Complexity results for scheduling tasks in fixed intervals on two types of machines
Nakajima, K.; Hakimi, S.L.; Lenstra, J.K.

Published in:
SIAM Journal on Computing

DOI:
10.1137/0211040

Published: 01/01/1982

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
COMPLEXITY RESULTS FOR SCHEDULING TASKS IN FIXED INTERVALS ON TWO TYPES OF MACHINES*

K. NAKAJIMA,† S. L. HAKIMI,‡ AND J. K. LENSTRA§

Abstract. Suppose that n independent tasks are to be scheduled without preemption on an unlimited number of parallel machines of two types: inexpensive slow machines and expensive fast machines. Each task requires a given processing time on a slow machine or a given smaller processing time on a fast machine. We make two different feasibility assumptions: (a) each task has a specified processing interval, the length of which is equal to the processing time on a slow machine; (b) each task has a specified starting time. For either problem type, we wish to find a feasible schedule of minimum total machine cost. It is shown that both problems are NP-hard in the strong sense. These results are complemented by polynomial algorithms for some special cases.

Key words. parallel machines, tasks, release dates, deadlines, computational complexity, NP-hardness, polynomial algorithm

1. Introduction. We begin by considering the following problem. Suppose there are n tasks T_1, \ldots, T_n and an unlimited number of identical parallel machines. Each task T_i requires a given processing time p_i and is to be executed without interruption between a given release date r_i and a given deadline d_i = r_i + p_i. The tasks are independent in the sense that there are no precedence constraints between them. Each machine can execute any task, but no more than one at a time. The problem is to find the minimum number of machines needed to execute all tasks as well as a corresponding schedule of the tasks on the machines.

This problem is known as the "fixed job schedule problem" [6] and as the "channel assignment problem" [8], [9], [10]. It has applications in such diverse areas as vehicle scheduling [2], [15], machine scheduling [6], [8], and computer wiring [8], [9], [10]. As a special case of Dilworth's chain decomposition problem, it is solvable in $O(n^2)$ time by the staircase rule of Ford and Fulkerson [3, p. 65] and by the step-function method of Gertsbakh and Stern [6]. Hashimoto and Stevens [9], [10] presented some interesting graph theoretical approaches to the problem and proposed an $O(n^2)$ algorithm, for which Kernighan, Schweikert and Persky [12] gave an $O(n \log n)$ implementation. Recently, Gupta, Lee and Leung [8] independently developed a different $O(n \log n)$ algorithm and also showed that any solution method for the problem requires $\Omega(n \log n)$ time.

In this paper we will consider a natural generalization of this problem which has potential applications in the scheduling areas mentioned above. Again, there are n independent tasks T_1, \ldots, T_n, but there are two types of machines: slow machines of cost C^s and fast machines of cost $C^f > C^s$. Each task T_i requires a processing time p_i on a slow machine or $q_i(<p_i)$ on a fast machine and is to be executed without interruption between its release date r_i and its deadline $d_i = r_i + p_i$. It is assumed that all numerical problem data are integers. In a feasible schedule, the tasks assigned

* Received by the editors July 30, 1979, and in final revised form September 9, 1981. This research was supported in part by the National Science Foundation under grant ENG79–09724.
† Computer Science Division, Department of Electrical Engineering, Texas Tech University, Lubbock, Texas 79409. Formerly at Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60201.
‡ Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60201.
§ Mathematisch Centrum, Amsterdam, the Netherlands.
to slow machines have to start at their release dates in order to meet their deadlines. For the tasks T_i assigned to fast machines, we make two different feasibility assumptions:

(a) VST (variable starting times): T_i may start at any time in the interval $[r_i, d_i - q_i]$;
(b) FST (fixed starting times): T_i has to start at time r_i.

A schedule using m' slow machines and m' fast machines has total cost $m'C^s + m'C^f$.

For either problem type, we wish to find a feasible schedule of minimum total cost.

In § 2 we show that the VST problem is NP-hard [1], [4], [5], [11], even if all release dates are equal. In § 3 we extend our techniques to prove that the FST problem is NP-hard in the case of arbitrary release dates; the case of equal release dates is trivially solvable in $O(n)$ time. The NP-hardness results are "strong" [4], [5] in the sense that they hold even with respect to a unary encoding of the data; this implies that there exists no pseudopolynomial algorithm for these problems unless $P = \mathcal{NP}$.

