Truncation error and modified Romberg extrapolation for the Filon-trapezoidal rule
Jacobs, F.J.

Published: 01/01/1975

Citation for published version (APA):
Truncation error and modified Romberg extrapolation for the Filon-trapezoidal rule

by

F. J. Jacobs

T.H.-Report 75-WSK-03

March 1975
Truncation error and modified Romberg extrapolation for the Filon-trapezoidal rule

by

F.J. Jacobs

Abstract

Two asymptotic expansions are derived for the error in the Filon-trapezoidal rule (a numerical integration method for integrals of Fourier type

\[\int_0^1 f(x) e^{i\omega x} dx \text{ with } |\omega| >> 1 \].

Classical Romberg extrapolation can be based on the first expansion. However, because of the dependence on \(\omega \) of the coefficients it is successful only in the very limit \(\theta := \omega h \to 0 \). With the second expansion a modification of Romberg extrapolation is introduced that coincides with classical Romberg for \(\theta \to 0 \), but gives improved results already for \(\theta \approx \pi \).
Introduction

Of all methods of Filon type for numerical integration of

\[I_\omega(f) := \int_0^1 f(x)e^{i\omega x}dx, \quad |\omega| >> 1, \]

the Filon-trapezoidal rule (Tuck, 1967, [1])

\[FT_{\omega,h}(f) := \]

\[= \left(\begin{array}{l l l l}
\sin(\frac{j\theta}{2})^2 h & \sum_{j=0}^{N-1} (\frac{1 + i\theta - e^{-i\theta}}{\theta^2})f_j e^{i\omega x_j} & + \left(\frac{1 - i\theta - e^{i\theta}}{\theta^2}\right)f_{j+1} e^{i\omega x_{j+1}}
\end{array}\right) \]

\[= \left(\begin{array}{l l l l}
\sin(\frac{j\theta}{2})^2 h & \sum_{j=0}^{N-1} f_j e^{i\omega x_j} & + \left(1 - \frac{\sin(\theta)}{\theta}f(x) e^{i\omega x}\right)_j^0
\end{array}\right) \]

\[(h := 1/N, x_j := jh, \theta := \omega h, \sum_{j=0}^N = \sum_{j=0}^N \text{with coefficient } \frac{1}{2} \text{ for } j = 0, N) \]

is the most simple, but it is a method of only low order accuracy:

\[R := I_\omega(f) - FT_{\omega,h}(f) = 0(h^2), \quad |\theta| \leq 2\pi, f \in C^2[0,1]. \]

To obtain more accurate results from a sequence \(FT_{\omega,h}(f) \) for decreasing \(h_m \to 0 \), we show the possibility of Romberg extrapolation based on the asymptotic expansion

\[R = \left[\frac{(m-1)/2}{k=1} \right] a_{2k}(\omega,f)h^{2k} + 0(h^m), \quad h \to 0, f \in C^m[0,1] \quad (\text{Th. 1}), \]

and of a modification of Romberg extrapolation based on

\[R = \left[\sum_{k=2}^{m-1} \beta_k(\theta)I_\omega(D^k f)h^k + 0(h^m), \quad |\theta| < 2\pi, f \in C^m[0,1] \quad (\text{Th. 2}). \]
For the sequence \(h_m := h_{m-1}/2 \) the modified Romberg extrapolation is defined by

\[
\begin{align*}
\text{FT}^{(1)}_{\omega,h}(f) & := \text{FT}_{\omega,h}(f) \\
\text{FT}^{(j)}_{\omega,h}(f) & := \text{FT}^{(j-1)}_{\omega,h}(f) + \gamma_j(\theta) \left(\text{FT}^{(j-1)}_{\omega,2h}(f) - \text{FT}^{(j-1)}_{\omega,h}(f) \right), \quad j > 1,
\end{align*}
\]

where the first two coefficients \(\gamma \) are

\[
\begin{align*}
\gamma_2(\theta) & := -\left(\frac{\theta}{2} \cotan\left(\frac{\theta}{2} \right) \right) \left(\frac{\theta}{2} \cotan\left(\frac{\theta}{2} \right) - 1 \right) / \left(\frac{\theta}{2} \right)^2 \\
\gamma_3(\theta) & := \frac{\theta \cotan(\theta)}{((\theta \cotan(\theta) - 1 + \frac{1}{3} \theta^2) / \theta^2)}.
\end{align*}
\]

Finally we demonstrate the usefulness of the modification by a closer analysis of (2) and (3), estimating the order of magnitude of the coefficients \(b_k \) in (3) (Th. 3).

