Experimental characterization of a hydrogen/argon cascaded arc plasma source

Citation for published version (APA):

DOI:
10.1063/1.1144949

Document status and date:
Published: 01/01/1994

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 13. Sep. 2020
Experimental characterization of a hydrogen/argon cascaded arc plasma source

Zhou Qing, M. J. de Graaf, M. C. M. van de Sanden, El. K. Otorbaev, and D. C. Schram
Physics Department, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
(Presented on 2 September 1993)

A H₂/Ar cascaded arc plasma source has been experimentally characterized by determination of the efficiency, the electric field, and the pressure gradient of the arc. The results show that the efficiency of a H₂/Ar cascaded arc drops when the hydrogen flow rate is increased. The electron temperature in the argon cascaded arc has been derived to be in the range 9000–12 500 K. For a hydrogen arc, the mass dissociation degree of hydrogen molecules has been derived to be above 60%.

I. INTRODUCTION

The cascaded arc is an example of a wall-stabilized thermal plasma. It can be operated both as a stationary nonflowing plasma and a flowing plasma and it has already been widely used in nonequilibrium and nonideal plasma effects study, flowing atmospheric plasma study, spectroscopy and spectroscopic ellipsometry techniques, surface modification techniques, deposition of amorphous and crystalline thin films, and for an ionizing and dissociation particle source. To obtain a thorough knowledge of the cascaded arc and to optimize the design of the arc setup, it is helpful to characterize the cascaded arc experimentally.

II. POWER BALANCE OF A CASCADED ARC

The cascaded arc used in this work consists of a cathode chamber, three cathodes, an anode plate with a nozzle, and several copper cascaded plates. (Figure 1, only one cathode is shown.) The total length of the arc channel in the five plates case is 30 mm and in the ten plates case is 60 mm. The diameter of the arc channel is 4.0 mm. The cathode position is chosen to be the origin of the channel axis.

Since the cascaded arc is water cooled, in the stationary state operation, the power loss at position (i) equals the power obtained by the cooling water:

\[P_{\text{water}}(i) = \rho(T) C_{pk} \phi(i) [T_{\text{out}}(i) - T_{\text{in}}(i)], \]

where \(\rho(T) \) is the water density, \(C_{pk} \) the specific heat capacity, \(\phi(i) \) the water flow, \(T_{\text{in}}(i) \) and \(T_{\text{out}}(i) \) the water temperatures. The local efficiency at plate (i) is then

\[\eta(i) = 1 - \frac{2 \rho(T) C_{pk} \phi(i) [T_{\text{out}}(i) - T_{\text{in}}(i)]}{I_{\text{arc}}[P(i-1) - P(i+1)]}, \]

The general efficiency of the cascaded arc is then

\[\eta_{\text{c}} = 1 - \frac{\rho(T) C_{pk} \phi(\text{anode}) [T_{\text{out}}(i) - T_{\text{in}}(i)]}{I_{\text{arc}}[-V_{\text{cathode}}]}, \]

where \(I_{\text{arc}}(=V_{\text{cathode}}) \) is the total input power.

For a hydrogen arc, the power obtained by the arc plasma can be written as

\[P_{\text{plasma}} = \sum C_{j} k_j \phi_j T_j + \beta_m \phi_0 E_{\text{diss}} + 2 \alpha \phi_0 E_{\text{ioniz}}, \]

where index \(j \) reflects the particle specimen (electron, ion, atom, or molecule, etc.), \(C_{j} \) is constant, \(\beta_m \) the mass dissociation degree, \(\alpha \) the ionization degree, \(\phi_j \) the particle flow exiting the arc, \(\phi_0 \) the input flow at the entrance of the arc, \(T_j \) the particle temperature, \(E_{\text{diss}} \) and \(E_{\text{ioniz}} \) the dissociation energy and the ionization energy, respectively. It is estimated that the average ionization degree of the hydrogen plasma is at least a factor of 2–4 smaller than that of an argon plasma under the same current conditions due to shrinking of the plasma channel. The ionization degree of the cascaded argon plasma \((I_{\text{arc}}=45 \text{ A}) \) is \(\sim 5\% \) at the flow range of a few standard liter per minute. The lower limit of \(\beta_m \) can thus be estimated by setting \(\alpha=2.5\% \), and the upper limit can be estimated by setting \(\alpha=0 \).