In §§ 4 and 5 we consider the special case that $q_i = 1, j = 1, \ldots, n$. We present $O(n \log n)$ algorithms for the VST problem with equal release dates and for the FST problem with arbitrary release dates, respectively.

<table>
<thead>
<tr>
<th>p_i arbitrary</th>
<th>VST</th>
<th>FST</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_i arbitrary</td>
<td>r_i equal</td>
<td>r_i arbitrary</td>
</tr>
<tr>
<td>q_i arbitrary</td>
<td>NP-hard ($§$ 2)</td>
<td>NP-hard ($§$ 2)</td>
</tr>
<tr>
<td>$q_i = 1$</td>
<td>Open</td>
<td>$O(n \log n)$ ($§$ 4)</td>
</tr>
</tbody>
</table>

These results represent an almost complete complexity classification of the problem class under consideration, as demonstrated by Table 1.

2. NP-hardness of the VST problem.

Theorem 1. The VST problem is NP-hard in the strong sense, even if all release dates are equal.

Our proof holds for the case that $C^f/C^s = 3$ and $p_i/q_i = 3, j = 1, \ldots, n$. Theorem 1 dominates a previous result, stating that the VST problem is NP-hard in the strong sense if the release dates are arbitrary, C^f/C^s is an arbitrary constant between 1 and 7, and $p_i/q_i = 4, j = 1, \ldots, n$ [17].

Proof of Theorem 1. We have to show that a problem which is known to be NP-complete in the strong sense is (pseudopolynomially) reducible to the VST problem. Our starting point will be the following problem [5, p. 224, [SP15]]:

3-PARTITION: Given a set $S = \{1, \ldots, 3t\}$ and positive integers a_1, \ldots, a_{3t}, b with $\frac{1}{4}b < a_j < \frac{1}{2}b, j \in S$, and $\sum_{i \in S} a_i = tb$, does there exist a partition of S into t disjoint 3-element subsets S_1, \ldots, S_t such that $\sum_{i \in S_i} a_i = b, i = 1, \ldots, t$?

Given any instance of 3-PARTITION, we construct, in (pseudo-) polynomial time, a corresponding instance of the VST problem with equal release dates as follows:

1. The cost coefficients are defined by $C^s = 1, C^f = 3$.
2. There are $4t$ tasks:
 - a-tasks $T_{j}^a, j \in S$, with $r_i^a = 0, p_i^a = 6a, q_i^a = 2a$
 - b-tasks $T_{i}^b, i \in \{1, \ldots, t\}$, with $r_i^b = 0, p_i^b = 3b, q_i^b = b$.

TABLE 1

<table>
<thead>
<tr>
<th>Summary of complexity results</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i arbitrary</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>q_i arbitrary</td>
</tr>
<tr>
<td>$q_i = 1$</td>
</tr>
</tbody>
</table>
We claim that 3-PARTITION has a solution if and only if there exists a feasible schedule with total cost at most $C^* = 3t$.

Suppose that 3-PARTITION has a solution \(\{ S_1, \cdots, S_t \} \). It is possible to construct a feasible schedule for all tasks on \(t \) fast machines \(M_1', \cdots, M_t' \) as follows (cf. Fig. 1): for each \(i \in \{ 1, \cdots, t \} \), machine \(M_i' \) processes the three tasks \(T_j^i, j \in S_i \), in non-decreasing order of \(q_j^i \) value in the interval \([0, 2b]\), and the task \(T_j^i \) in \([2b, 3b]\); note that the starting time of each task falls within the required interval. The total cost of this schedule is equal to \(tC' = C^* \).

Conversely, suppose that there exists a feasible schedule with total cost at most \(C^* = 3t \). No slow machine can process more than one task. No fast machine can process more than four tasks, since the completion time of the fourth task will be larger than \(2b \) and the starting time of a fifth task should be no larger than \(2b \). Let there be \(m^s \) slow machines and \(m^f \) fast machines. We have, by the hypothesis, \(m^s + 3m^f \leq 3t \) and, by the above arguments, \(m^s \geq 4t - 4m^f \). The first inequality implies that \(m^f \leq t \) and the two together imply that \(m^f \geq t \). We conclude that \(m^f = t \). It follows that there are no slow machines and \(t \) fast machines, each processing four tasks.