Remark. \(\text{FT}^{(2)}_{\omega,h}(f) \) in (4) is the classical Filon (-Simpson) approximation to \(I_\omega(f) \) with step \(h \).

\section{The asymptotic expansions (2) and (3)}

By the method of Peano (Davis, Rabinowitz, 1967, [2]) we derive an expression for the truncation error:

\[
R = h^3 \sum_{j=0}^{N-1} \left\{ D^2 f(x_j + th) e^{i\omega(x_j + th)} K_2(\theta,t) \right\} dt
\]

with

\[
K_2(\theta,t) := (te^{-i\theta(t-1)} - (t - 1)e^{-i\theta} - 1)/\theta^2,
\]

or

\[
R = h^3 \sum_{j=0}^{N-1} e^{i\omega x_j} \int_0^1 D^2 f(x_j + th) L_2(\theta,t) dt
\]

with

\[
L_2(\theta,t) := e^{i\theta t} K_2(\theta,t) = \left(1 - e^{i\theta} + t(e^{i\theta} - 1) \right)/\theta^2.
\]
From (6) we prove:

Theorem 1 (Asymptotic expansion of R in even powers of h with \(\omega \)-dependent coefficients)

Let the coefficients \(\lambda_{2k,p} (k \geq 1, 0 \leq p \leq 2k-2) \) be defined by

\[
\lambda_{2k,p} := \frac{2(2k+1-p)}{(2k+2)^2} \sum_{q=0}^{p} \binom{2k+2}{q} B_q + \frac{2}{(2k+1)^2} \sum_{q=p+2}^{2k} \binom{2k+1}{q} B_q = \frac{2(2k+1-p)}{(2k+2)^2} \sum_{q=p+2}^{2k} \binom{2k+1}{q} B_q
\]

(8)

(\(B_q \) are the Bernoulli numbers) and \(a_{2k}(\omega,f) (k \geq 1) \) by

\[
a_{2k}(\omega,f) := (-1)^k \omega^{2k-2} \sum_{p=0}^{2k-2} \lambda_{2k,p} \int_{0}^{1} \frac{D^p D^2 f(x) e^{i\omega x}}{\omega^p} dx.
\]

(9)

Then for \(f \in C^m[0,1] \)

\[
R = \sum_{k=1}^{[m-1]/2} a_{2k}(\omega,f) h^{2k} + O(h^m), h \to 0.
\]

(10)= (2)

Proof. In (6) we write

\[
K_2(\theta,t) = \sum_{n=2}^{\infty} g_n(t)(-i\theta)^{n-2}
\]

introducing \(g_n(t) := ((t-1)t^n - (t-1)^n t)/n! \). The expansion of the polynomial \(g_n(t) \) as a sum of Bernoulli polynomials

\[
g(t) = \int_{0}^{1} g(t) dt + B_1(t)(g(1) - g(0)) + \frac{B_2(t)}{2!} (g'(1) - g'(0)) etc.
\]

is

\[
g_n(t) = -\frac{(1 + (-1)^n)}{(n+2)!} + \sum_{q=2}^{n} \frac{B_q(t)}{q!} (q-1) \frac{(1 + (-1)^{n-q})}{(n - q + 2)!}.
\]

