Stable continuous orthonormalization: techniques for linear boundary value problems

Citation for published version (APA):

Document status and date:
Published: 01/01/1985

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Eindhoven University of Technology
Computing Centre Note 27
Stable Continuous Orthonormalization
Techniques for Linear Boundary Value Problems

P.M. van Loon R.M.M. Mattheij
Computing Centre Department of Mathematics, Catholic
Eindhoven University University Nijmegen
of Technology

November 1985.
STABLE CONTINUOUS ORTHONORMALIZATION TECHNIQUES FOR LINEAR BOUNDARY VALUE PROBLEMS.

Abstract.
An investigation is made of a hybrid method inspired by both Riccati transformations and marching algorithms employing (parts of) orthogonal matrices, both being decoupling algorithms. It is shown that this so-called continuous orthonormalization is stable and practical as well. Nevertheless, if the problem is stiff and many output points are required the method does not give much gain over, say, multiple shooting.

P.M. van Loon
Computing Centre
Eindhoven University of Technology
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands

R.M.M. Mattheij
Department of Mathematics
Catholic University Nijmegen
Toernooiveld
6525 ED NIJMEGEN
The Netherlands
1. Introduction.

Consider the ODE
\[
\frac{dx}{dt} = A(t)x + f(t), \quad t \in (0, 1),
\] (1.1)

where \(f(t) \) is an \(n \)-vector function and \(A(t) \) an \(n \times n \) matrix function, both being at least continuous. Wherever it turns out to be more practical we will write \(x \) rather than \(\frac{dx}{dt} \).

We assume that we have boundary conditions (BCs)
\[
B^0x(0) + B^1x(1) = b,
\] (1.2)

(\(B^0, B^1 \in \mathbb{R}^{n \times n} \) and \(b \in \mathbb{R}^n \)), by which the solution \(x \) of (1.1) is uniquely determined.

There exists a host of methods for obtaining numerical approximations of \(x \) satisfying (1.1) and (1.2). In this paper we are interested in two special ones, or rather a hybrid version of them, inspired by the Riccati method and the stabilized march. The former method is attractive because it is able to split (1.1) into both a stable initial value ODE and a stable terminal value ODE, by some appropriate transformation, before discretization. This gives good hopes that one may handle stiffness, which occurs when (1.1) has a large (but sharp) Lipschitz constant, like in initial value problems after discretization. The big problem with the Riccati method lies in the fact that such a transformation may not exist on the entire interval (see however [7]). The stabilized march, on the other hand, employs (parts of) orthogonal matrices, is stable indeed and moreover can be performed straightforwardly, however for a discretized problem only (cf. [12]). Since in that method the underlying discretization has to be done before transformation (or decoupling, cf. [9]), it is clear that it is unsuited for stiff problems.

It is very natural then that various authors, notably Davey [3] and Meyer [11], have tried to combine the virtues of both methods into a class of hybrid methods, to be called continuous orthonormalizations.
The main incentive to write this note is that we believe that the properties of continuous orthonormalization methods (good and bad) become more transparent when viewed as decoupling techniques. In particular this is useful to understand their stability. Their efficiency turns out to be quite a delicate problem. The crucial question here is of course what we have gained compared to other methods, in particular when stiffness problems occur. In principle one might hope to tackle stiffness problems successfully when the rotational activity of the fundamental solutions belonging to (1.1) is not large with respect to other time scales. Indeed as was shown in e.g. [9] the activity of decoupling transformations commensurates with rotational activity of these fundamental solutions. Unfortunately, for the implementation suggested in [11], stiffness does cause problems (in the sense that in the backward sweep the stepsize is dictated by the Lipschitz constant in general). We shall give an explanation for this and also indicate how to improve the situation when classical invariant imbedding is employed as well. But before that we give an overview of decoupling transformations consisting of (parts of) orthogonal matrices, both continuous and discrete, and their consequences for actual numerical algorithms. We like to remark here that there exist other blends of the Riccati method and the stabilized march; in particular we mention [8] and [13] where algorithms are given that have more robustness and efficiency than either one of the two.