III. ELECTRIC FIELD IN A CASCADED ARC

The electric field at position (i) in the arc is defined as

\[E(i) = \frac{j(i)}{\sigma [n_e(i), T_e(i), f_m]}, \]

where \(j(i) \) and \(n_e(i) \) are respectively the current density and the electron density at position (i).
where \(j(i) \) is the current density, \(n_e(i) \) and \(T_e(i) \) the electron density and temperature, respectively, \(J_m \) a Maxwellian velocity distribution, \(\sigma [n_e(i), T_e(i), f] \) the electrical conductivity of the plasma which according to Frost mixing rule is\(^6\)

\[
\sigma = \frac{4\pi n_e e^2}{3k_B T_e} \int_0^\infty \frac{v^4 f(v)}{v_c + v_i} dv
\]

with \(v_c \) the \(e-n \) collision frequency, \(v_i \) the \(e-i \) collision frequency. The result of this integration gives a numerical relation of \(T_e \) and \(\sigma^2 \).

IV. EXPERIMENTAL RESULTS

The general efficiency \(\eta_g \) of a pure argon arc rises almost steadily with argon flow. The arc current has only a very small influence on it (Figs. 2 and 3). In the flow range from 1.0 to 10.0 slm, \(\eta_g \) rises from 30\% to 60\%. The largest contribution to the rise of efficiency comes from the cathode region where the efficiency rises from \(\sim 20\% \) to 90\% (Fig. 2). Although the arc current has almost no influence on \(\eta_g \), it does influence the local efficiency at small current range. In the arc current range of 15–25 A, the efficiency in the cathode region rises from about 55\% to 80\% while in the middle region of the arc channel it drops from 70\% to 35\%. As a consequence, \(\eta_g \) changes only slightly. The result implicates that the high efficiency part of the cascaded arc becomes shorter at higher arc currents.

When hydrogen is added into an argon arc, the energy transfer mechanism may be changed due to the large thermal conductivity of hydrogen and the association of the hydrogen atoms in the periphery of the arc channel. Both will cause a drop of \(\eta_g \). The result shows that the main drop of \(\eta_g \) occurs even at small hydrogen fractions (Fig. 4). Above 10\% hydrogen flow component, the present hydrogen already determines the transport properties of a \(\text{H}_2/\text{Ar} \) mixture and \(\eta_g \) remains constant about 35\%. For a pure hydrogen arc with five cascaded plates, \(\eta_g \) is also \(\sim 35\% \) (Fig. 4, the dark circle marks, hydrogen flow range of 4–9 slm). The local efficiency in a 30 mm hydrogen arc behaves also similar as that in a 60 mm \(\text{H}_2/\text{Ar} \) arc (Fig. 5): it is high in the cathode region and the anode region and low in the middle region of the arc channel. This is different compared with an argon arc in which the lowest efficiency region is in the anode region.

The upstream pressure in a cascaded arc increases with increasing the gas flow or the arc current. The pressure

FIG. 2. The gas flow influence to an argon cascaded arc.

FIG. 3. The arc current influence to an argon cascaded arc.

FIG. 4. The general efficiency and the pressure in a hydrogen arc.

FIG. 5. Local efficiency of the cascaded arc.
Gradient along the arc channel is almost constant except at the anode region (Fig. 6) where the pressure gradient is a few times larger than elsewhere in the arc since the particles must be accelerated to match the sonic exit condition. For a H$_2$/Ar arc mixture, the pressure and the pressure gradient also strongly on the hydrogen flow component for constant current and total flow rate. Both pressure and pressure gradient in the arc drop with increasing hydrogen flow component due to the reduce of the plasma viscosity.

The electric field along a cascaded arc is rather homogeneous except at the cathode region and the anode region where the edge influence is large (Fig. 6). The electric field increases when injecting hydrogen into the arc. When the hydrogen component is large enough, the electric field in the cathode region becomes smaller than elsewhere in the arc. This is different compared with an argon arc in which the electric field in the cathode region is always higher.

Since the ion density in an argon arc over the channel cross section is almost flat, the channel cross-section value can be used as the arc cross section. The average electron temperature over the cross section in the argon arc is derived to be in a range of 9000–12 500 K by Frost mixing rule (Fig. 7) at our experimental conditions. Actually, the T_e is not completely homogeneous in the arc, it is slightly higher in the center and lower close to the channel wall. In the arc, T_e rises slightly along the arc channel. It is higher at the anode region than at the cathode region. In a H$_2$/Ar mixture case, the electron density at wall is much lower than at the arc center due to the strong recombination at wall. The effective cross section of the arc is smaller than the channel cross section. This is so-called channel narrowing effect or contraction. Besides this, the homogeneous temperature assumption is also violated in a H$_2$/Ar mixture due to the strong cooling effect at the arc wall. In this case, it is difficult to derive T_e by Frost mixing rule. Contrary, if T_e is known, it is possible to study the channel narrowing effect of hydrogen plasma by deriving the effective channel width of the arc.

Figure 8 shows the derived mass dissociation degree β_m of the hydrogen molecule at the exit of a cascaded arc. β_m is high at low flow range. However, at the high flow range (for the same arc current) it is lower. Figure 8 also shows the atomic hydrogen flow at the exit of a cascaded arc at an arc current of 45 A.