Instance of 3-PARTITION:

\[
\begin{array}{c|ccccccccccc}
\hline
j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
a_j & 7 & 7 & 7 & 8 & 8 & 8 & 9 & 10 & 11 & & \\
\hline
\end{array}
\]

Solution: \(\{ \{1, 2, 9\}, \{3, 4, 8\}, \{5, 6, 7\} \} \)

Corresponding VST schedule on \(t \) fast machines:

\[
\begin{array}{cccccc}
& 0 & 14 & 28 & 50 & 75 \\
M_1' & T_1^a:14 & T_2^a:14 & T_9^a:22 & T_1^b:25 \\
M_2' & T_3^a:14 & T_4^a:16 & T_8^a:20 & T_2^b:25 \\
M_3' & T_5^a:16 & T_6^a:16 & T_7^a:18 & T_3^b:25 \\
\end{array}
\]

Fig. 1. Illustration of the transformation in Theorem 1.

None of these fast machines can process more than one \(b \)-task, since otherwise the completion time of the fourth task would be larger than \(3b \). It follows that the \(i \)th fast machine processes exactly one \(b \)-task and three \(a \)-tasks \(T_j^a, j \in S_i \), with \(\sum_{j=s} q_j^a \leq 2b \). Since \(\sum_{j=s} q_j^a = 2tb \), we have \(\sum_{j=s} q_j^a = 2b, i = 1, \cdots, t \). The collection \(\{ S_1, \cdots, S_t \} \) constitutes a solution to 3-PARTITION.

3. NP-hardness of the FST problem.

Theorem 2. The FST problem is NP-hard in the strong sense.

Theorem 3. The FST problem is solvable in \(O(n) \) time if all release dates are equal.

Our NP-hardness proof holds for the case that \(C'/C^* = (t+2)/(t+1) \) and \(p_i/q_i = z/j = 1, \cdots, n \), where \(t \) and \(z \) are input variables. Theorem 2 is still true if \(C'/C^* \) is an arbitrary constant between 2 and 3 and \(p_i/q_i = 2, j = 1, \cdots, n \) [16]; the proof of this further refinement is quite involved. Theorem 3 shows that the NP-hardness result cannot be extended to the case of equal release dates, unless \(P = NP \).
Proof of Theorem 2. We will start from the following strongly NP-complete problem [5, p. 224, [SP17]]:

NUMERICAL MATCHING WITH TARGET SUMS. Given a set $S = \{1, \ldots, t\}$ and positive integers $a_1, \ldots, a_t, b_1, \ldots, b_t, c_1, \ldots, c_t$ with $\sum_{i \in S} (a_i + b_i) = \sum_{i \in S} c_i$, do there exist permutations α and β of S such that $a_{\alpha(i)} + b_{\beta(i)} = c_i$ for all $i \in S$?

We may assume without loss of generality that $a_1 < \cdots < a_t$, $b_1 < \cdots < b_t$ and $c_1 < \cdots < c_t$. Further, we will assume that for any instance of this problem there exists a positive integer z such that

$$z < a_1 < \cdots < a_t < 2z < b_1 < \cdots < b_t < 3z < c_1 < \cdots < c_t < 5z.$$

(If this does not hold, then define $z = \max\{a_t + 1, b_t + 1\}$ and set $a_i \leftarrow a_i + z$, $b_i \leftarrow b_i + 2z$, $c_i \leftarrow c_i + 3z$, $i \in S$.) We will use the notation $S' = \{1, \ldots, t-1\}$.

Given any instance of NUMERICAL MATCHING WITH TARGET SUMS we construct, in (pseudo-) polynomial time, a corresponding instance of the FST problem as follows:

1. The cost coefficients are defined by $C^* = t + 1$, $C^f = t + 2$.
2. There are $2t^2 + t$ tasks:
 - a-tasks T^a_i, $i \in S$, with $r^a_i = 0$, $p^a_i = za_i$, $q^a_i = a_i$,
 - b-tasks T^b_{hi}, $h \in S, i \in S$, with $r^b_{hi} = a_h$, $p^b_{hi} = zb_h$, $q^b_{hi} = b_h$,
 - c-tasks $T^c_i, i \in S$, with $r^c_i = c_i$, $p^c_i = 3z^2$, $q^c_i = 3z^2$,
 - d-tasks T^d_{hi}, $h \in S', i \in S$, with $r^d_{hi} = 2z + zb_h$, $p^d_{hi} = z^3$, $q^d_{hi} = z^2$.