This paper is built up as follows. First we describe Lyapunov equations in section 2, showing that both Riccati transformations and orthogonal transformations may be used for appropriate decoupling; we also briefly discuss the choice for the initial values. Then in section 3 we consider discrete analogues, notably multiple shooting and marching techniques (as one might view the algorithm in [11]). Finally we give an instructive numerical example in section 4 to illustrate the foregoing analysis.
2. **Transformations of the ODE.**

As is well-known, transformation of the dependent variable x in (1.1) by a linear nonsingular (time-dependent) transformation T leads to a kinematically similar system ([2], p. 38). For the variable $y := T^{-1}x$ we obtain ([9])

$$
\dot{y} = \tilde{A}(t)y + \tilde{f}(t), \quad t \in (0, 1), \quad (2.1)
$$

subject to the BCs

$$
\tilde{B}^0 y(0) + \tilde{B}^1 y(1) = b, \quad (2.2)
$$

where

$$
\tilde{A}(t) = T^{-1}(t)A(t)T(t) - T^{-1}(t)f(t), \quad (2.3a)
$$
$$
\tilde{f}(t) = T^{-1}(t)f(t), \quad (2.3b)
$$

and

$$
\tilde{B}^0 = B^0 T(0), \quad \tilde{B}^1 = B^1 T(1). \quad (2.3c)
$$

Equation (2.3a) is often written in the form

$$
\dot{T} = A(t)T - T\tilde{A}(t). \quad (2.4)
$$

Hence, (1.1) is transformed into (2.1) with prescribed \tilde{A} by a so-called **Lyapunov equation** for T.

Let Y be a fundamental solution corresponding to (2.1), i.e.,

$$
\dot{Y} = \tilde{A}(t)Y, \quad Y(0) = I_n. \quad (2.5)
$$

Then a fundamental solution for the original system (1.1) is obtained by

$$
X = TY. \quad (2.6)
$$
As was shown in [9] many numerical methods for solving BVPs utilize such a transformation T (or an analogue in the discrete case) that \tilde{A} has a decoupled form, say $\tilde{A}(t)$ is (block) upper triangular for all $t \in (0, 1)$.

Under very general - and often prevailing - circumstances this decoupling naturally induces a splitting of the dynamics into a part that is stable for increasing time and a complementary one that is stable for decreasing time. (For the existence of such a dichotomy and its relation to well-conditioning we may refer to [6]).

More specifically there then exists a partitioning of vectors and matrices

$$
y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}^{k}_{n-k} \quad \text{and} \quad \tilde{A} = \begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{pmatrix}^{k}_{n-k}
$$

such that (2.1) can be written as

$$
\begin{align*}
\dot{y}_1 &= \tilde{A}_{11}(t)y_1 + \tilde{A}_{12}(t)y_2 + \tilde{f}_1(t) \\
\dot{y}_2 &= \tilde{A}_{22}(t)y_2 + \tilde{f}_2(t),
\end{align*}
$$

$t \in (0, 1)$.

By a correct decoupling (2.8b) will be stable in forward direction and (2.8a) in backward direction. Using the invariant imbedding technique, cf. [8], all integrations can even be performed stably in forward direction.

Realizing that (2.4) is actually not an ODE for T as such but rather an equation for both the unknowns T and \tilde{A} simultaneously, we see that we have n^2 degrees of freedom for $2n^2$ variables. Hence, there is a trade-off between requirements imposed on (the form of) \tilde{A} and T. Below we shall consider some special choices for T (and \tilde{A}).
2.1. Riccati transformations.

By prescribing \tilde{A} to be block upper triangular, i.e. setting
$\tilde{A}_{21} \equiv 0$, we may hope that T can be prescribed to have the special
form
\[
T = \begin{bmatrix}
I_k & 0 \\
R & I_{n-k}
\end{bmatrix}.
\] (2.9)

Let us assume for the moment such a T exists, then this is the
well-known Riccati transformation (cf. [8], [9]).

The matrix R satisfies
\[
R = A_{21}(t) + A_{22}(t)R - RA_{11}(t) - RA_{12}(t)R,
\] (2.10)

(being a Riccati equation for R). It can simply be checked that in
this case we have
\[
\tilde{A} = \begin{bmatrix}
A_{11} + A_{12} R & A_{12} \\
0 & A_{22} - RA_{12}
\end{bmatrix}
\] (2.11)

and that Y (see (2.5)) has such a block upper triangular form as
well. Hence, $X := TY$ is a fundamental solution of (1.1) with
$X(0) = T(0)$.