(11)
Integrating (6) by parts \((m-2)\) times using the expansions (11),
\[
\frac{d}{dt} \frac{B_{q+1}(t)}{(q+1)!} = \frac{q}{q!} \quad \text{and} \quad B_q(1) = B_0(0) = B_q \quad (q \geq 2),
\]
we derive for \(f \in C^m[0,1]\)
\[
R = - \sum_{n=2}^{\infty} (-i\theta)^{n-2} \sum_{p=0}^{m-3} (-1)^p p^{p+2} \lambda_{n+p,p} \int_0^1 D^p \{D^2 f(x)e^{i\omega x}\} dx +
\]
\[
+ \ h^m \sum_{j=0}^{N-1} \int_0^1 D^{m-2} \{D^2 f(x)e^{i\omega x}\} |_{x_j} + t \ K_m(\theta, t) dt,
\]
with the definitions
\[
\lambda_{m,p}(t) := \sum_{q=2}^{m-p} \frac{\frac{B_{q+p}(t)}{(q+p)!}}{q!} (q - 1) \frac{(1 + (-1)^{m-p-q})}{(m-p-q+2)!},
\]
\[
\lambda_{m,p} := \lambda_{m,p}(0)
\]
and
\[
K_m(\theta, t) := (-1)^m \sum_{n=2}^{\infty} (-i\theta)^{n-2} (\lambda_{n+m-2,m-2}(t) - \lambda_{n+m-2,m-2}).
\]
Interchange of summation and integration in the derivation of (12) is allowed as
\[
\sum_{n=2}^{\infty} (-i\theta)^{n-2} \lambda_{n+p,p}(t) \quad (p \geq 0)
\]
is absolutely convergent for all \(\theta\), uniformly in \(t \in [0,1]\). This can be seen as follows:
since \(\lambda_{n+p,p}(t)\) can be written as
\[\lambda_{n+p,p}(t) = \sum_{q=2}^{n+p} \frac{B_q(t)}{q!} (q-1) \frac{(1+(-1)^{n+p-q})}{(n+p-q+2)!} - \]
\[- p \sum_{q=2}^{n+p} \frac{B_q(t)}{q!} (1+(-1)^{n+p-q}) \frac{(p+1-q)}{(n+p-q+2)!} - \sum_{q=2}^{n+p} \frac{B_q(t)}{q!} \frac{B_q(t)}{(n+p-q+2)!} (1+(-1)^{n+p-q}) , \]

or, with (11) and similar expansions of \(\tilde{g}_{n,p}(t) := (t^{n+1} - (t-1)^{n+1})/(n+1)! \), as

\[\lambda_{n+p,p}(t) = g_{n+p}(t) - \tilde{g}_{n+p}(t) + (p+1) \frac{(1+(-1)^{n+p})}{(n+p+2)!} + \]
\[+ pB_q(t) \frac{(1+(-1)^{n+p-1})}{(n+p+2)!} + \sum_{q=2}^{n+p} \frac{B_q(t)}{q!} (p+1-q) \frac{(1+(-1)^{n+p-q})}{(n+p-q+2)!} , \]

obviously \(|\lambda_{n+p,p}(t)| \leq \text{const}(p)/n! \), a sufficient condition for uniform absolute convergence of

\[\sum_{n=2}^{\infty} (-i\theta)^{n-2} \lambda_{n+p,p}(t) . \]

If in (12) we estimate the remainder with (14) it follows

\[R = - \sum_{n=2}^{\infty} (-i\theta)^{n-2} \sum_{p=0}^{m-3} (-1)^p \lambda_{n+p,p} \int_0^1 p^p \{ D^2 f(x) e^{i\omega x} \} dx + o(h^m), h \to 0 . \]

Writing \(\theta = \omega h \), interchanging summation indices and estimating terms of higher order in \(h \) than \((m-1) \) we obtain our final result

\[R = - \sum_{k=2}^{m-1} h^k (-i\omega)^{k-2} \sum_{p=0}^{k-2} \lambda_{k,p} \int_0^1 \{ D^k f(x) e^{i\omega x} \} dx + o(h^m), h \to 0, \text{ for } f \in C^m[0,1] , \]

an expansion in even powers of \(h \) because \(\lambda_{\text{odd},p} = 0 \).

