Mass spectra of liquid crystals. IV. Diphenylethyne derivatives (nematic tolans)

Citation for published version (APA):

DOI:
10.1002/oms.1210260305

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 14. Sep. 2023
Mass Spectra of Liquid Crystals

IV†—Diphenylethyne Derivatives (Nematic Tolans)

P. A. Leclercq‡
Laboratory of Instrumental Analysis, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

H. M. van den Bogaert
Philips Research Laboratories, PO Box 80000, 5600 JA Eindhoven, The Netherlands

INTRODUCTION

Twisted nematic liquid crystal displays (TN-LCDs) contain carefully balanced mixtures of liquid crystals. Combinations of different dielectric, optical, elastic, viscous and thermal material properties are required to achieve a good overall performance of an LCD for specific applications. Diphenylethyne and cyclohexylphenylethylnylbenzene derivatives are nematic compounds of low viscosity and high optical anisotropy (birefringence). Because of these properties, these compounds are frequently used as components of modern mixtures for quick-response TN-LCDs. To our knowledge, mass spectra of these classes of compounds have not been reported.

EXPERIMENTAL

Gas chromatographic/mass spectrometric analyses were carried out under conditions reported in Part I.

RESULTS AND DISCUSSION

The electron impact (EI) mass spectra of twelve diphenylethyne derivatives 1–12 (class I) are presented in Table 1, and the spectrum of 4-ethoxy-2-methyl-4'-pentyltolan (12) is depicted in Fig. 1.

Prior to discussing these spectra, it should be stressed that the structural formulae of fragment ions presented in this series are not substantiated by high-resolution data. However, the elemental fragment ion compositions are in agreement with the observed shifts of the m/z values of the ions from compounds with various substituents.

All spectra contain abundant molecular ions. In the spectra of the hydrocarbons 1–3, the base peaks at m/z (190 + R'), corresponding to [R'C,H,CECC,H,CH2]+, account for 30% of the total ion currents. The remaining peaks of importance in these spectra are found at m/z (190 + R'), 204, 202 and 189, corresponding to [H2CC6H4C=CCH3R2]+, [H2CC6H4C=C C6H4CH3]+, m/z (204 – H2) and m/z (204 – 'CH3), respectively. The peaks at m/z 217 and m/z 102 correspond to [H2CC6H4C=CCH3CH=CH2]+ and [C6H5 C=C(CH3)]+, respectively. The other peaks have intensities of less than 6%.

The spectra of the alkoxy derivatives 4–12 show base peaks at m/z (206 + R3) from [H2CC6H4C=CCH3R30H]+ whenever the alkoxy group is larger than methoxy. The methoxy derivatives 4 and 5 give base peaks at m/z 221, corresponding to [H2CC6H4C=CCH3OMe] +. Apart from peaks at m/z (192 + R3 + R'), corresponding to [R'1C6H4C=CC6H3R30OH]++, compounds 6–12 also yield peaks at m/z (191 + R3 + R'). The latter peaks are even 50% higher than the former in the spectra of the ethoxy compounds 6–8, 11 and 12, but amount to only a few percent in the spectra of 9 and 10 in the spectrum of compound 6 this peak coincides with that of [H2CC6H4C=CCH3OEt]+ at m/z 235. The ion at m/z (205 + R3) is only found in the spectra of the methoxy derivatives 4 and 5 and of the pentyl compounds 8 and 12. Its genesis is not easily rationalized.