From this relation we may conclude that
- By (2.9), (2.10) and (2.5) a block LU-decomposition of X is
 implicitly given.
- The first k columns of $T(t)$ span the same subspace in \mathbb{R}^n as the
 first k columns of $X(t)$. To obtain a correctly decoupled system
 (2.8) these columns should represent (all) solutions of (1.1)
 which are not significantly growing for decreasing t (see [9]).
- $R(t) = X_{21}(t)X_{11}^{-1}(t)$. Hence, a solution of (2.10) exists as long
 as X_{11}, the left $k \times k$ upper block of X, is invertible. One might
 therefore expect, from analogy with matrix decomposition
 techniques, that some kind of permutation may be necessary (cf.
 pivoting) when proceeding from 0 to 1; this question has been
 investigated in [7].
2.2. Orthogonal transformations.

A decomposition that does not need pivoting is the factorization of a matrix into an orthogonal and a (block) upper triangular matrix. If we would require $T(t)$ to be orthonormal, for all t, the process is called continuous orthonormalization ([1]) and we trivially have

$$\mathbf{T}'\mathbf{T} + \mathbf{T}'\mathbf{T} = 0 \quad (2.12)$$

(i.e. $\mathbf{T}'\mathbf{T}$ is skewsymmetric). This reduces the number of degrees of freedom to $\frac{1}{2}n(n-1)$, which is, as will be shown, just sufficient to make \tilde{A} an upper triangular matrix. Hence, we have a unique solution of (2.4) (with respect to the (orthogonal) initial value $T(0)$) subject to the conditions (2.12) and \tilde{A} upper triangular.

A possible construction is as follows. Let $C \in \mathbb{R}^{n \times n}$ be decomposed in

$$C = \mathbf{U}' + D + V \quad (2.13)$$

where U and V are strictly upper triangular matrices and D is a diagonal matrix. Define the operator ϕ by

$$\phi(C) = U + D + V. \quad (2.14)$$

Note that $\phi(C)$ is always an upper triangular matrix. We now have

Property 2.15.

Transformation of the system (1.1) by T, with $T(t)$ orthonormal, for all t, leads to an upper triangular system if and only if \tilde{A}, defined by (2.3a), satisfies $\tilde{A} = \phi(T'AT)$ (ϕ as defined by (2.13) and (2.14)).

Proof.

By (2.3a) and (2.12) we have $\phi(\tilde{A}) = \phi(T'AT)$. Moreover, \tilde{A} is upper triangular iff $\tilde{A} = \phi(\tilde{A})$. □
Let $T = \begin{bmatrix} T_1 & T_2 \\ n & n-k \end{bmatrix}$.

To make \tilde{A} only a block upper triangular matrix we need the relation (see 2.3a)

$$0 = \tilde{A}_{21} = T_2^T(A T_1 - T_1).$$

Note that this implies

$$T_1 = A T_1 - T_1 C_{11},$$

where $C_{11} \in \mathbb{R}^{k \times k}$ (time-dependent). Furthermore, by the orthonormality condition for T_1,

$$0 = T_1^T T_1 + T_1^T T_1.$$

So

$$C_{11} + C_{11}^T = T_1^T(A + A^T) T_1$$

(2.17)

(cf. [4]).

In the same way we deduce from (2.12)

$$T_2 = -A^T T_2 + T_2 C_{22},$$

where $C_{22} \in \mathbb{R}^{(n-k) \times (n-k)}$ must satisfy

$$C_{22} + C_{22}^T = T_2^T(A + A^T) T_2.$$ (2.19)

For \tilde{A} we thus obtain the matrix

$$\tilde{A} = \begin{bmatrix} C_{11} & T_1^T (A + A^T) T_2 \\ 0 & C_{22} \end{bmatrix}.$$ (2.20)
Various choices for C_{11} and C_{22} are possible. For instance:

1° $C_{11} = T_1^T A T_1$ (i.e. $T_1^T T_1 = 0$) \hspace{1cm} (2.21a)

(cf. [3], [11]) and

$C_{22} = T_2^T A T_2$ (i.e. $T_2^T T_2 = 0$). \hspace{1cm} (2.21b)

2° C_{11} and C_{22} symmetric (cf. [2]):

$C_{11} = \frac{1}{2} T_1^T (A + A^T) T_1$ \hspace{1cm} (2.22a)

$C_{22} = \frac{1}{2} T_2^T (A + A^T) T_2$ \hspace{1cm} (2.22b)

3° C_{11} and C_{22} upper triangular:

$C_{11} = \phi(T_1^T A T_1)$ \hspace{1cm} (2.23a)

$C_{22} = \phi(T_2^T A T_2)$ \hspace{1cm} (2.23b)

(see property 2.15).