From (13) one easily derives the second expression for \(\lambda_{2k,p} \) in (8) and with \(\sum_{q=0}^{k-1} (k) \frac{B_q}{q!} = 0 \) \((k \geq 2) \) the first expression, completing the proof. \(\square \)

Remark. \(\lambda_{2k,2k-2} = B_{2k}/(2k)! \). So for \(\omega = 0 \), when the Filon trapezoidal rule reduces to the trapezoidal rule for \(f \), indeed (10) reduces to the Euler-Maclaurin expansion:

\[R = - \sum_{k=1}^{[(m-1)/2]} B_{2k} (2k)! \{ \int_0^1 D^{2k} f(x) dx \} h^k + o(h^m), h \to 0, \text{ for } f \in C^m[0,1] . \]
From (7) we prove:

Theorem 2 (Asymptotic expansion of R with \(\theta \)-dependent coefficients)

Let the coefficients \(\delta_p(\theta) \) \((p \geq 2) \) be defined as

\[
\delta_p(\theta) := \left(\frac{\theta}{2} \cot(\frac{\theta}{2}) - 1 \right) - \frac{p-1}{q} B(q) \frac{\theta^q}{(q^2 - \theta^2)}/(i\theta)^p, \quad |\theta| \neq 2k\pi, \quad k = 1,2 \text{ etc.}
\]

and the coefficients \(\beta_k(\theta) \) \((k \geq 2) \) by the recurrence relation

\[
\beta_k(\theta) := -\left(\sum_{p=2}^{k-1} (-1)^p i\theta \delta_p(\theta) \delta_{k-p+1}(\theta) + (-1)^k \delta_k(\theta) \right).
\]

Then, if \(f \in C^m[0,1] \),

\[
R = \sum_{k=2}^{m-1} \beta_k(\theta) I_n(D^k f) h^k + O(h^m),
\]

for \(|\theta| \) bounded and bounded away from \(2k\pi \), \(k = 1,2 \) etc.

If \(|\theta| < 2\pi \) we have the estimate for the order term in (17)

\[
|O(h^m)| \leq \text{const.}\left\{ \frac{13/3}{2\pi(1 - (\theta/2\pi)^2)} \right\}^{m-2} \max_{x \in [0,1]} |D^m f(x)| h^m.
\]

Proof.

The first part of the proof is analogous to that of Th.2 but now we start from (7) instead of (6). We write \(L_2(\theta,t) = \sum_{n=2}^{\infty} g_n(t) \theta^{n-2} \) introducing \(g_n^*(t) := (t^n - t)/n! \) with the Bernoulli expansion

\[
g_n^*(t) = \frac{(1-n)}{2(n+1)!} + \sum_{q=2}^{n} \frac{B_q(t)}{q!(n-q+1)!}.
\]

Integrating (7) by parts \((m-2) \) times we have for \(f \in C^m[0,1] \)

\[
R = h \sum_{j=0}^{N-1} e^{j\omega x} \left[\sum_{n=2}^{\infty} (i\theta)^{n-2} \left(\sum_{p=0}^{m-3} (-1)^p h^{p+1} \mu_{n+p,p} D^{p+1} f(x) \right) x_j^{x+1}
+ h^m \int_0^1 D^m f(x) \left| x_j + \text{th} L_{m}(\theta,t) \right| dt \right].
\]
with the definitions

\[
\mu_{m,p}(t) := - \sum_{q=2}^{m-p} \frac{B_{q+p}(t)}{(q+p)!(m-p-q+1)!} = \sum_{q=0}^{p+1} \frac{B_q}{q!(m-q+1)!},
\]

\[
\mu_{m,p} := \mu_{m,p}(0)
\]

and

\[
L_m(\theta,t) := (-1)^m \sum_{n=2}^{\infty} \frac{(i\theta)^{n-2}}{n-2} \{ \mu_{n+m-2,m-2}(t) - \mu_{n+m-2,m-2} \}
\]

Interchange of summation and integration in the derivation of (20) is allowed because of uniform convergence of \(\sum_{n=2}^{\infty} \frac{(i\theta)^{n-2}}{n-2} \mu_{n+p,p}(t) \).

