Solution to Problem 64-7: An asymptotic series

de Bruijn, N.G.

Published in:
SIAM Review

DOI:
10.1137/1007121

Published: 01/01/1965

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In view of (1) and (2), we then have
\[\frac{V}{M} = \frac{1}{u} F \left(-\frac{1}{2}, \frac{1}{2}; 2; \frac{a^2}{u^2} \right). \]
Since the attractive force \(F \) equals \(-\partial V/\partial z \), the required force is then found to be given by
\[\frac{F}{M} \frac{z}{(z^2 + b^2)^{3/2}} F \left(-\frac{1}{2}, \frac{3}{2}; 2; \frac{a^2}{z^2 + b^2} \right). \]

Also solved by T. C. Anderson (Lockheed Missiles and Space Co.) in terms of elliptic functions directly from the force integral.

Problem 64-7, An Asymptotic Series, by N. G. De Bruijn (Technological University, Eindhoven, Netherlands).

Let \(\phi(x) \) be infinitely often differentiable for \(x \geq 0 \), and let
\[\int_0^\infty |\phi^{(k)}(x)| \, dx \]
be convergent for each \(k = 0, 1, 2, \cdots \). Define
\[F(t) = \sum_{n=1}^\infty n^{-k} \phi(nt), \quad t > 0. \]
Show that \(F(t) + \phi(0) \log t \) has an asymptotic development in the form of an asymptotic series \(\sum_{n=0}^\infty c_n t^n \) if \(t > 0, t \to 0 \).

Solution by the proposer.

Introducing a positive constant \(\lambda \), we put \(\phi_1(x) = \phi(x) - \phi(0)e^{-\lambda x} \). Then \(\phi_1 \) still has the properties attributed to \(\phi \), and moreover \(\phi_1(0) = 0 \). We put \(x^{-t}\phi_1(x) = \eta(x) \), and we apply the Euler-Maclaurin sum formula to \(\sum_0^{\infty} \eta(nt) \) (we can apply it to the infinite series since \(\eta^{(k)}(x) \to 0(x \to \infty) \) for each \(k \), and \(\int_0^\infty |\eta^{(k)}(x)| \cdot dx \to \infty \)):
\[\sum_1^{\infty} \eta(nt) = t^{-1} \int_0^\infty \eta(x) - \frac{1}{2} \eta(0) - \sum_{k=1}^{\infty} B_{2k} \frac{t^{2k-1} \eta^{(2k-1)}(0)}{(2k)!} \]
\[- \frac{1}{2} t^{2m} \int_0^\infty \eta^{(2m)}(x) B_{2m}(tx - [tx]) \, dx. \]
Thus we obtain the following asymptotic series for \(F(t) + \phi(0) \log t \):
\[\int_0^\infty x^{-1}(\phi(x) - \phi(0)e^{-\lambda x}) \, dx - \phi(0) \log \frac{1 - e^{-\lambda x}}{\lambda} \]
\[- \frac{1}{2} \eta(0) - \sum_{k=1}^{\infty} B_{2k} \frac{t^{2k} \eta^{(2k-1)}(0)}{(2k)!} \]
We finally want to get rid of \(\lambda \). We note that \(\int_0^\infty x^{-1}(e^{-x} - e^{-\lambda x}) \, dx = \log \lambda \) and
that the coefficients of the asymptotic development of $F(t) + \Phi(0) \log t$ should not depend on λ. We now evaluate these coefficients by taking $\lambda = 0$. Then we have $\psi^{(k)}(0) = (k + 1)\Phi^{(k+1)}(0)$, and we obtain for the asymptotic series
\[
\int_0^\infty x^{-1}(\Phi(x) - \Phi(0)e^{-x}) \, dx - \frac{1}{2} t\Phi'(0) - \sum_{k=1}^\infty \frac{B_{2k}x^{2k}\Phi^{(2k)}(0)}{(2k)(2k)!}.
\]
We remark that there is strict equality if $\Phi(x) = e^{-\lambda x}$ ($\lambda > 0$).

Also solved by L. A. Shepp (Bell Telephone Laboratories).

Problem 64-8, A Definite Integral, by P. J. Short (White Sands Missile Range).

Evaluate the integral
\[
I(x) = \int_0^x \frac{te^{-t^2}}{\sqrt{x^2 - t^2}} \, dt, \quad x > 0.
\]

The solutions of Herbert B. Rosenstock (U. S. Naval Research Laboratory), Perry Scheinok (The Hahnemann Medical College) and Sidney Spital (California State Polytechnic College) were the same and are as follows:

Changing the variable t to z by $z = \sqrt{x^2 - t^2}$, we obtain
\[
I(x) = \frac{2e^{x^2}}{\sqrt{\pi}} \int_0^x e^{-z^2} \, dz \int_0^{\sqrt{x^2 - z^2}} e^{-y^2} \, dy.
\]

Transforming to polar coordinates, we then get
\[
I(x) = \frac{2e^{x^2}}{\sqrt{\pi}} \int_0^\frac{x^2}{2} d\theta \int_0^\infty e^{-r^2} \, dr = \frac{\sqrt{\pi}}{2} (e^{x^2} - 1).
\]

Also solved by Donald E. Amos (University of Missouri), A. D. Anderson, J. B. Langworthy, and A. W. Saenz, jointly (U. S. Naval Research Laboratory), C. J. Bouwkamp (Technological University, Eindhoven, Netherlands), J. L. Brown, Jr. and H. S. Piper, Jr., jointly (Ordnance Research Laboratory), R. G. Buschman (University of Buffalo), C. Comstock, two solutions (Pennsylvania State University), C. R. De Prima (California Institute of Technology), H. E. Fettis (Wright-Patterson A. F. B.), William D. Fryer (Cornell Aeronautical Laboratory), M. Lawrence Glasser (University of Wisconsin), Eldon Hansen (Lockheed Missiles and Space Co.), Richard P. Kelisky (IBM Watson Research Center), Anthony J. Strecok (Argonne National Laboratory), Andrew H. Van Tuyl, two solutions (Naval Ordnance Laboratory), and the proposer.

Editorial Note: Most of the other solutions were obtained by either expanding out erf t in a power series and integrating termwise or else by first showing that
\[
I'(x) = x\sqrt{\pi} + 2xI(x).
\]

Fryer also notes that
\[
\int_0^x \frac{te^{-t^2}}{\sqrt{x^2 - t^2}} \, dt = \frac{\sqrt{\pi}}{2} \{1 - e^{x^2} \text{erfc} \, x\}
\]
with the limit $\sqrt{\pi/2}$ as $x \to \infty$.