We do not have a preference for any choice, although the last one may be slightly more efficient for computational purposes, but the first one more stable (cf. property 2.20). The following result applies to all.

Property 2.24.

A sufficient condition for T_1 to be an asymptotically stable solution of (2.16) is

$$\lambda_{\min}(C_{11} + C_{11}^T) = \lambda_{\min}(T_1^T (A + A^T) T_1) > 0, \text{ for all } t. \text{ For } T_2 \text{ to be an asymptotically stable solution of (2.18) it is sufficient that}$$

$$\lambda_{\max}(C_{22} + C_{22}^T) = \lambda_{\max}(T_2^T (A + A^T) T_2) < 0.$$
Proof.
The matrix $Z := I_n - T^T$, considered as a function of t, satisfies the differential equation

$$z = \begin{bmatrix} -C_{11}^T & 0 \\ 0 & C_{22} \end{bmatrix} Z + Z \begin{bmatrix} -C_{11} & 0 \\ 0 & C_{22}^T \end{bmatrix},$$

(2.25)
even if $z(0) \neq 0$. From this ODE the required result follows in a straightforward manner.

In favour of (2.21) is the following

Property 2.26.

By the choice $C_{11} = T_1^T A T_1$ the quantity $\|T_1(t)\|$ is minimal for any t (where we assume $\|\|$ to be the Frobenius-norm or the 2-norm).

The equivalent is true for $C_{22} = T_2^T A T_2$ and $\|T_2(t)\|$.

Proof.

This property directly follows from Th. 8.1-10 of [5], which is also valid for the 2-norm and for nonsymmetric A.

Remark 2.27.

For numerical purposes it seems worthwhile to change in (2.16) the matrix C_{11} into $(T_1^T T_1)^{-1} C_{11}$, since then the relation $\frac{d}{dt}(T_1^T T_1) = 0$ (cf. (2.12)) holds, even if T_1 is not exactly orthonormal. A similar update for C_{22} can be given.

In [3] and [11] it is suggested that we may restrict ourselves to the update $\{\text{diag } (T_1^T T_1)^{-1} C_{11}\}$, where $\text{diag } (T_1^T T_1)$ stands for the diagonal matrix containing the diagonal elements of $T_1^T T_1$. We believe that this correction may in general be sufficient, but even this will often be superfluous (see (2.25)).
2.3. Initial values.

So far we have not discussed how to find a suitable initial value \(T(0) \) for \((2.4) \). There are some fairly generally applicable techniques for this (cf. \cite{8}, \cite{10}, \cite{12}). If the BCs are separated there is a natural choice for \(T(0) \), which moreover economizes on computational labour (see next section). Assume the BCs are given by

\[
\begin{align*}
\begin{bmatrix} B_{21}^0 & B_{22}^0 \end{bmatrix} x(0) &= b_2 \\
\begin{bmatrix} B_{11}^1 & B_{12}^1 \end{bmatrix} x(1) &= b_1.
\end{align*}
\]

For a well-conditioned problem it is known (cf. \cite{9}) that a continuous transformation \(T \) for which \(\|TT^{-1}\| \) is not large and

\[
\begin{bmatrix} B_{21}^0 & B_{22}^0 \end{bmatrix} T(0) = \begin{bmatrix} 0 & V_{22}^0 \end{bmatrix},
\]

(\(V_{22}^0 \in \mathbb{R}^{(n-k)\times(n-k)} \) is non-singular by the well-posedness), implies stability of \((2.8) \) in the indicated directions.

The importance of the boundedness condition on \(\|TT^{-1}\| \) is illustrated by the next Example: consider the BVP

\[
\begin{bmatrix} -10 & 0 \\ 20 & 10 \end{bmatrix} x,
\]

subject to the BCs

\(x_2(0) = 0 \) and \(x_1(1) + x_2(1) = 1. \)

This is, as one may easily show, a well-conditioned BVP. The Riccati transformation corresponding to \((2.9) \) is

\[
T(t) = \begin{bmatrix} 1 & 0 \\ e^{20t-1} & 1 \end{bmatrix}
\]

and
\[\tilde{A}(t) = \begin{bmatrix} -10 & 0 \\ 0 & 10 \end{bmatrix}. \]

Hence, no correct decoupling has taken place. (In fact there is no decoupling of increasing and decreasing solutions since both columns of \(T \) describe directions of growing solutions).

