivatives (parts a and b of Figure 1, respectively) and is defined by the three metallic centers and three coplanar bridging chlorine atoms. The remaining two μ2-chlorine atoms are symmetrically placed above and below the molecular plane. The M–Cl distances are slightly different in the two compounds probably as a result of the different electronic configurations of the two metals [ranging from 2.456 (5) to 2.537 (8) Å for 1 and 3 respectively]. Furthermore, while the M–Cl distances formed by the axial (μ2-) and equatorial (μ1-) chlorine atoms are quite comparable in 1 [Ti1–Cl1 = 2.474 (5) Å, Ti1–Cl3 = 2.470 (5) Å, a marked difference can be observed in the vanadium derivative 3 [V2–Cl6 = 2.496 (7) Å, V2–Cl9 = 2.526 (8) Å]. The N,N'-(Ti[(η5-C5H5)PhN]2)Ti(NPh2)2 anion in complex 1 (Figure 2) consists of a tetracoordinated titanium atom placed in the center of a slightly distorted tetrahedron defined by the nitrogen atoms of four amido groups (N–Ti–N angles ranging from 100.4 to 125.8°). Two rings from two different amido groups are parallel and are attached to one titanium atom, formally zerovalent, forming a (η5-arene)Ti sandwich. No special features were observed for the VCl4(TMEDA)+ anion of 3, which possesses a normal octahedral geometry (Figure 1S).

The difference between the M–M distances observed in the two cations is striking. The fairly short Ti–Ti bonding distances (average Ti–Ti = 2.764 Å) observed in 1 might be consistent with

Figure 1. (a) ORTEP drawing of [(TMEDA)2TiCl4]+ showing the labeling scheme. Selected values of bond distances (Å) and angles (deg) are as follows: Ti1–Ti2 = 2.761 (4), Ti1–Ti3 = 2.770 (4), Ti2–Ti3 = 2.762 (4), Ti1–Cl1 = 2.474 (5), Ti1–Cl3 = 2.470 (5), Ti1–N1 = 2.317 (11), Ni–Ti1–N2 = 78.5 (4), Ni–Ti1–Cl1 = 92.7 (3), Cl1–Ti1–Cl3 = 87.37 (16). (b) ORTEP drawing of [(TMEDA)2VCl4]2+ showing the labeling scheme. Selected values of bond distances (Å) and angles (deg) are as follows: V2–V3 = 3.145 (6), V2–V4 = 3.159 (5), V3–V4 = 3.158 (5), V2–Cl7 = 2.499 (7), V2–Cl5 = 2.510 (7), V2–N3 = 2.20 (2); N3–V2–Cl7 = 97.4 (5), Cl6–V2–Cl7 = 162.3 (7), Cl5–V2–Cl7 = 84.8 (2), V2–Cl1–V3 = 70.2 (2), V2–Cl5–V3 = 77.5 (2).

13. Crystal data for 1 and 3 at room temperature are as follows. 1: triclinic, P1, α = 16.809 (4) Å, β = 16.894 (5) Å, γ = 12.162 (4) Å, ζ = 109.13 (2)°, β = 97.16 (2)°, γ = 81.04 (2)°, V = 3830.2 (2) Å3, Z = 2; least-squares refinement of 538 parameters and 4896 significant reflections (R = 2.575) out of 11316, gave residuals of R = 0.089 (Rw = 0.104). One interstitial molecule of ether was found to be disordered over two positions. 3: C6H5N2Cl2, fw = 308.18, triclinic, P1, α = 14.169 (5) Å, β = 18.531 (3) °, γ = 90.605 (1) °, ζ = 101.40 (12)°, β = 90.90 (23)°, γ = 90.90 (23)°, V = 2237.2 (9) Å3, Z = 2; least-squares refinement of 286 parameters and 1750 significant reflections (R = 2.64 (7) out of 4355, gave residuals of R = 0.067 (Rw = 0.070).
the formation of Ti-Ti single bonds. Furthermore, the magnetic moment of 1 (μeff = 1.81 μB), although difficult to interpretate because of the multivalent and polynuclear nature of these compounds, is consistent with the presence of one unpaired electron per molecule. Considering that the anionic fragment of 1 contains one titanium atom bonded to the four amido groups which is probably a d^1 Ti(III), and another which is likely a diamagnetic d^4 Ti(0) atom, the trimetallic Ti-III frame can reasonably be expected to be diamagnetic. By way of contrast, the V-V distances in the isostructural trivanadium aggregate 3 [ranging from 3.145 (6) to 3.159 (5) Å] are considerably longer and likely not in agreement with the presence of a V-V bond. Assuming a normal d^3 high-spin configuration for the octahedral VCl6(TMEDA) fragment, the magnetic moment of 3 (μeff = 5.01 μB) indicates that the vanadium atoms of the trinuclear unit should possess a low-spin electronic configuration with less than one unpaired electron per vanadium atom.