With \(\sum_{q=0}^{\infty} (\frac{\xi+1}{q})B_q = \frac{1}{\xi}, \xi > 0 \) we transform

\[
\sum_{n=2}^{\infty} \frac{(i\theta)^{n-2}}{n-2} \mu_{n+p,p}
\]

\[
= \frac{e^{i\theta}-1}{i\theta} \sum_{q=0}^{p+1} \frac{B_q(i\theta)^q}{q!} - \frac{1}{(i\theta)^p+3} \sum_{q=0}^{p+1} \frac{(i\theta)^{q+1}}{(q+1)!} \sum_{q=0}^{\frac{p+1}{\xi}} \frac{(\xi+1)}{q} B_q
\]

\[
= - \frac{e^{i\theta}-1}{i\theta} \delta_{p+2}(\theta).
\]

Here we have introduced

\[(21) = (15) \delta_p(\theta) := \]

\[
= \frac{\theta}{2} \cotan\left(\frac{\theta}{2}\right) - \sum_{q=2}^{p-1} \frac{B_q(i\theta)^q}{q!}/(i\theta)^p, |\theta| \neq 2k\pi, k = 1,2 \text{ etc.}
\]

\[(21^*) = \sum_{q=p}^{\infty} \frac{B_q(i\theta)^q}{q!} \quad \text{if } |\theta| < 2\pi \text{ (Abramowitz, [3], 4.3.70).}
\]

Similarly we transform
(-1)^m L_m(\theta, t)

= \sum_{n=2}^{\infty} \frac{(i\theta)^{n-2}}{(n+2)!} \left(\frac{t^{n+m-2}}{(n+m-2)!} - \sum_{q=0}^{m-1} \frac{B_q(t) - B_q}{q!(n+m-1-q)!} \right)

= \frac{1}{(i\theta)^m} \left(e^{i\theta t} \left(\frac{e^{i\theta} - 1}{i\theta} \right) \sum_{q=0}^{m-1} \frac{B_q(t) - B_q}{q!} - \frac{B_q(t) - B_q}{q!} \right)

\quad - \frac{1}{(i\theta)^m} \sum_{q=0}^{m-1} \frac{B_q(t) - B_q}{q!} \right)

and since (because of (19)) in the last sum

\frac{t^\ell}{\ell!} - \frac{t^\ell}{\ell!} \left(\frac{q}{q!} \right)^{\ell+1-q} = 0, \ell > 0.

(22) \quad = \frac{1}{(i\theta)^m} \left(e^{i\theta t} \left(\frac{e^{i\theta} - 1}{i\theta} \right) \sum_{q=0}^{m-1} \frac{B_q(t)(i\theta)^q}{q!} - \frac{e^{i\theta} - 1}{i\theta} \delta_m(\theta) \right)

or (Abramowitz, [3], 23.1.1)

(22*) \quad = \frac{e^{i\theta} - 1}{i\theta} \sum_{q=m}^{\infty} \frac{B_q(t)(i\theta)^q}{q!} \quad \text{if } |\theta| < 2\pi.

If |\theta| < 2\pi from (21*) and (22*) we have the elementary estimates (Abramowitz, [3], 23.2.13-15):

\begin{align*}
|\delta_{2p}(\theta)| & \leq \frac{10/3}{(2\pi)^{2p}(1-c)} \quad (c := (\theta/2\pi)^2)
|\delta_{2p+1}(\theta)| & \leq \frac{10/3}{(2\pi)^{2p+1}(1-c)} \quad \left| \frac{\theta}{2\pi} \right|
|L_m(\theta, t)| & \leq 2 \left| \frac{e^{i\theta} - 1}{i\theta} \right| \frac{10/3}{(2\pi)^m(1-|\theta|/(2\pi))} \leq \text{const.} \quad (2\pi)^m
\end{align*}

Substitution of (21) and (22) in (20), summation over the points of integration x_j and estimation of the remainder as O(h^m) with (22) and (22*) for |\theta| bounded results in
from (22*) and (23) we have the estimate for the order term in (24)

\[|0(h^m)| \leq \frac{\text{const.} M h^m}{(2\pi)^m}, \text{ where } M := \max_{x \in [0,1]} |D^m f(x)|. \]