This example also illustrates that the stability of (2.8) should be global, not local. Let \(z(t) = (e^{-10t}, e^{10t} - e^{10t} T) \). Then for an orthogonal \(T \) we have

\[T_1(t) = z/\|z\|_2 \quad \text{and} \quad C_{11}(t) = (10e^{20t} - 20e^{-20t})/\|z\|_2^2, \]

which moves rapidly from -10 to +10 as \(t \) goes from 0 to 1. This shows moreover that the differential equation for \(T_1 \) (and \(T_2 \)) may be stiff. By theorem 3.14 of [9] we see that the choice (2.29), with \(T \) orthonormal, gives a correct decoupling of the increasing and decreasing modes.

For more general BCs (2.29) is not useful. However, theoretically we know that for any dichotomic system separated BCs exist such that the resulting BVP is well-conditioned ([6]). The construction of such separated BCs implicitly employs a fundamental solution, which is yet to be computed. Hence, this result is not directly applicable.

However, in general, we may still find a reasonable starting guess using the Schur factorization: if \(Q \) is an orthogonal matrix, such that \(Q^T A(0) Q \) is (quasi) upper triangular with ordered eigenvalues (cf. [8]), then arguments related to the ones used in subspace iteration (including the QR algorithm), make it very likely that this choice for \(Q \) induces the appropriate decoupling.
3. Discrete analogues.

In section 2 we have indicated ways to transform the system (1.1) into a special form. Typically such transformation methods may be seen as continuous analogues of multiple shooting methods (cf. [1], [7]), to be discussed next.

3.1. Multiple shooting.

Suppose (0, 1) is divided into subintervals \((t_i, t_{i+1})\), \(i = 0, \ldots, m-1\), where \(t_0 = 0\) and \(t_m = 1\). On each such subinterval let \(F_i(t)\) indicate a fundamental solution and \(p_i(t)\) a particular solution of (1.1). Then we have a sequence of vectors \(v^i\) for which

\[
F^{i-1}_i(t_i)v^{i-1} + p^{i-1}_i(t_i) = x(t_i) = F^i_i(t_i)v^i + p_i(t_i), \quad (i = 1, \ldots, m).
\]

(3.1)

This leads to the one-step recursion

\[
v^i = (F^i_i(t_i))^{-1}[F^{i-1}_i(t_i)v^{i-1} + p^{i-1}_i(t_i) - p_i(t_i)], \quad (3.2)
\]

which is, together with the BCs,

\[
0 F^0(t_0)v^0 + 0 F^m(t_m)v^m = b - B F^0(t_0) - B p(t_m)
\]

a discrete analogue of (1.1).

By introducing a sequence of (time-independent) discrete Lyapunov transformations \(\{T_i\}_{i=0}^m\) we can transform (3.2) into a one-step recursion with incremental matrices of a special form. Defining

\[
X^i := [F^{i+1}(t_{i+1})]^{-1}F^i(t_{i+1})
\]

this leads via

\[
v^{i+1} = (T^{i+1})^{-1}X^i v^i,
\]

\[
\bar{v}^i = (T^i)^{-1}v^i
\]
to the recursion

\[\gamma_{i-1} = \gamma_i - \gamma_i^l + \left(F_i^l(t_i) T_i^l \right)^{-1} (p_i^l(t_i) - p_i(t_i)). \]

For every kind of transformation discussed in section 2 there is a discrete counterpart \(T_i^l = 0 \). For instance: if all \(T_i^l \) are orthogonal and such that \(Y_i^l \) is upper triangular then \(T_i^l = T(t_i) \), where \(T \) is the solution of (2.4) with \(\tilde{A} = \phi(T^T A T) \) (cf. Property 2.15), subject to \(T(0) = T^0 \). Moreover, \(Y_i^l \) is equal to \(Y(t_{i+1}) Y_i^l(t_i) \) (see (2.5)).