We claim that NUMERICAL MATCHING WITH TARGET SUMS has a solution if and only if there exists a feasible schedule with total cost at most $C^* = t^3 + t^2 + t$.

Suppose that the matching problem has a solution (α, β). It is possible to construct a feasible schedule for all tasks on t fast machines M_i, $i \in S$, and $t^2 - t$ slow machines M^s_{hi}, $h \in S', i \in S$, as follows (cf. Fig. 2): for each $i \in S$, machine M^f_i processes the tasks $T^a_{\alpha(i)}$, $T^b_{\alpha(i)\beta(i)}$, T^c_i in the intervals $[0, a_{\alpha(i)}]$, $[a_{\alpha(i)}, a_{\alpha(i)} + b_{\beta(i)}]$, $[c_i, c_i + 3z^2]$ (note that $a_{\alpha(i)} + b_{\beta(i)} = c_i$), and each of the $t - 1$ machines M^s_{hi}, $h \in S'$, processes one of the $t - 1$ tasks T^d_{hi}, $h \in S - \{\alpha(\beta^{-1}(i))\}$, in $[a_h, a_h + zb_h]$ and one of the $t - 1$ tasks T^d_{hi}, $h \in S'$, in $[2z + zb_h, 2z + zb_h + z^3]$ (note that $a_h < 2z$). The total cost of this schedule is equal to $tC^* + (t^2 - t)C^f = C^*$.

Conversely, suppose that there exists a feasible schedule with total cost at most C^*. We make the following propositions.

Proposition 1. Two a-tasks are not assigned to the same machine.

Proof. Each a-task is processed during the interval $[0, z]$.

Proposition 2. Two b-tasks are not assigned to the same machine.

Proof. Each b-task is processed during the interval $[2z, 3z]$.

Proposition 3. Two c- or d-tasks are not assigned to the same machine.

Proof. Each c- or d-task is processed during the interval $[3z^2 + z, 3z^2 + 3z]$.

Proposition 4. An a-task and a b-task are not assigned to the same slow machine.

Proof. On a slow machine, each a- or b-task is processed during the interval $[2z - 1, z^2 + z]$.

Proposition 5. A b-task and a c-task are not assigned to the same slow machine.

Proof. On a slow machine, each b- or c-task is processed during the interval $[5z - 1, 2z^2 + 2z + 1]$.

All tasks are assigned to at most t^2 machines, since $(t^2 + 1)C^* > C^*$. Propositions 1, 2 and 3 imply that there are exactly t^2 machines, each processing at most one a-task, exactly one b-task and exactly one c- or d-task. These machines include at
Instance of NUMERICAL MATCHING WITH TARGET SUMS:

\[t = 3; \quad z = 4; \quad i \quad 1 \quad 2 \quad 3 \]

\(a_i \)	5	6	7
\(b_i \)	9	10	11
\(c_i \)	14	16	18

Solution:

\[\alpha(i) \quad 1 \quad 2 \quad 3 \]

\[\beta(i) \quad 1 \quad 2 \quad 3 \]

Corresponding FST schedule on \(t \) fast machines and \(t^2-t \) slow machines:

<table>
<thead>
<tr>
<th>Machine</th>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1^0)</td>
<td>(T_{11}^{b})</td>
<td>(T_{11}^{c})</td>
<td>(T_{11}^{c})</td>
</tr>
<tr>
<td>(M_2^1)</td>
<td>(T_{12}^{b})</td>
<td>(T_{12}^{b})</td>
<td>(T_{12}^{d})</td>
</tr>
<tr>
<td>(M_3^2)</td>
<td>(T_{12}^{b})</td>
<td>(T_{12}^{b})</td>
<td>(T_{12}^{d})</td>
</tr>
<tr>
<td>(M_4^3)</td>
<td>(T_{12}^{b})</td>
<td>(T_{12}^{b})</td>
<td>(T_{12}^{d})</td>
</tr>
</tbody>
</table>

FIG. 2. Illustration of the transformation in Theorem 2.

most \(t \) fast ones, since \((t^2-t-1)C^t + (t+1)C^f > C^*\). Propositions 4 and 5 imply that there are exactly \(t \) fast machines, each processing one a-task, one b-task and one c-task; hence, there are exactly \(t^2-t \) slow machines, each processing one b-task and one d-task.