Odd-electron CC,H,C=CC,H, ions appear at m/z 178 in all spectra. In addition to the ions listed in Table 1, a small but characteristic peak is found in the spectra of compounds 11 and 12 at m/z 131 (4%), corresponding to [C=CCH3(CH3)OH]++ These compounds, with R2 = Me, give more intense peaks at m/z

Received 30 August 1990
Revised manuscript received 6 November 1990
Accepted 12 November 1990
Table 1. Relative abundances (%) of characteristic ions in the EI mass spectra of diphenylethyne derivatives (class I)*

<table>
<thead>
<tr>
<th>No.</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>RM & M-"</th>
<th>m/z 175</th>
<th>m/z 174</th>
<th>m/z 189</th>
<th>m/z 189</th>
<th>m/z 188</th>
<th>m/z 202</th>
<th>m/z 191</th>
<th>m/z 190</th>
<th>m/z 189</th>
<th>m/z 178</th>
<th>m/z 176</th>
<th>m/z 165</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Et</td>
<td>Pr</td>
<td>H</td>
<td>1 264</td>
<td>100</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Et</td>
<td>Bu</td>
<td>H</td>
<td>262</td>
<td>450</td>
<td>100</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>16</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>Pe</td>
<td>H</td>
<td>276</td>
<td>390</td>
<td>100</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Bu</td>
<td>OMe</td>
<td>H</td>
<td>264</td>
<td>42</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Pe</td>
<td>OMe</td>
<td>H</td>
<td>276</td>
<td>36</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>Pr</td>
<td>OEt</td>
<td>H</td>
<td>264</td>
<td>70</td>
<td>20</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>100</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>11</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Bu</td>
<td>OEt</td>
<td>H</td>
<td>278</td>
<td>67</td>
<td>9</td>
<td>13</td>
<td>60</td>
<td>100</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Pe</td>
<td>OEt</td>
<td>H</td>
<td>292</td>
<td>62</td>
<td>6</td>
<td>9</td>
<td>67</td>
<td>100</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>Pr</td>
<td>OPe</td>
<td>H</td>
<td>306</td>
<td>32</td>
<td>49</td>
<td>5</td>
<td>1</td>
<td>100</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>Pr</td>
<td>OHp</td>
<td>H</td>
<td>334</td>
<td>32</td>
<td>61</td>
<td>7</td>
<td>1</td>
<td>100</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>Bu</td>
<td>OEt</td>
<td>Me</td>
<td>292</td>
<td>99</td>
<td>14</td>
<td>20</td>
<td>69</td>
<td>100</td>
<td>14</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Pe</td>
<td>OEt</td>
<td>Me</td>
<td>306</td>
<td>99</td>
<td>11</td>
<td>13</td>
<td>86</td>
<td>100</td>
<td>15</td>
<td>17</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>33</td>
<td>11</td>
</tr>
</tbody>
</table>

*a Me = methyl; Et = ethyl; Pr = n-propyl; Bu = n-butyl; Pe = n-pentyl; Hp = n-heptyl.

*b m/z of base peak.

*c A = 14 (CH₂ COMPOUNDS) or 17 (OH & 12).

*d At 1 u lower in mass.

*e Coincident with m/z (189 + R² + R³).

115, 165, 189–191 and 202 than the alkoxy compounds with R³ = H. Generally, the alkoxy derivatives yield more abundant fragment ions than the alkyl derivatives.

The EI mass spectra of seven cyclohexylphenylethynylbenzene derivatives 13–19 (class II) are condensed in Table 2. Although these spectra show more abundant fragment ions than those of the diphenylethylene derivatives, the molecular ion is the base peak in all instances. As with all cyclohexylphenylethynyl derivatives, the major fragment ions are formed by fragmentation of the cyclohexyl ring. The resulting peaks are found at m/z (202 + R³ + R²) and at ±13 u, corresponding to the odd-electron vinyl-type ions [H₂C=CHC₆H₄C≡CC₆H₃R³R₂]⁺, the (iso)propenyl ions [H₂C=C(CH₂)C₆H₄CECC₆H₃R³R₂]⁺, and the tropenylium- or benzyl-type ions [H₂CC₆H₄C≡CC₆H₃R³R₂]⁺.