3.2. Marching techniques.

The above remarks are also true when the BCs are separated. Assume the BCs are given by

\[n-k \begin{bmatrix} B_{21}^0 & B_{22}^0 \end{bmatrix} x(0) = b_2 \]
\[k \begin{bmatrix} B_{11}^1 & B_{12}^1 \end{bmatrix} x(1) = b_1. \]

Then we need to compute just a part of a fundamental solution (marching technique, cf. [12]). Let \(p \) be a particular solution of (1.1) satisfying

\[\begin{bmatrix} B_{21}^0 & B_{22}^0 \end{bmatrix} p(0) = b_2, \]

and \(X \) a fundamental solution with

\[\begin{bmatrix} B_{21}^0 & B_{22}^0 \end{bmatrix} X(0) = [0 \; \ast]. \]

Any solution of (1.1) can now be written as

\[x(t) = \begin{bmatrix} X_{11}(t) & X_{12}(t) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} p_1(t) \\ p_2(t) \end{bmatrix}, \quad t \in (0, 1). \]

By the special choice of \(p(0) \) and \(X(0) \) we obtain \(c_2 = 0 \). Hence

\[x(t) = \begin{bmatrix} X_{11}(t) \\ X_{21}(t) \end{bmatrix} c_1 + \begin{bmatrix} p_1(t) \\ p_2(t) \end{bmatrix}, \quad t \in (0, 1), \]

and only \(X_1 \) (the first \(k \) columns of \(X \)) has to be computed.
If the continuous transformation T is such that $\tilde{A}_{21} \equiv 0$ (cf. (2.3a)) and $T_1(0) = X_1(0)$, then $X_1 = T_1Y_{11}$, where Y_{11} is the solution of

$$Y_{11} = \tilde{A}_{11}(t)Y_{11}, \quad Y_{11}(0) = I_k$$

(see (2.5)).

Observe that the computation of a particular solution still includes the original stability problem. The transformation $y := T^{-1}x$ will not help us much since the coefficients in the ODE

$$\dot{y}_2 = \tilde{A}_{22}(t)y_2 + \tilde{T}_2(t), \quad t \in (0, 1),$$

are depending on T_2 which is unknown, except for the Riccati case.

One possibility to solve this problem is to define $z := (I - T_1T_1^T)p$ and λ by $x = T_1\lambda + z$ (cf. [4], [11]). One can show that z is the solution of

$$\dot{z} = [I - T_1(t)T_1^T(t)](A(t)z + f(t)) - T_1(t)T_1^T(t)A^T(t)z, \quad (3.4a)$$

$t \in (0, 1)$, subject to

$$\begin{bmatrix} T_1^T(0) \\ 0 \\ 0 \\ b_{21} \\ b_{22} \end{bmatrix} z(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad (3.4b)$$

and λ the solution of

$$\dot{\lambda} = C_{11}(t)\lambda + T_1^T(t)((A^T(t) + A(t))z(t) + f(t)), \quad (3.5a)$$

$t \in (0, 1)$, where the value of $\lambda(1)$ is determined by the relation

$$[b_{11}^1 \quad b_{12}^1](T_1(1)\lambda(1) + z(1)) = b_1. \quad (3.5b)$$

As one can see, solving (3.5) will be a tedious matter, since λ has to be computed in a backward sweep. For this reason Meyer ([11]) suggests to solve (3.4) and to determine $x(1)$ as in (3.5b).
Hereafter the solution is computed by solving the terminal value problem

\[
\begin{cases}
\dot{x} = A(t)x + f(t), & t \in (0, 1) \\
x(1) \text{ known}
\end{cases}
\] (3.6)

To control the inherent error the solution is projected into the solution manifold spanned by \(z \) and the columns of \(T_1 \), at a priori determined points. By this projection the error is not directly damped out, but its direction is such that by further integration it initially will decrease.

Since most of the stability problems are still present in (3.6) (which may lead to a very large number of projections) it seems better to use an invariant imbedding formulation. Let \(\{t_i\} \) be the points where output is required and define \(R_{i11}^i \) and \(g_i \) \((i = 0, \ldots, m)\) by the relation

\[\lambda(t_i) = R_{111}^i(t)\lambda(t) + g_i^1(t), \quad t \in (t_i, t_{i+1}). \]

Then for \(t \in (t_i, t_{i+1}) \) we obtain the ODEs

\[
\begin{aligned}
\dot{R}_{111}^i &= -R_{111}^i C_{111}(t), & R_{111}^i(t_1) &= I_k \\
\end{aligned}
\] (3.7)

and

\[
\begin{cases}
\dot{g}^i = -R_{111}^i T_1^T(t)((A^T(t) + A(t))z(t) + f(t)) \\
g_i^i(t_1) = 0
\end{cases}
\] (3.8)

Now all ODEs are stable and can be solved from left to right. Especially for stiff problems with just a few output points this formulation may be useful.
4. **Example.**

The following example is very simple but illustrates quite nice the features of the various methods.