We denote the fast machines by \(M_i^f, i \in S \), and the \(t^2-t \) slow machines by \(M_{hi}^s, h \in S', i \in S \). It may be assumed that \(T_i^c \) is assigned to \(M_i^f, i \in S \), and \(T_i^d \) to \(M_{hi}^s, h \in S', i \in S \). There exists a permutation \(\alpha \) of \(S \) such that \(T_{\alpha(i)}^a \) is assigned to \(M_i^f, i \in S \).

Let us define the size of \(T_{hi}^s \) as \(b_{hi} \), its processing time on a fast machine. The size of a b-task on \(M_i^f \) is at most \(c_i - a_{\alpha(i)} \), and the size of a b-task on \(M_{hi}^s \) is at most \((2z + zb_i - a_i)/z \) = \(b_{hi} \). The sum of these upper bounds over all machines is equal to \(\sum_{i \in S} (c_i - a_{\alpha(i)}) + \sum_{h \in S'} \sum_{i \in S} b_i = t \sum_{i \in S} b_i \) which is the total size of all b-tasks. It follows that all these upper bounds are actually achieved. More explicitly, for each \(i \in S \), there exists an index \(\beta(i) \in S \) such that \(T_{\beta(i)}^b \) is assigned to \(M_i^f \), and there exists an index \(\gamma(i) \in S \) such that the \(t-1 \) tasks \(T_{hi}^b, h \in S - \{\gamma(i)\} \), are assigned to the \(t-1 \) machines.
M^h, $h \in S'$, while $T^b_{\gamma(i)}$ is assigned to a fast machine. This implies that the functions β and γ are permutations of S with $\gamma(\beta(i)) = \alpha(i), i \in S$.

Since $T^b_{\alpha(i)}(\beta(i))$ leaves no idle time between $T^a_{\alpha(i)}$ and T^c_i on M^f, we have $a_{\alpha(i)} + b_{\beta(i)} = c_i, i \in S$. The pair (α, β) constitutes a solution to the matching problem.

Proof of Theorem 3. In the FST problem with equal release dates, each task has to start at the same time and therefore each machine can process at most one task. It follows that an optimal schedule uses n slow machines and has total cost nC^s. It is constructed in $O(n)$ time.

4. A well-solvable case of the VST problem.

Theorem 4. In the case that $q_j = 1, j = 1, \cdots, n$, the VST problem is solvable in $O(n \log n)$ time if all release dates are equal.

The complexity of the VST problem with all $q_j = 1$ and arbitrary release dates remains unresolved (cf. Table 1).

Proof of Theorem 4. In the VST problem with equal release dates, a slow machine can process at most one task but a fast machine may be able to process more than one.

Let us assume that there are m fast machines, with $0 \leq m \leq n$, and let X_m denote the maximum number out of the n unit-time tasks that can be completed in time on these machines. A schedule using m fast machines has to use $n - X_m$ slow machines; its total cost is equal to $C_m = mC^f + (n - X_m)C^s$. It follows that an optimal schedule has total cost $\min_{0 \leq m \leq n} \{C_m\}$.

For each given value of m, the number X_m and a corresponding schedule on m fast machines can be found by an $O(n \log n)$ algorithm from Lawler [14], [7, p. 295]. Straightforward application of this algorithm for $m = 0, \cdots, n$ would yield an overall optimal schedule in $O(n^2 \log n)$ time.

However, all X_0, \cdots, X_n together can be determined by an $O(n \log n)$ algorithm, which constructs a schedule on n fast machines with the property that, for any value of m, the partial schedule on the first m machines is an optimal schedule on m machines [13]. This algorithm considers the tasks in order of nondecreasing deadlines and assigns each task to the machine with lowest index on which it can be completed in time. A formal statement is as follows.

VST Algorithm (only fast machines, all $q_j = 1$, all $r_i = 0)$

Initialize. Reorder the tasks in such a way that $d_1 \leq \cdots \leq d_n$; set $d_0 = -\infty$. Introduce an array x of size n and set $x_m \leftarrow 0, m = 1, \cdots, n$ [x_m tasks have been assigned to machine M^f_m]. Introduce an array μ of size n [T_{ij} will be assigned to $M^f_{\mu_{ij}}$]. Set $m \leftarrow 1$.