From (24) by induction with respect to \(m \) we obtain our final result

\[(26) = (17) R = \sum_{k=2}^{m-1} \delta_k(\theta) I^k \omega h^k + O(h^m), f \in C^m[0,1], \]

for values of \(|\theta| \) bounded and bounded away from \(2k\pi \), \(k = 1,2, \text{ etc. with the coefficients } \delta_k(\theta) \text{ defined by the recurrence relation} \]

\[(27) = (16) \delta_k(\theta) := -\frac{1}{p=2} \sum_{k} (-1)^p i^p \delta_{k-p}(\theta) + (-1)^{k} \delta_{k}(\theta). \]

If \(|\theta| < 2\pi \) the estimate for the order term in (26)

\[|0(h^m)| \leq \frac{\text{const.}}{(2\pi)^2} \left(1 + \frac{10/3}{1-c} m^2 \right) M h^m \]

or (18) holds by induction from (23) and (25).

Remarks.

i) For \(\omega = 0 \), so \(\theta = 0 \), (17) indeed reduces to the Euler-Maclaurin expansion for the trapezoidal rule.

ii) The first coefficients \(\delta_k(\theta) \) are

\[\begin{align*}
\delta_2(\theta) &= -\delta_2(\theta) \\
\delta_3(\theta) &= i\theta \{ 2\delta_4(\theta) + \delta_2^2(\theta) \} \\
\delta_4(\theta) &= -(\delta_4(\theta) + (i\theta)^2 (\delta_2^3(\theta) + 2\delta_2^2(\theta) \delta_4(\theta))) \\
\delta_5(\theta) &= i\theta \{ \delta_6(\theta) + 2\delta_2(\theta) \delta_4(\theta) + (i\theta)^2 (\delta_2^4(\theta) + 3\delta_2^3(\theta) \delta_4(\theta) + \delta_2^2(\theta) \delta_4(\theta)) \}
\end{align*} \]

§ 2. Modified Romberg extrapolation (4)

Now we compare classical Romberg extrapolation based on (2) for successively halved intervals:
\[\tilde{\mathcal{F}}_{\omega,h}(f) := FT_{\omega,h}(f) \]

\[\tilde{\mathcal{F}}_{\omega,h}(f) := \tilde{\mathcal{F}}_{\omega,h}(f) + \{ \tilde{\mathcal{F}}_{\omega,h}(f) - \tilde{\mathcal{F}}_{\omega,h}(f) \}/(2^{j-1}-1), \quad j > 1, \]

and a modified version of Romberg extrapolation based on (3):

\[\left\{ \begin{array}{l}
\tilde{\mathcal{F}}_{\omega,h}(f) := FT_{\omega,h}(f) \\
\tilde{\mathcal{F}}_{\omega,h}(f) := \tilde{\mathcal{F}}_{\omega,h}(f) + \gamma_j(\theta)\{ \tilde{\mathcal{F}}_{\omega,h}(f) - \tilde{\mathcal{F}}_{\omega,h}(f) \}, \quad j > 1,
\end{array} \right. \]

with the coefficients

\[\gamma_j(\theta) := 1/(2^j\beta_j(j-1)(2\theta)/\beta_j(j-1) - 1), \quad j > 1 \]

\[\beta_k(1)(\theta) := \beta_k(\theta) \]

\[\beta_k(j)(\theta) := \beta_k(j-1)(\theta) + \gamma_j(\theta)\{ \beta_k(j-1)(\theta) - 2\beta_k(j-1)(2\theta) \}, \quad k > j. \]

Firstly an obvious advantage of classical Romberg is that we don't need to evaluate the complicated \(\theta \)-dependent functions \(\gamma_j(\theta) \) for every next halving of \(h \).

Secondly, we remark that both methods are asymptotically equivalent for \(\theta \to 0 \) since \(\gamma_j(\theta) \to 1/(2^{j-1}-1) \) for \(\theta \to 0 \).

So, to motivate the extra trouble of evaluating the coefficients \(\gamma_j(\theta) \) in our modification, we have to prove a substantial gain in accuracy over classical Romberg for relatively large values of \(|\theta| \). Since \(|\theta| \) must be less than 2\(\pi \) anyhow if we want regular convergence \(|R| \leq \text{const. } h^2 \) of \(FT_{\omega,h}(f) \) to \(I_{\omega}(f) \), it is sufficient to prove this higher accuracy for \(\theta \simeq \pi \).