Let x satisfy

$$
\begin{pmatrix}
x_1' \\
x_2'
\end{pmatrix} = \omega
\begin{bmatrix}
-1 & 0 \\
2 & -1
\end{bmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}, \quad t \in (0, 1),
$$

(4.1a)

subject to

$$x_2(0) = 0 \text{ and } x_1(1) + x_2(1) = 1. \quad (4.1b)$$

(exact solution: $x(t) = (e^{-\omega(t+1)}, e^{\omega(t-1)} - e^{-\omega(t+1)})^T$).

Observe that in this example T_1 is one-dimensional, so C_{11} of (2.16) is unique.

The performance of continuous orthonormalization combined with the backward sweep (3.6) is hard to check, since there is no adaptive strategy for choosing the projection points. In this example solutions are in both directions growing like $e^{\omega t}$.

Assume T_1 is determined with an accuracy δ and x is to be determined within a prescribed tolerance ε. To control the error the distance Δt between two projection points must then satisfy the relation

$$\delta \varepsilon e^{\omega \Delta t} < \varepsilon, \quad (4.2)$$

so $\Delta t < \frac{\ln \delta}{\omega}$. Although this restriction looks quite disastrous, it is less dramatic in practice since the error in T_1 will mainly be in the direction of T_1 itself. Not counting the attempts with too many and/or too few projection points we obtained the following results:
by (3.10) expected number of projection points

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>execution time in sec.</th>
<th>number of projection points</th>
<th>by (3.10) expected number of projection points</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.49</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>(10^3)</td>
<td>1.35</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>(10^5)</td>
<td>22.39</td>
<td>100</td>
<td>7250</td>
</tr>
</tbody>
</table>

Table 1: Results on the Burroughs B7900 of the Eindhoven University of Technology for solving (4.1) with (2.16) and (3.6). As integrator the Algol-procedure MULTISTEP is used, which is a GEAR-like code. Accuracy: \(10^{-6} \).

The results of continuous orthonormalization combined with invariant imbedding are clearer, more transparent. It table 2 the execution times are shown for various values of \(\omega \). With II4 the output points where chosen as \(t_i = i/4 \) (\(i = 0, \ldots, 4 \)) and with II10 as \(t_i = i/10 \) (\(i = 0, \ldots, 10 \)).

<table>
<thead>
<tr>
<th>(\omega)</th>
<th>II4</th>
<th>II10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>0.39</td>
<td>0.56</td>
</tr>
<tr>
<td>(10^3)</td>
<td>1.18</td>
<td>3.05</td>
</tr>
<tr>
<td>(10^5)</td>
<td>1.35</td>
<td>3.34</td>
</tr>
<tr>
<td>(10^7)</td>
<td>1.30</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Table 2: Execution times in sec. on the Burroughs B7900 of the Eindhoven University of Technology for solving (4.1) with (2.16) and (3.7). Integrator: MULTISTEP. Accuracy: \(10^{-6} \).

These numbers show that the stiffness of the problem has only a minor influence on the performance of the code (the results became even more accurate as \(\omega \) increased). This is just what we would expect since, after an initial layer, the stepsize is mainly determined by the smoothness of the outer solution.
5. **Conclusion.**

After the foregoing analysis and the simple example we believe that continuous transformations may be an alternative for multiple shooting methods. Especially when in both directions solutions are growing very fast the merits of an adaptive stiff integrator may be used to gain a lot of computation time. How much can be gained strongly depends on the rotational activity of the dominant solutions. If this activity is mainly within the dominant solution space a Riccati transformation or formulation (2.21) may be used. The resulting ODEs will then be stiff. If, however, the dominant solution space itself is rapidly rotating then the Riccati transformation will need too many restarts and hence is not advisable. The solution of (2.16) will be a rapidly oscillating function and therefore (2.16) is hard to solve. However, for these kinds of problems any solution method will meet difficulties.

The backward sweep (3.6) is not recommendable, since in the non-stiff case multiple shooting will do and in the stiff case it is much more expensive than the invariant imbedding formulation, since too many projections will be necessary. Moreover, the projection points cannot be determined adaptively.
References.