Iterate. for $j \leftarrow 1$ to n do

begin

set $m \leftarrow \text{if } d_{j-1} < d_j \text{ then } 1 \text{ else if } x_m < d_j \text{ then } m \text{ else } m + 1$

set $\mu_{ij} \leftarrow m, x_m \leftarrow x_m + 1$

end.

Finalize. Set $X_0 \leftarrow 0$; for $m \leftarrow 1$ to n do set $X_m \leftarrow X_{m-1} + x_m$.

It can be shown that X_m is the maximum number of tasks that can be completed in time on m fast machines, for $m = 0, \cdots, n$ [13]. The algorithm requires $O(n \log n)$ time to order the tasks, and $O(n)$ time to construct the schedule and to determine the values X_0, \cdots, X_n. It follows that an overall optimal schedule is obtained in $O(n \log n)$ time.

Note. Since $x_m \geq x_{m+1}, m = 1, \cdots, n - 1, X_m$ is a concave function of m, so that C_m is convex. A similar observation will be exploited in the next section.
5. A well-solvable case of the FST problem.

Theorem 5. In the case that \(q_j = 1, j = 1, \cdots, n \), the FST problem is solvable in \(O(n \log n) \) time.

The assumption that all \(q_j = 1 \) is too strong: an analysis of the proof below shows that our algorithm is applicable in the more general situation that the \(q_j \) are bounded from above by the minimum length of the interval between two different adjacent release dates. Although this restriction still limits the practical value of our result, we feel that the insight gained might be useful in the design of approximation algorithms for the general FST problem.

Proof of Theorem 5. The development of our algorithm will proceed along the same lines as in the previous section. First, we will assume that there are \(m \) fast machines and we will determine an optimal set of tasks to be scheduled on these machines. Next, we will compute the minimum number of slow machines needed to execute the remaining tasks. Finally, we will describe an efficient method to find the optimal value of \(m \).

We start by representing the problem data in a convenient way. Suppose that the release dates assume \(k \) different values \(\tilde{r}_1, \cdots, \tilde{r}_k \) with \(\tilde{r}_1 < \cdots < \tilde{r}_k \). For \(j = 1, \cdots, k \), there are \(n_j \) tasks \(T_{1j}, \cdots, T_{nj} \) with release dates \(r_{ij} = \cdots = r_{nj} = \tilde{r}_j \) and deadlines \(d_{ij} = \cdots = d_{nj} \). We have \(n = \sum_{j=1}^{k} n_j \) and define \(n' = \max_{1 \leq j \leq k} \{ n_j \} \). This representation can be obtained by sorting the release dates and the deadlines in \(O(n \log n) \) time and applying a bucket sort [1] to order the tasks with the same release date according to deadlines in \(O(n) \) time.

Let us now assume that there are \(n' \) fast machines \(M' \), \(\cdots, M'_{n'} \), with \(0 \leq m \leq n' \).

For each given value of \(m \), the number \(l_m \) and a corresponding schedule of the tasks in \(J_m \) on \(l_m \) slow machines can be found in \(O(n \log n) \) time. This problem has already been discussed in the first two paragraphs of § 1. The following algorithm is a slight modification of the channel assignment algorithm of Gupta, Lee and Leung [8]; for simplicity, it is stated for the case that \(m = 0 \).

FST Algorithm (only slow machines)

Initialize. Reorder the tasks in such a way that \(r_1 \leq \cdots \leq r_n \); determine a permutation \(\delta \) of \(\{1, \cdots, n\} \) such that \(d_{\delta (1)} \leq \cdots \leq d_{\delta (n)} \). Introduce a stack \(S \) of size \(n \) and push machine indices \(1, \cdots, n \) onto \(S \) in such a way that \(m \) is on top of \(m+1, m=1, \cdots, n-1 \). Introduce an array \(\lambda \) of size \(n \) [\(T_i \) will be assigned to \(M'_{\lambda i} \)]. Set \(j \leftarrow 1 \), \(i \leftarrow 1 \).