For compounds with R² > Me, the odd-electron ion [H₂CC₆H₄C≡CC₆H₃R₂]⁺ at m/z 204 is also formed. These compounds (14–17) also give peaks at m/z (272 + R²), corresponding with the ions [R¹C₆H₄C≡CC₆H₃R₂]⁺. Diphenylethylene-contain-

Figure 1. 70 eV EI mass spectrum of 4-ethoxy-2-methyl-1-[(4-pentylphenyl)ethynyl]benzene (12).
Table 2. Relative abundances (%) of characteristic ions in the EI mass spectra of cyclobexylphenylethynylbenzene derivatives (class II)*

<table>
<thead>
<tr>
<th>No.</th>
<th>R'</th>
<th>R''</th>
<th>R'''</th>
<th>RMM</th>
<th>M+</th>
<th>m/z 271 (+R3)</th>
<th>m/z 216 (+R3)</th>
<th>m/z 215 (+R3)</th>
<th>m/z 202 (+R3)</th>
<th>m/z 189 (+R3)</th>
<th>m/z 229 (+R3)</th>
<th>m/z 216 (+R3)</th>
<th>m/z 215 (+R3)</th>
<th>m/z 204 (+R3)</th>
<th>m/z 202 (+R3)</th>
<th>m/z 188 (+R3)</th>
<th>R'</th>
<th>R'''</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Bu</td>
<td>Me</td>
<td>H</td>
<td>330</td>
<td>100</td>
<td>27</td>
<td>38</td>
<td>28</td>
<td>35</td>
<td>43</td>
<td>41</td>
<td>—</td>
<td>20</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Pr</td>
<td>Et</td>
<td>H</td>
<td>330</td>
<td>100</td>
<td>4</td>
<td>32</td>
<td>42</td>
<td>47</td>
<td>8</td>
<td>74</td>
<td>58</td>
<td>56</td>
<td>24</td>
<td>28</td>
<td>13</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Bu</td>
<td>Et</td>
<td>H</td>
<td>344</td>
<td>100</td>
<td>1</td>
<td>28</td>
<td>34</td>
<td>34</td>
<td>5</td>
<td>46</td>
<td>35</td>
<td>33</td>
<td>16</td>
<td>15</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Pr</td>
<td>Pr</td>
<td>H</td>
<td>344</td>
<td>100</td>
<td>34</td>
<td>20</td>
<td>18</td>
<td>27</td>
<td>11</td>
<td>84</td>
<td>88</td>
<td>41</td>
<td>31</td>
<td>27</td>
<td>16</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Pr</td>
<td>Bu</td>
<td>H</td>
<td>358</td>
<td>100</td>
<td>40</td>
<td>16</td>
<td>13</td>
<td>18</td>
<td>12</td>
<td>84</td>
<td>20</td>
<td>35</td>
<td>32</td>
<td>27</td>
<td>16</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Pr</td>
<td>Me</td>
<td>Me</td>
<td>330</td>
<td>100</td>
<td>21</td>
<td>25</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>19</td>
<td>30</td>
<td>—</td>
<td>18</td>
<td>6</td>
<td>13</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Bu</td>
<td>Me</td>
<td>Me</td>
<td>344</td>
<td>100</td>
<td>22</td>
<td>29</td>
<td>29</td>
<td>11</td>
<td>11</td>
<td>19</td>
<td>29</td>
<td>—</td>
<td>17</td>
<td>7</td>
<td>14</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

* Me = methyl; Et = ethyl; Pr = n-propyl; Bu = n-butyl.

Additional ions of m/z (216 + R3), (215 + R3), 215, 202, 191 and (188 + R3) appear abundantly in all spectra. With the exception of peaks at m/z (114 + R3) and those of low-mass alk(en)yl ions, the remaining peaks in these spectra are less intense.

In addition to the R3-containing ions already mentioned, derivatives 18 and 19 yield peaks characteristic of R3 = Me in their spectra at m/z (138 + R3) and particularly at m/z (114 + R3).

REFERENCES
