Progress in electron probe microanalysis

Citation for published version (APA):

DOI:
10.1002/mawe.19900210210

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
5.10^4 nm/ rad eingestellt werden. Abbildung 9a zeigt das winkeldisperse Spektrum in der Nähe der Kohlenstoff-
K-Kante eines 60 nm dicken Kohlefims. Deutlich erkenn-
bar ist das erste Maximum durch Anregung von \pi-
Übergängen sowie die Streuwinkelverteilung von Einzel-
elektronenstößen (Compton-Streuung) beiderseits der
Hauptintensität. Im Spektrum der Al2O3-Oberflächenplas-
monen einer 15 nm Al-Schicht (Abb. 9b) ist bei hoher
Winkeldispersion die Aufspaltung der Winkelverteilung in
den symmetrischen \omega_+ und den asymmetrischen \omega_-
Schwingungsmodus zu beobachten.

Zusammenfassung

Die vielseitigen Einsatzmöglichkeiten eines abbildenden
Energielters für die Untersuchung materialkundlicher
Proben in einem Transmissionselektronenmikroskop
(Kontrast- und Auflösungsverbesserung bei Abbildung
dicker Objekte, EELS- und Mapping-Analysentechnik, die
Untersuchung elastischer und unelastischer Streuprozesse
in kristallinen Proben und deren Bedeutung für die Kon-
trastentstehung) stehen heute der materialkundlichen For-
schung, die auf Beschleunigungsspannungen über 100 kV
gewiesen ist, leider nicht zur Verfügung. Es wäre
wünschenswert, daß künftig auch kommerzielle Hochlei-
stungsgeräte im Mittelspannungsbereich mit abbildenden
Energiefilters ausgestattet würden. Der hohe instrumen-
telle Aufwand ist sicher durch die zahlreichen Anwen-
dungsmöglichkeiten, von denen nur einige vorgestellt
wurden, zu rechtfertigen.

Literatur

7. H. Rose, W. Pejas, Optik 54 (1979) 235.

Anschrift: Dr. D. Krahl, Fritz-Haber-Institut der Max-Planck-
Gesellschaft, Abt. Elektronenmikroskopie, Faradayweg 4–6,
100 Berlin 33.

Progress in Electron Probe Microanalysis

G. F. Bastin and H. J. M. Heijligers

Introduction

In the past decade some very interesting developments
have taken place in the field of electron probe X-ray
microanalysis which will prove to be of special interest for
the research on ceramic materials.

A very important development in this respect is the
introduction of new synthetic multilayer analyzer crystals,
which can give 3 to more than 20 times higher count rates
for the ultra-light elements Be, B, C, N, O and F, elements
which are of extreme importance for ceramic materials.

No less important, however, is the strong progress that
has been made in the development of new and much better
matrix correction procedures (especially the so-called \phi
(qz)-procedures) which can cope with the extreme corrections
which are frequently necessary in the analysis of
ultra-light element radiations.

Finally the development of programs for Thin-Film
Analysis must be mentioned. Such programs require an
exact knowledge of the number of X-ray photons produced
(\phi) as a function of mass depth qz (density times linear
depth) in the specimen in order to be successful. As a consequence the \phi(qz)-models which have proved to be so
successful for bulk matrix correction provide the best
possible starting position here.

New Multilayer Crystals

In the past decade techniques have been developed to
deposit alternating sequences of a heavy element film (the
scattering element) followed by a light element film (the
spacer) with such an accuracy in the spacing (2 d-value) that
they can be used as artificial crystals for X-ray detection. A
number of these crystals are nowadays commercially
available and most of them offer great advantages over the
conventional Stearate crystal with which most microprobes
are commonly equipped. In our laboratory we gained a lot
of experiences with 2 of the available multilayer crystals;
the first is a W/Si multilayer on a single-crystalline Si-wafer,
200 pairs of layers, 2 d-spacing 59.8 Å and optimized for the
analysis of N, O and F, the second crystal is a Mo/B4C
multilayer, 2 d-spacing 149.8 Å, optimized for the analysis
of Be and B. Both crystals were supplied by Ovonics Corp.
(Troy, Michigan, USA).

The benefits of these crystals can be summarized as
follows:
Progress in Matrix Correction Procedures

Strong progress has been made in bulk matrix correction, especially since the introduction of the so-called $\phi(\varepsilon z)$-approach. This approach is based on attempts to describe accurately the number of X-rays (ϕ) produced as a function of mass depth εz (density times linear depth) for a wide variety in experimental conditions under which the accelerating voltage, the energy of the excited line and the composition of the matrix are the most important.

Once $\phi(\varepsilon z)$ curves are available bulk matrix correction becomes a relatively straightforward process: all that is required is the integration of the $\phi(\varepsilon z)$ curves between the εz values of zero and infinity in order to find the total generated intensity in standard and specimen. Likewise, the emitted intensity can be found after an appropriate correction for absorption in the matrix, for which an exact knowledge of the $\phi(\varepsilon z)$ curve is equally essential.