Iterate.

\[
\text{while } j \leq n \text{ do}
\]

\[
\text{if } r_j < d_{\delta (i)} \text{ then begin set } \lambda_i \leftarrow \text{top element of } S; \text{ pop } S; \text{ set } j \leftarrow j + 1 \text{ end}
\]

\[
\text{else begin push } \lambda_{\delta (i)} \text{ onto } S; \text{ set } i \leftarrow i + 1 \text{ end.}
\]

Finalize. Set \(l_0 \leftarrow \max_{1 \leq j \leq n} \{ \lambda_j \} \).

It can be shown that \(l_0 \) is the minimum number of slow machines needed to execute all tasks. The algorithm requires \(O(n \log n) \) time to order the tasks, and \(O(n) \)
time to construct the schedule and to compute the value l_0. Since the release dates and the deadlines have already been sorted, each application of this algorithm requires only $O(n)$ time. Straightforward computation of l_m for $m = 0, \cdots, n'$ would yield an overall optimal schedule in $O(n \log n + n'n) = O(n^2)$ time.

However, it will be shown below that C_m is a convex function of m, and this property can be exploited to arrive at an $O(n \log n)$ algorithm. The convexity of C_m implies that, if $C_m < C_{m+1}$, then $m^* \in \{0, \cdots, m\}$, and else $m^* \in \{m+1, \cdots, n'\}$. Thus, m^* can be found by a bisection search as follows: for $m = \lfloor \frac{n'}{2} \rfloor$, compute C_m and C_{m+1}, reduce the domain of m^* by a factor of two by eliminating either $[0, m]$ or $[m+1, n']$, and repeat the procedure on the remaining interval. The optimal value of m is found in at most $\lceil \log_2 (n'+1) \rceil$ iterations.

The entire algorithm requires $O(n \log n)$ time to sort the release dates and the deadlines and, for each of $O(\log n')$ values of m, $O(n)$ time to compute C_m. It follows that an overall optimal schedule is obtained in $O(n \log n)$ time.

It remains to be shown that C_m is a convex function of m. Since $C_m = mC' + l_mC''$, we have to prove that l_m is convex, or equivalently that

$$l_{m-1} - l_m \geq l_m - l_{m+1}, \quad m = 1, \cdots, n'-1. \quad (1)$$

We define the degree of overlap of the set \mathcal{F} at time t as the number of tasks $T_i \in \mathcal{F}$ such that $t \in [r_i, d_i]$. Let $X_m(t)$ denote the degree of overlap of \mathcal{F}_m at t and $x_{m-1}(t)$ the degree of overlap of $\mathcal{F}_{m-1} - \mathcal{F}_m$ at t, i.e., $X_{m-1}(t) = x_{m-1}(t) - X_m(t)$. It is known [9] that

$$l_m = \max_t \{X_m(t)\}, \quad m = 0, \cdots, n'. \quad (2)$$

Since the number of tasks $T_i \in \mathcal{F}_{m-1} - \mathcal{F}_m$ and the lengths of their intervals $[r_i, d_i]$ do not increase as m increases, it is also true that

$$x_{m-1}(t) \geq x_m(t) \quad \text{all } t, \quad m = 0, \cdots, n'-1. \quad (3)$$

Defining t_m such that $X_m(t_m) = \max_t \{X_m(t)\}$, $m = 0, \cdots, n'$, and applying (2), we rewrite (1) as

$$X_{m-1}(t_m) - X_m(t_m) \geq X_m(t_m) - X_{m+1}(t_{m+1}).$$

We have for the left-hand side that

$$X_{m-1}(t_m) - X_m(t_m) = X_{m-1}(t_{m-1}) - X_{m-1}(t_m) + x_{m-1}(t_m) \geq x_{m-1}(t_m).$$

Similarly, we have for the right-hand side that

$$X_m(t_m) - X_{m+1}(t_{m+1}) = X_{m+1}(t_m) + x_m(t_m) - X_{m+1}(t_{m+1}) \leq x_m(t_m).$$

Application of (3) for $t = t_m$ now implies the validity of (1). This completes the proof of Theorem 5. \qed

Note. By means of ingenious counting techniques, the above algorithm for computing a single value l_m can be extended to an $O(n \log n)$ algorithm for computing all l_0, \cdots, l_m together [13]; when the data have already been sorted, it requires only $O(n)$ time, as before. A similar result has been used in the previous section.

Acknowledgment. The authors gratefully acknowledge constructive suggestions by B. J. Lageweg.

REFERENCES