Now the \(k \)-th term \(\alpha_{2k}(\omega,f) \) of (2) is a sum from the \(k \)-th term of the power series expansion about \(\theta = 0 \) of \(\beta_2(\theta)I_{\omega}(D^2f) \) until the first term of the expansion of \(\beta_{2k}(\theta)I_{\omega}(D^{2k}f) \) in (3). Assuming that all \(I_{\omega}(D^k f), k = 2, 3 \) etc., are of the same order of magnitude \(M \), we conclude that after elimination of \(k \) terms in (2) because of \(|\omega| \gg 1 \) the remainder is of the order of \(M \theta^2 2^k \simeq \frac{M \theta^2}{(2\pi)^2} \frac{2k}{2^k} \) and in (3) the remainder is of the order of \(|\beta_{k+1}(\theta)| M \theta^{k+1} \).
Thus, from \((\theta/2\pi)^2 \gg h\) for \(|\theta| \gg 1\), we conclude that our modification of Romberg extrapolation is an improvement of classical Romberg, if only for \(|\theta| \leq \pi\) we can bound the coefficients \(\beta_k(\theta)\) uniformly for all \(k \geq 2\). This finally we prove in Theorem 3.

Theorem 3. The coefficients \(\beta_k(\theta)\) defined by (16) are bounded uniformly for all \(k \geq 2\) and \(|\theta| \leq \pi\).

Proof. By a straightforward proof by induction we derive the following bounds:

\[
\begin{align*}
|\beta_{2m}(\theta)| &\leq \frac{1}{2\pi} \left(\frac{10/3}{2\pi(1-c)}\right)^{2m-1} \varepsilon_{2m} \tag{30} \\
|\beta_{2m+1}(\theta)| &\leq \frac{1}{2\pi} \left(\frac{10/3}{2\pi(1-c)}\right)^{2m} \frac{\theta}{2\pi} \varepsilon_{2m+1}
\end{align*}
\]

for any sequence \(\varepsilon\) satisfying the relations

\[
\begin{align*}
\varepsilon_2 &= 1 \\
\varepsilon_{2m-1} &\geq \frac{10}{9} \varepsilon_{2m-2} + \left(\frac{1-c}{10/3}\right)^{2m-3} \\
\varepsilon_{2m} &\geq \varepsilon_{2m-1} + \left(\frac{1-c}{10/3}\right)^{2m-2}, \quad m > 1.
\end{align*}
\tag{31}
\]

(The induction hypothesis is: the inequalities

\[
\begin{align*}
\varepsilon_{2m} &\geq c \sum_{p=1}^{m-1} \left(\frac{1-c}{10/3}\right)^{2p-2} \varepsilon_{2m-2p+1} + \sum_{p=1}^{m-1} \left(\frac{1-c}{10/3}\right)^{2p-1} \varepsilon_{2m-2p} \\
\varepsilon_{2m+1} &\geq \sum_{p=1}^{m} \left(\frac{1-c}{10/3}\right)^{2p-2} \varepsilon_{2m-2p+2} + \sum_{p=1}^{m} \left(\frac{1-c}{10/3}\right)^{2p-1} \varepsilon_{2m-2p+1}
\end{align*}
\]

and (30) hold for \(m\).

The sequence \(\varepsilon_{2m} := \left(\frac{14}{9}\right)^{m-1}, \varepsilon_{2m+1} := \left(\frac{14}{9}\right)^{m-0.2} (m \geq 1)\) satisfies (31).

So, obviously the coefficients \(\beta_k\) are uniformly bounded if \(\left|\frac{10/3}{2\pi(1-c)}\sqrt{\frac{1-c}{9}}\right| \leq 1\) and certainly if \(c \leq \frac{1}{4}\) or \(|\theta| \leq \pi\). \(\square\)

Remark.

From (29) the first coefficients \(\gamma_2, \gamma_3\) are calculated with result (5).
References