It will be evident that the advantages of this approach will be most pronounced in the most difficult cases of bulk matrix correction: i.e., the analysis of ultra-light elements which are usually characterized by very extreme conditions in terms of overvoltage (accelerating voltage/critical excitation voltage) and magnitude of the absorption correction. The latter can easily be of an order of magnitude larger than in the analysis of heavier elements. In such cases the values of the surface ionisation $\phi(0)$ and the first part of the $\phi(\varepsilon z)$-curve play a crucial role in the correction procedure. It is interesting to point out here that the first part of the $\phi(\varepsilon z)$-curve has always been neglected in the conventional ZAF approach. In recent years it has been demonstrated (Ref. 3) that the newer matrix correction procedures offer a much higher performance over the conventional ZAF procedure.

At the same time, however, it must be mentioned that the analysis of ultra-light elements is not only a matter of using a better correction program; items like the correct measuring procedures and the use of consistent mass absorption coefficients are equally important. Regarding the former aspect it is imperative to carry out the intensity measure-ments in an integral fashion or use the Area/Peak Factor concept (Ref. 2, 3) in order to take the effects of peak shape alterations into account. As far as the mass absorption coefficients are concerned it is frequently possible, using the new $\phi(\varepsilon z)$ models (Ref. 2-4) to determine better and more consistent values from a series of measurements carried out over a wide range in accelerating voltage.

The benefits of the new $\phi(\varepsilon z)$ approaches are not limited to their use in ultra-light element analysis; they also enable the use of longer-wavelength radiations of heavier elements which are increasingly being used for measurements at extremely low voltages (below 5 kV) and in the analysis of thin films which is a rapidly growing field of interest (e.g., for the semiconductor industry).

Thin Film Analysis

As has been stated before the analysis of thin films requires an exact knowledge of the number of ions as a function of depth in the specimen. Fig. 1 gives a number of $\phi(\varepsilon z)$-curves for the case of Al-Ka radiation in Al at various voltages. It is immediately obvious that the variation in accelerating voltage in combination with an exact knowledge of the $\phi(\varepsilon z)$-curves gives full control over the X-ray excitation range in the specimen. As a consequence the emitted X-ray signals which carry information about the successive layers in depth can be used in order to find both the compositions as well as the thicknesses of the various layers.

The specific advantage of this approach is that it makes non-destructive in-depth profiling possible with equipment which is widely available. For a film with thickness T one could, as a first approximation, integrate the $\phi(\varepsilon z)$-curve of the film element between $\varepsilon z = 0$ and $\varepsilon z = T$ and that of the substrate element between T and infinity in order to find the generated intensities. However, this simple approach only works when the atomic number of film and substrate do not differ too much. When large differences do exist a correction for the changes in backscattering of the electrons caused by the substrate has to be made. As it turns out this is perfectly possible in practice (see e.g., Ref. 5).

The thickness range which can be investigated with this technique is between 0 (less than 1 nm) and a few μm,

![Fig. 1. Some $\phi(\varepsilon z)$-curves for Al-Ka radiation in Al at various accelerating voltages.](image-url)
dependent on the density of the material. Apart from the thickness it is also possible to find at the same time the composition of the film in a double iterative procedure.

If all the elements involved are only confined either to the film or to the substrate then both the thickness and the composition of a film can be determined from intensity measurements carried out at only one accelerating voltage. In practice, however, it is wiser to repeat the measurements at a number of accelerating voltages in order to make sure that no additional interaction layers are overlooked.

An extension towards multilayer systems is also perfectly possible (Ref. 5). It will be clear though that the more complicated the system becomes the more measuring efforts will be necessary in order to arrive at consistent results. We ourselves have recently completed a Thin Film Program which can handle up to 5 different layers on a substrate. This program will soon be available through commercial channels.

Under the restriction that no overlap of elements occurs it is possible to find the thicknesses and the compositions of these 5 layers from measurements taken at only one accelerating voltage. If overlap occurs one can still find the correct answers; however, only by using measurements taken over a range of accelerating voltages.

Concluding this brief review of progress in electron probe X-ray microanalysis it can safely be stated that as a result of the strong improvements in matrix correction procedures, especially those based on an exact description of ρ(p2)-curves, new and exciting tools have come into the hands of people operating scanning electron microscopes and electron probe microanalyzers; tools which can be used for the investigation of (sub) surface layers which would normally be much too thin for the usual examination in a cross-section.

References

Note: A lot of information on “The State of the Art” in electron probe microanalysis can be found in the Proceedings of the First European Workshop on “Modern Developments and Applications in Microprobe Analysis”, which was organized by the European Microbeam Analysis Society and the University of Antwerp (UZA) in Antwerp (Belgium) on 8--10 March 1989.

Address: Dr. Ir. G. F. Bastin and Ir. H. J. M. Heijligers, Lab. f. Phys. Chemistry, University of Technology, P.O. Box 513, NL-5600 MB Eindhoven

[T 382]