There is no doubt that somehow the different electronic configuration of the two metals (d^2 against d^3) should be responsible for the different M-M distances in these two electron-poor clusters. However, in our opinion the low-spin configuration of each vanadium atom in 3 (with two coupled electrons and no V-V bond) makes the existence of a Ti-Ti bond in 1 doubtful, in spite of the short "bonding" distance.

Consistent with this rationale, the cleavage of the trimetallic frames was easily achieved with both 1 and 3 via simple treatment with pyridine at room temperature, forming the nonmonic (pyridine)3MC12 [M = Ti,35 V(II)] as deep blue and deep red crystalline solids, respectively.

Acknowledgment. This work was supported by the Natural Sciences and Engineering Research Council of Canada (operating grant) and the donors of the Petroleum Research Fund, administered by the American Chemical Society. We are indebted to Dr. B. Vincent (Molecular Structure Corp., Woodlands, TX) for solving the crystal structure of 3.

Supplementary Material Available: Tables listing crystallographic data, atomic positional parameters, anisotropic thermal parameters, and complete bond distances and angles for 1 and 3, an ORTEP diagram (Figure 1S) of the [VCl6(TMEDA)]+ cation in 3, and a fully labeled ORTEP for the cation 3 (32 pages); tables of observed and calculated structure factors for 1 and 3 (70 pages). Ordering information is given on any current masthead page.

Received January 24, 1991

[Fe(4-imidazoleacetato)2]2CH3OH: A 2D Antiferromagnetic Iron(II) System Exhibiting 3D Long-Range Ordering with a Net Magnetic Moment at 15 K

Cooperative magnetic phenomena are well-known in solid-state materials but rare in molecular systems. Although substantial efforts have focused on the preparation of ferro- or ferrimagnetic molecular compounds exhibiting long-range magnetic ordering during the past few years, the transition temperature of the ferromagnetic molecular compounds reported so far is extremely low. On the other hand, some antiferromagnetic substances exhibit weak ferromagnetism at low temperature resulting from a canting of the spins. Although uncommon, such a situation may occur either in linear chain systems when magnetic interactions between next nearest neighbors occur or in two- or three-dimensional materials. Among this class of compounds, the layered complexes of 1,2,4-triazole with divalent metal thiocyanates, although exhibiting canted spin structures quite similar to that reported in this work, are characterized by low ordering temperature (3-6 K) and hidden canting. The title compound, [Fe(4-imidazoleacetato)2]-2CH3OH, exhibits a net magnetic moment below 15 K, the highest 3D ordering temperature reported so far for a molecular compound characterized by a canted spin structure.

Reaction of a 2:1 molar ratio of sodium 4-imidazoleacetate (Sigma) and ferrous acetate tetrahydrate in deoxygenated methanol for 12 h affords white microcrystals of [Fe(4-imidazoleacetato)]-2CH3OH (1) in 92% yield. Colorless single crystals suitable for X-ray diffraction study were obtained by slow interdiffusion of deoxygenated methanolic solutions of sodium cyanides: although exhibiting canted spin structures, they are characterized by low ordering temperature (3-6 K) and hidden canting.

Figure 1. Projection of the unit cell of the [Fe(4-imidazoleacetato)]-2CH3OH (1) complex molecule onto the xz plane. For clarity, the methanol molecules have been omitted.

References 130-137 in Chapter 7 of ref 4.

(5) References 130-137 in Chapter 7 of ref 4.

(7) Crystals of complex 1 belong to the monoclinic system, space group P21/c, with a = 9.842 (2) Å, b = 9.522 (2) Å, c = 8.144 (2) Å, β = 96.74° (2), V = 763 (1) Å³, Z = 2, and dcalc = 1.57 (4) g cm⁻³. Diffraction data were collected at −6 °C to 2θ(2θ) of 30° by procedures described elsewhere using an Enraf-Nonius CAD 4 diffractometer with graphite-monochromated Mo Kα radiation. A total of 4448 reflections were recorded. A linear decay correction (total intensity loss 1.2%) was applied to the data as well as an absorption correction using the numerical method of Coppers. Reflections were corrected for Lorentz and polarization effects. 2074 of which with θ > 2θ were used in subsequent calculations. The structure was solved by using the heavy-atom method. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in the calculations at a fixed distance of 0.95 Å with a mean isotropic temperature factor U = 0.065 Å². The atomic scattering factors used were those proposed by Cromer and Waber with anomalous dispersion effects. The full-matrix least-squares refinement, minimizing the suit of Fobs — Fcalcd, converged to R = Σ||Fobs|| — |Fcalcd||/Σ|Fobs|| = 0.031 and R = Σ||Fobs|| — |Fcalcd||/|Σ|Fobs|| = 0.043 with a weighting scheme w = 1/|Fobs| (0.0020σ(F) + 0.0020)²). The goodness of fit was S = 1.01.